Properties

Label 197.14.a.b.1.6
Level $197$
Weight $14$
Character 197.1
Self dual yes
Analytic conductor $211.245$
Analytic rank $0$
Dimension $109$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [197,14,Mod(1,197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("197.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [109] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(211.244930035\)
Analytic rank: \(0\)
Dimension: \(109\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-168.643 q^{2} +977.710 q^{3} +20248.6 q^{4} +23282.0 q^{5} -164884. q^{6} -126937. q^{7} -2.03327e6 q^{8} -638407. q^{9} -3.92635e6 q^{10} -8.23416e6 q^{11} +1.97973e7 q^{12} +1.69965e7 q^{13} +2.14071e7 q^{14} +2.27630e7 q^{15} +1.77021e8 q^{16} -8.40289e7 q^{17} +1.07663e8 q^{18} +2.16492e8 q^{19} +4.71428e8 q^{20} -1.24107e8 q^{21} +1.38864e9 q^{22} -6.93845e8 q^{23} -1.98795e9 q^{24} -6.78653e8 q^{25} -2.86635e9 q^{26} -2.18296e9 q^{27} -2.57029e9 q^{28} -1.45113e9 q^{29} -3.83883e9 q^{30} -2.27203e9 q^{31} -1.31969e10 q^{32} -8.05062e9 q^{33} +1.41709e10 q^{34} -2.95534e9 q^{35} -1.29268e10 q^{36} +1.70009e10 q^{37} -3.65099e10 q^{38} +1.66177e10 q^{39} -4.73385e10 q^{40} -4.86955e9 q^{41} +2.09299e10 q^{42} +2.01234e10 q^{43} -1.66730e11 q^{44} -1.48634e10 q^{45} +1.17012e11 q^{46} -1.42493e11 q^{47} +1.73075e11 q^{48} -8.07761e10 q^{49} +1.14450e11 q^{50} -8.21559e10 q^{51} +3.44156e11 q^{52} +3.00267e10 q^{53} +3.68142e11 q^{54} -1.91707e11 q^{55} +2.58097e11 q^{56} +2.11666e11 q^{57} +2.44724e11 q^{58} -3.86530e11 q^{59} +4.60919e11 q^{60} +4.31426e11 q^{61} +3.83163e11 q^{62} +8.10373e10 q^{63} +7.75410e11 q^{64} +3.95712e11 q^{65} +1.35768e12 q^{66} +1.10450e12 q^{67} -1.70147e12 q^{68} -6.78379e11 q^{69} +4.98398e11 q^{70} +1.43288e11 q^{71} +1.29805e12 q^{72} -1.28575e12 q^{73} -2.86709e12 q^{74} -6.63526e11 q^{75} +4.38365e12 q^{76} +1.04522e12 q^{77} -2.80246e12 q^{78} +4.04290e12 q^{79} +4.12139e12 q^{80} -1.11648e12 q^{81} +8.21218e11 q^{82} +4.40239e12 q^{83} -2.51300e12 q^{84} -1.95636e12 q^{85} -3.39368e12 q^{86} -1.41879e12 q^{87} +1.67423e13 q^{88} +2.64544e12 q^{89} +2.50661e12 q^{90} -2.15748e12 q^{91} -1.40494e13 q^{92} -2.22139e12 q^{93} +2.40306e13 q^{94} +5.04035e12 q^{95} -1.29027e13 q^{96} -1.19515e13 q^{97} +1.36224e13 q^{98} +5.25674e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −168.643 −1.86326 −0.931632 0.363403i \(-0.881615\pi\)
−0.931632 + 0.363403i \(0.881615\pi\)
\(3\) 977.710 0.774322 0.387161 0.922012i \(-0.373456\pi\)
0.387161 + 0.922012i \(0.373456\pi\)
\(4\) 20248.6 2.47175
\(5\) 23282.0 0.666369 0.333184 0.942862i \(-0.391877\pi\)
0.333184 + 0.942862i \(0.391877\pi\)
\(6\) −164884. −1.44277
\(7\) −126937. −0.407803 −0.203901 0.978991i \(-0.565362\pi\)
−0.203901 + 0.978991i \(0.565362\pi\)
\(8\) −2.03327e6 −2.74227
\(9\) −638407. −0.400425
\(10\) −3.92635e6 −1.24162
\(11\) −8.23416e6 −1.40142 −0.700708 0.713448i \(-0.747132\pi\)
−0.700708 + 0.713448i \(0.747132\pi\)
\(12\) 1.97973e7 1.91393
\(13\) 1.69965e7 0.976626 0.488313 0.872669i \(-0.337612\pi\)
0.488313 + 0.872669i \(0.337612\pi\)
\(14\) 2.14071e7 0.759845
\(15\) 2.27630e7 0.515984
\(16\) 1.77021e8 2.63782
\(17\) −8.40289e7 −0.844327 −0.422163 0.906520i \(-0.638729\pi\)
−0.422163 + 0.906520i \(0.638729\pi\)
\(18\) 1.07663e8 0.746097
\(19\) 2.16492e8 1.05570 0.527852 0.849336i \(-0.322997\pi\)
0.527852 + 0.849336i \(0.322997\pi\)
\(20\) 4.71428e8 1.64710
\(21\) −1.24107e8 −0.315771
\(22\) 1.38864e9 2.61121
\(23\) −6.93845e8 −0.977308 −0.488654 0.872478i \(-0.662512\pi\)
−0.488654 + 0.872478i \(0.662512\pi\)
\(24\) −1.98795e9 −2.12340
\(25\) −6.78653e8 −0.555953
\(26\) −2.86635e9 −1.81971
\(27\) −2.18296e9 −1.08438
\(28\) −2.57029e9 −1.00799
\(29\) −1.45113e9 −0.453022 −0.226511 0.974009i \(-0.572732\pi\)
−0.226511 + 0.974009i \(0.572732\pi\)
\(30\) −3.83883e9 −0.961415
\(31\) −2.27203e9 −0.459794 −0.229897 0.973215i \(-0.573839\pi\)
−0.229897 + 0.973215i \(0.573839\pi\)
\(32\) −1.31969e10 −2.17268
\(33\) −8.05062e9 −1.08515
\(34\) 1.41709e10 1.57320
\(35\) −2.95534e9 −0.271747
\(36\) −1.29268e10 −0.989752
\(37\) 1.70009e10 1.08933 0.544667 0.838653i \(-0.316656\pi\)
0.544667 + 0.838653i \(0.316656\pi\)
\(38\) −3.65099e10 −1.96706
\(39\) 1.66177e10 0.756223
\(40\) −4.73385e10 −1.82736
\(41\) −4.86955e9 −0.160101 −0.0800505 0.996791i \(-0.525508\pi\)
−0.0800505 + 0.996791i \(0.525508\pi\)
\(42\) 2.09299e10 0.588365
\(43\) 2.01234e10 0.485463 0.242731 0.970094i \(-0.421957\pi\)
0.242731 + 0.970094i \(0.421957\pi\)
\(44\) −1.66730e11 −3.46395
\(45\) −1.48634e10 −0.266831
\(46\) 1.17012e11 1.82098
\(47\) −1.42493e11 −1.92823 −0.964114 0.265487i \(-0.914467\pi\)
−0.964114 + 0.265487i \(0.914467\pi\)
\(48\) 1.73075e11 2.04252
\(49\) −8.07761e10 −0.833697
\(50\) 1.14450e11 1.03589
\(51\) −8.21559e10 −0.653781
\(52\) 3.44156e11 2.41398
\(53\) 3.00267e10 0.186086 0.0930432 0.995662i \(-0.470341\pi\)
0.0930432 + 0.995662i \(0.470341\pi\)
\(54\) 3.68142e11 2.02049
\(55\) −1.91707e11 −0.933859
\(56\) 2.58097e11 1.11830
\(57\) 2.11666e11 0.817456
\(58\) 2.44724e11 0.844100
\(59\) −3.86530e11 −1.19301 −0.596507 0.802608i \(-0.703445\pi\)
−0.596507 + 0.802608i \(0.703445\pi\)
\(60\) 4.60919e11 1.27539
\(61\) 4.31426e11 1.07217 0.536084 0.844165i \(-0.319903\pi\)
0.536084 + 0.844165i \(0.319903\pi\)
\(62\) 3.83163e11 0.856717
\(63\) 8.10373e10 0.163294
\(64\) 7.75410e11 1.41046
\(65\) 3.95712e11 0.650793
\(66\) 1.35768e12 2.02192
\(67\) 1.10450e12 1.49169 0.745846 0.666118i \(-0.232045\pi\)
0.745846 + 0.666118i \(0.232045\pi\)
\(68\) −1.70147e12 −2.08697
\(69\) −6.78379e11 −0.756751
\(70\) 4.98398e11 0.506337
\(71\) 1.43288e11 0.132749 0.0663743 0.997795i \(-0.478857\pi\)
0.0663743 + 0.997795i \(0.478857\pi\)
\(72\) 1.29805e12 1.09807
\(73\) −1.28575e12 −0.994395 −0.497198 0.867637i \(-0.665638\pi\)
−0.497198 + 0.867637i \(0.665638\pi\)
\(74\) −2.86709e12 −2.02972
\(75\) −6.63526e11 −0.430487
\(76\) 4.38365e12 2.60944
\(77\) 1.04522e12 0.571501
\(78\) −2.80246e12 −1.40904
\(79\) 4.04290e12 1.87119 0.935594 0.353078i \(-0.114865\pi\)
0.935594 + 0.353078i \(0.114865\pi\)
\(80\) 4.12139e12 1.75776
\(81\) −1.11648e12 −0.439235
\(82\) 8.21218e11 0.298310
\(83\) 4.40239e12 1.47802 0.739010 0.673694i \(-0.235294\pi\)
0.739010 + 0.673694i \(0.235294\pi\)
\(84\) −2.51300e12 −0.780508
\(85\) −1.95636e12 −0.562633
\(86\) −3.39368e12 −0.904545
\(87\) −1.41879e12 −0.350785
\(88\) 1.67423e13 3.84306
\(89\) 2.64544e12 0.564240 0.282120 0.959379i \(-0.408962\pi\)
0.282120 + 0.959379i \(0.408962\pi\)
\(90\) 2.50661e12 0.497176
\(91\) −2.15748e12 −0.398271
\(92\) −1.40494e13 −2.41567
\(93\) −2.22139e12 −0.356028
\(94\) 2.40306e13 3.59280
\(95\) 5.04035e12 0.703489
\(96\) −1.29027e13 −1.68236
\(97\) −1.19515e13 −1.45682 −0.728411 0.685140i \(-0.759741\pi\)
−0.728411 + 0.685140i \(0.759741\pi\)
\(98\) 1.36224e13 1.55340
\(99\) 5.25674e12 0.561162
\(100\) −1.37418e13 −1.37418
\(101\) −8.86561e12 −0.831036 −0.415518 0.909585i \(-0.636400\pi\)
−0.415518 + 0.909585i \(0.636400\pi\)
\(102\) 1.38550e13 1.21817
\(103\) −8.84075e12 −0.729537 −0.364769 0.931098i \(-0.618852\pi\)
−0.364769 + 0.931098i \(0.618852\pi\)
\(104\) −3.45585e13 −2.67817
\(105\) −2.88946e12 −0.210420
\(106\) −5.06381e12 −0.346728
\(107\) −2.31071e12 −0.148851 −0.0744253 0.997227i \(-0.523712\pi\)
−0.0744253 + 0.997227i \(0.523712\pi\)
\(108\) −4.42019e13 −2.68032
\(109\) 8.23338e12 0.470225 0.235113 0.971968i \(-0.424454\pi\)
0.235113 + 0.971968i \(0.424454\pi\)
\(110\) 3.23302e13 1.74003
\(111\) 1.66220e13 0.843495
\(112\) −2.24705e13 −1.07571
\(113\) 2.01925e13 0.912388 0.456194 0.889880i \(-0.349212\pi\)
0.456194 + 0.889880i \(0.349212\pi\)
\(114\) −3.56961e13 −1.52314
\(115\) −1.61541e13 −0.651248
\(116\) −2.93834e13 −1.11976
\(117\) −1.08507e13 −0.391065
\(118\) 6.51858e13 2.22290
\(119\) 1.06664e13 0.344319
\(120\) −4.62833e13 −1.41497
\(121\) 3.32787e13 0.963965
\(122\) −7.27572e13 −1.99773
\(123\) −4.76101e12 −0.123970
\(124\) −4.60054e13 −1.13650
\(125\) −4.42207e13 −1.03684
\(126\) −1.36664e13 −0.304261
\(127\) 7.03521e12 0.148783 0.0743914 0.997229i \(-0.476299\pi\)
0.0743914 + 0.997229i \(0.476299\pi\)
\(128\) −2.26591e13 −0.455384
\(129\) 1.96748e13 0.375905
\(130\) −6.67343e13 −1.21260
\(131\) 6.10944e13 1.05618 0.528090 0.849188i \(-0.322908\pi\)
0.528090 + 0.849188i \(0.322908\pi\)
\(132\) −1.63014e14 −2.68222
\(133\) −2.74807e13 −0.430520
\(134\) −1.86267e14 −2.77942
\(135\) −5.08236e13 −0.722597
\(136\) 1.70853e14 2.31537
\(137\) −2.39957e12 −0.0310062 −0.0155031 0.999880i \(-0.504935\pi\)
−0.0155031 + 0.999880i \(0.504935\pi\)
\(138\) 1.14404e14 1.41003
\(139\) −1.35358e14 −1.59180 −0.795898 0.605431i \(-0.793001\pi\)
−0.795898 + 0.605431i \(0.793001\pi\)
\(140\) −5.98415e13 −0.671692
\(141\) −1.39317e14 −1.49307
\(142\) −2.41645e13 −0.247346
\(143\) −1.39952e14 −1.36866
\(144\) −1.13011e14 −1.05625
\(145\) −3.37852e13 −0.301880
\(146\) 2.16834e14 1.85282
\(147\) −7.89755e13 −0.645550
\(148\) 3.44245e14 2.69256
\(149\) 2.20203e14 1.64859 0.824296 0.566159i \(-0.191571\pi\)
0.824296 + 0.566159i \(0.191571\pi\)
\(150\) 1.11899e14 0.802110
\(151\) −1.04073e14 −0.714479 −0.357240 0.934013i \(-0.616282\pi\)
−0.357240 + 0.934013i \(0.616282\pi\)
\(152\) −4.40186e14 −2.89503
\(153\) 5.36446e13 0.338089
\(154\) −1.76269e14 −1.06486
\(155\) −5.28973e13 −0.306392
\(156\) 3.36485e14 1.86920
\(157\) 3.51596e14 1.87368 0.936842 0.349753i \(-0.113735\pi\)
0.936842 + 0.349753i \(0.113735\pi\)
\(158\) −6.81809e14 −3.48652
\(159\) 2.93574e13 0.144091
\(160\) −3.07249e14 −1.44781
\(161\) 8.80745e13 0.398549
\(162\) 1.88286e14 0.818411
\(163\) 4.20751e14 1.75714 0.878568 0.477617i \(-0.158499\pi\)
0.878568 + 0.477617i \(0.158499\pi\)
\(164\) −9.86017e13 −0.395730
\(165\) −1.87434e14 −0.723108
\(166\) −7.42433e14 −2.75394
\(167\) −3.34789e14 −1.19430 −0.597152 0.802128i \(-0.703701\pi\)
−0.597152 + 0.802128i \(0.703701\pi\)
\(168\) 2.52344e14 0.865928
\(169\) −1.39934e13 −0.0462018
\(170\) 3.29927e14 1.04833
\(171\) −1.38210e14 −0.422731
\(172\) 4.07470e14 1.19994
\(173\) 2.84525e13 0.0806903 0.0403452 0.999186i \(-0.487154\pi\)
0.0403452 + 0.999186i \(0.487154\pi\)
\(174\) 2.39269e14 0.653606
\(175\) 8.61461e13 0.226719
\(176\) −1.45762e15 −3.69668
\(177\) −3.77914e14 −0.923777
\(178\) −4.46137e14 −1.05133
\(179\) 6.60949e14 1.50184 0.750920 0.660393i \(-0.229610\pi\)
0.750920 + 0.660393i \(0.229610\pi\)
\(180\) −3.00962e14 −0.659540
\(181\) 6.24507e14 1.32016 0.660080 0.751196i \(-0.270523\pi\)
0.660080 + 0.751196i \(0.270523\pi\)
\(182\) 3.63846e14 0.742084
\(183\) 4.21810e14 0.830204
\(184\) 1.41077e15 2.68004
\(185\) 3.95814e14 0.725898
\(186\) 3.74622e14 0.663375
\(187\) 6.91907e14 1.18325
\(188\) −2.88529e15 −4.76611
\(189\) 2.77098e14 0.442213
\(190\) −8.50022e14 −1.31079
\(191\) 4.85135e14 0.723012 0.361506 0.932370i \(-0.382263\pi\)
0.361506 + 0.932370i \(0.382263\pi\)
\(192\) 7.58126e14 1.09215
\(193\) −6.81300e14 −0.948890 −0.474445 0.880285i \(-0.657351\pi\)
−0.474445 + 0.880285i \(0.657351\pi\)
\(194\) 2.01554e15 2.71444
\(195\) 3.86892e14 0.503924
\(196\) −1.63560e15 −2.06069
\(197\) 5.84517e13 0.0712470
\(198\) −8.86515e14 −1.04559
\(199\) −6.99058e14 −0.797937 −0.398968 0.916965i \(-0.630632\pi\)
−0.398968 + 0.916965i \(0.630632\pi\)
\(200\) 1.37988e15 1.52457
\(201\) 1.07988e15 1.15505
\(202\) 1.49513e15 1.54844
\(203\) 1.84202e14 0.184744
\(204\) −1.66354e15 −1.61599
\(205\) −1.13373e14 −0.106686
\(206\) 1.49094e15 1.35932
\(207\) 4.42955e14 0.391338
\(208\) 3.00874e15 2.57616
\(209\) −1.78263e15 −1.47948
\(210\) 4.87289e14 0.392068
\(211\) −1.16834e14 −0.0911450 −0.0455725 0.998961i \(-0.514511\pi\)
−0.0455725 + 0.998961i \(0.514511\pi\)
\(212\) 6.07999e14 0.459960
\(213\) 1.40094e14 0.102790
\(214\) 3.89686e14 0.277348
\(215\) 4.68512e14 0.323497
\(216\) 4.43855e15 2.97366
\(217\) 2.88404e14 0.187505
\(218\) −1.38851e15 −0.876154
\(219\) −1.25709e15 −0.769982
\(220\) −3.88181e15 −2.30827
\(221\) −1.42820e15 −0.824592
\(222\) −2.80318e15 −1.57165
\(223\) 1.83327e15 0.998261 0.499130 0.866527i \(-0.333653\pi\)
0.499130 + 0.866527i \(0.333653\pi\)
\(224\) 1.67517e15 0.886025
\(225\) 4.33257e14 0.222617
\(226\) −3.40533e15 −1.70002
\(227\) −2.16336e15 −1.04945 −0.524724 0.851272i \(-0.675831\pi\)
−0.524724 + 0.851272i \(0.675831\pi\)
\(228\) 4.28594e15 2.02055
\(229\) −2.13339e15 −0.977550 −0.488775 0.872410i \(-0.662556\pi\)
−0.488775 + 0.872410i \(0.662556\pi\)
\(230\) 2.72428e15 1.21345
\(231\) 1.02192e15 0.442526
\(232\) 2.95054e15 1.24231
\(233\) −1.87987e14 −0.0769688 −0.0384844 0.999259i \(-0.512253\pi\)
−0.0384844 + 0.999259i \(0.512253\pi\)
\(234\) 1.82990e15 0.728658
\(235\) −3.31753e15 −1.28491
\(236\) −7.82670e15 −2.94884
\(237\) 3.95279e15 1.44890
\(238\) −1.79881e15 −0.641557
\(239\) −4.75777e15 −1.65127 −0.825633 0.564208i \(-0.809182\pi\)
−0.825633 + 0.564208i \(0.809182\pi\)
\(240\) 4.02953e15 1.36107
\(241\) −1.43440e15 −0.471586 −0.235793 0.971803i \(-0.575769\pi\)
−0.235793 + 0.971803i \(0.575769\pi\)
\(242\) −5.61223e15 −1.79612
\(243\) 2.38876e15 0.744271
\(244\) 8.73579e15 2.65014
\(245\) −1.88063e15 −0.555550
\(246\) 8.02913e14 0.230988
\(247\) 3.67960e15 1.03103
\(248\) 4.61965e15 1.26088
\(249\) 4.30425e15 1.14446
\(250\) 7.45754e15 1.93190
\(251\) 1.42140e15 0.358787 0.179393 0.983777i \(-0.442587\pi\)
0.179393 + 0.983777i \(0.442587\pi\)
\(252\) 1.64089e15 0.403624
\(253\) 5.71323e15 1.36961
\(254\) −1.18644e15 −0.277222
\(255\) −1.91275e15 −0.435659
\(256\) −2.53085e15 −0.561961
\(257\) 4.96896e15 1.07572 0.537861 0.843034i \(-0.319233\pi\)
0.537861 + 0.843034i \(0.319233\pi\)
\(258\) −3.31803e15 −0.700410
\(259\) −2.15804e15 −0.444233
\(260\) 8.01263e15 1.60860
\(261\) 9.26412e14 0.181401
\(262\) −1.03032e16 −1.96794
\(263\) 6.85544e15 1.27739 0.638694 0.769461i \(-0.279475\pi\)
0.638694 + 0.769461i \(0.279475\pi\)
\(264\) 1.63691e16 2.97576
\(265\) 6.99081e14 0.124002
\(266\) 4.63445e15 0.802172
\(267\) 2.58648e15 0.436903
\(268\) 2.23646e16 3.68710
\(269\) 2.11302e15 0.340028 0.170014 0.985442i \(-0.445619\pi\)
0.170014 + 0.985442i \(0.445619\pi\)
\(270\) 8.57107e15 1.34639
\(271\) 3.88890e15 0.596385 0.298192 0.954506i \(-0.403616\pi\)
0.298192 + 0.954506i \(0.403616\pi\)
\(272\) −1.48749e16 −2.22718
\(273\) −2.10939e15 −0.308390
\(274\) 4.04671e14 0.0577728
\(275\) 5.58814e15 0.779121
\(276\) −1.37362e16 −1.87050
\(277\) −4.65652e15 −0.619360 −0.309680 0.950841i \(-0.600222\pi\)
−0.309680 + 0.950841i \(0.600222\pi\)
\(278\) 2.28272e16 2.96594
\(279\) 1.45048e15 0.184113
\(280\) 6.00900e15 0.745203
\(281\) 8.50499e15 1.03058 0.515291 0.857015i \(-0.327684\pi\)
0.515291 + 0.857015i \(0.327684\pi\)
\(282\) 2.34949e16 2.78199
\(283\) −5.02144e15 −0.581054 −0.290527 0.956867i \(-0.593831\pi\)
−0.290527 + 0.956867i \(0.593831\pi\)
\(284\) 2.90138e15 0.328122
\(285\) 4.92800e15 0.544727
\(286\) 2.36020e16 2.55017
\(287\) 6.18125e14 0.0652896
\(288\) 8.42496e15 0.869995
\(289\) −2.84372e15 −0.287112
\(290\) 5.69765e15 0.562482
\(291\) −1.16851e16 −1.12805
\(292\) −2.60347e16 −2.45790
\(293\) −1.47381e15 −0.136082 −0.0680412 0.997683i \(-0.521675\pi\)
−0.0680412 + 0.997683i \(0.521675\pi\)
\(294\) 1.33187e16 1.20283
\(295\) −8.99919e15 −0.794987
\(296\) −3.45674e16 −2.98724
\(297\) 1.79749e16 1.51967
\(298\) −3.71358e16 −3.07176
\(299\) −1.17929e16 −0.954464
\(300\) −1.34355e16 −1.06406
\(301\) −2.55440e15 −0.197973
\(302\) 1.75513e16 1.33126
\(303\) −8.66800e15 −0.643490
\(304\) 3.83235e16 2.78476
\(305\) 1.00445e16 0.714459
\(306\) −9.04681e15 −0.629950
\(307\) −1.24139e16 −0.846269 −0.423134 0.906067i \(-0.639070\pi\)
−0.423134 + 0.906067i \(0.639070\pi\)
\(308\) 2.11642e16 1.41261
\(309\) −8.64369e15 −0.564897
\(310\) 8.92078e15 0.570889
\(311\) 4.99006e15 0.312726 0.156363 0.987700i \(-0.450023\pi\)
0.156363 + 0.987700i \(0.450023\pi\)
\(312\) −3.37882e16 −2.07377
\(313\) 1.01680e14 0.00611218 0.00305609 0.999995i \(-0.499027\pi\)
0.00305609 + 0.999995i \(0.499027\pi\)
\(314\) −5.92944e16 −3.49117
\(315\) 1.88671e15 0.108814
\(316\) 8.18632e16 4.62512
\(317\) −1.22078e16 −0.675700 −0.337850 0.941200i \(-0.609700\pi\)
−0.337850 + 0.941200i \(0.609700\pi\)
\(318\) −4.95093e15 −0.268479
\(319\) 1.19488e16 0.634873
\(320\) 1.80531e16 0.939888
\(321\) −2.25920e15 −0.115258
\(322\) −1.48532e16 −0.742602
\(323\) −1.81915e16 −0.891360
\(324\) −2.26071e16 −1.08568
\(325\) −1.15347e16 −0.542958
\(326\) −7.09569e16 −3.27401
\(327\) 8.04986e15 0.364106
\(328\) 9.90111e15 0.439040
\(329\) 1.80877e16 0.786337
\(330\) 3.16096e16 1.34734
\(331\) 2.84055e16 1.18719 0.593595 0.804764i \(-0.297708\pi\)
0.593595 + 0.804764i \(0.297708\pi\)
\(332\) 8.91422e16 3.65330
\(333\) −1.08535e16 −0.436196
\(334\) 5.64601e16 2.22530
\(335\) 2.57149e16 0.994017
\(336\) −2.19696e16 −0.832945
\(337\) −4.27689e16 −1.59050 −0.795250 0.606282i \(-0.792660\pi\)
−0.795250 + 0.606282i \(0.792660\pi\)
\(338\) 2.35989e15 0.0860862
\(339\) 1.97424e16 0.706482
\(340\) −3.96135e16 −1.39069
\(341\) 1.87083e16 0.644362
\(342\) 2.33081e16 0.787659
\(343\) 2.25522e16 0.747787
\(344\) −4.09162e16 −1.33127
\(345\) −1.57940e16 −0.504276
\(346\) −4.79834e15 −0.150347
\(347\) 1.49991e16 0.461238 0.230619 0.973044i \(-0.425925\pi\)
0.230619 + 0.973044i \(0.425925\pi\)
\(348\) −2.87284e16 −0.867055
\(349\) 8.84743e15 0.262091 0.131045 0.991376i \(-0.458167\pi\)
0.131045 + 0.991376i \(0.458167\pi\)
\(350\) −1.45280e16 −0.422438
\(351\) −3.71028e16 −1.05903
\(352\) 1.08665e17 3.04483
\(353\) −4.66735e16 −1.28391 −0.641955 0.766742i \(-0.721877\pi\)
−0.641955 + 0.766742i \(0.721877\pi\)
\(354\) 6.37328e16 1.72124
\(355\) 3.33602e15 0.0884595
\(356\) 5.35666e16 1.39466
\(357\) 1.04286e16 0.266614
\(358\) −1.11465e17 −2.79832
\(359\) 5.38973e16 1.32878 0.664390 0.747386i \(-0.268691\pi\)
0.664390 + 0.747386i \(0.268691\pi\)
\(360\) 3.02212e16 0.731721
\(361\) 4.81561e15 0.114513
\(362\) −1.05319e17 −2.45981
\(363\) 3.25369e16 0.746420
\(364\) −4.36861e16 −0.984428
\(365\) −2.99349e16 −0.662634
\(366\) −7.11355e16 −1.54689
\(367\) −4.87652e16 −1.04179 −0.520895 0.853621i \(-0.674402\pi\)
−0.520895 + 0.853621i \(0.674402\pi\)
\(368\) −1.22825e17 −2.57796
\(369\) 3.10875e15 0.0641084
\(370\) −6.67515e16 −1.35254
\(371\) −3.81149e15 −0.0758866
\(372\) −4.49800e16 −0.880015
\(373\) 5.97019e16 1.14784 0.573920 0.818912i \(-0.305422\pi\)
0.573920 + 0.818912i \(0.305422\pi\)
\(374\) −1.16686e17 −2.20471
\(375\) −4.32351e16 −0.802847
\(376\) 2.89727e17 5.28772
\(377\) −2.46642e16 −0.442433
\(378\) −4.67308e16 −0.823961
\(379\) 4.52310e16 0.783937 0.391969 0.919979i \(-0.371794\pi\)
0.391969 + 0.919979i \(0.371794\pi\)
\(380\) 1.02060e17 1.73885
\(381\) 6.87839e15 0.115206
\(382\) −8.18148e16 −1.34716
\(383\) 6.60843e15 0.106981 0.0534904 0.998568i \(-0.482965\pi\)
0.0534904 + 0.998568i \(0.482965\pi\)
\(384\) −2.21540e16 −0.352614
\(385\) 2.43347e16 0.380831
\(386\) 1.14897e17 1.76803
\(387\) −1.28469e16 −0.194391
\(388\) −2.42001e17 −3.60091
\(389\) −9.26328e16 −1.35548 −0.677739 0.735303i \(-0.737040\pi\)
−0.677739 + 0.735303i \(0.737040\pi\)
\(390\) −6.52468e16 −0.938943
\(391\) 5.83030e16 0.825167
\(392\) 1.64239e17 2.28622
\(393\) 5.97326e16 0.817824
\(394\) −9.85750e15 −0.132752
\(395\) 9.41268e16 1.24690
\(396\) 1.06442e17 1.38705
\(397\) −2.77565e16 −0.355817 −0.177908 0.984047i \(-0.556933\pi\)
−0.177908 + 0.984047i \(0.556933\pi\)
\(398\) 1.17892e17 1.48677
\(399\) −2.68682e16 −0.333361
\(400\) −1.20136e17 −1.46650
\(401\) −4.95716e16 −0.595380 −0.297690 0.954663i \(-0.596216\pi\)
−0.297690 + 0.954663i \(0.596216\pi\)
\(402\) −1.82115e17 −2.15216
\(403\) −3.86166e16 −0.449046
\(404\) −1.79516e17 −2.05412
\(405\) −2.59938e16 −0.292693
\(406\) −3.10644e16 −0.344227
\(407\) −1.39988e17 −1.52661
\(408\) 1.67045e17 1.79284
\(409\) 1.31500e16 0.138907 0.0694534 0.997585i \(-0.477874\pi\)
0.0694534 + 0.997585i \(0.477874\pi\)
\(410\) 1.91196e16 0.198785
\(411\) −2.34608e15 −0.0240088
\(412\) −1.79013e17 −1.80324
\(413\) 4.90649e16 0.486515
\(414\) −7.47015e16 −0.729167
\(415\) 1.02496e17 0.984907
\(416\) −2.24301e17 −2.12190
\(417\) −1.32341e17 −1.23256
\(418\) 3.00628e17 2.75666
\(419\) −1.50811e17 −1.36157 −0.680786 0.732482i \(-0.738362\pi\)
−0.680786 + 0.732482i \(0.738362\pi\)
\(420\) −5.85076e16 −0.520106
\(421\) 8.33826e15 0.0729864 0.0364932 0.999334i \(-0.488381\pi\)
0.0364932 + 0.999334i \(0.488381\pi\)
\(422\) 1.97033e16 0.169827
\(423\) 9.09687e16 0.772111
\(424\) −6.10524e16 −0.510299
\(425\) 5.70265e16 0.469406
\(426\) −2.36259e16 −0.191525
\(427\) −5.47639e16 −0.437233
\(428\) −4.67886e16 −0.367922
\(429\) −1.36833e17 −1.05978
\(430\) −7.90114e16 −0.602761
\(431\) 3.93492e16 0.295688 0.147844 0.989011i \(-0.452767\pi\)
0.147844 + 0.989011i \(0.452767\pi\)
\(432\) −3.86430e17 −2.86040
\(433\) 1.27757e17 0.931566 0.465783 0.884899i \(-0.345773\pi\)
0.465783 + 0.884899i \(0.345773\pi\)
\(434\) −4.86375e16 −0.349372
\(435\) −3.30321e16 −0.233752
\(436\) 1.66715e17 1.16228
\(437\) −1.50212e17 −1.03175
\(438\) 2.12001e17 1.43468
\(439\) 2.68659e17 1.79135 0.895677 0.444705i \(-0.146692\pi\)
0.895677 + 0.444705i \(0.146692\pi\)
\(440\) 3.89793e17 2.56089
\(441\) 5.15680e16 0.333833
\(442\) 2.40856e17 1.53643
\(443\) 2.46386e17 1.54879 0.774393 0.632705i \(-0.218055\pi\)
0.774393 + 0.632705i \(0.218055\pi\)
\(444\) 3.36571e17 2.08491
\(445\) 6.15911e16 0.375992
\(446\) −3.09168e17 −1.86002
\(447\) 2.15295e17 1.27654
\(448\) −9.84281e16 −0.575191
\(449\) 2.00826e17 1.15670 0.578349 0.815790i \(-0.303697\pi\)
0.578349 + 0.815790i \(0.303697\pi\)
\(450\) −7.30659e16 −0.414795
\(451\) 4.00967e16 0.224368
\(452\) 4.08869e17 2.25520
\(453\) −1.01754e17 −0.553237
\(454\) 3.64837e17 1.95540
\(455\) −5.02305e16 −0.265395
\(456\) −4.30374e17 −2.24168
\(457\) −2.20923e17 −1.13445 −0.567227 0.823562i \(-0.691984\pi\)
−0.567227 + 0.823562i \(0.691984\pi\)
\(458\) 3.59782e17 1.82143
\(459\) 1.83432e17 0.915571
\(460\) −3.27098e17 −1.60972
\(461\) 2.66171e17 1.29153 0.645765 0.763536i \(-0.276539\pi\)
0.645765 + 0.763536i \(0.276539\pi\)
\(462\) −1.72340e17 −0.824543
\(463\) 1.86059e17 0.877757 0.438878 0.898547i \(-0.355376\pi\)
0.438878 + 0.898547i \(0.355376\pi\)
\(464\) −2.56880e17 −1.19499
\(465\) −5.17182e16 −0.237246
\(466\) 3.17028e16 0.143413
\(467\) 4.17029e16 0.186040 0.0930200 0.995664i \(-0.470348\pi\)
0.0930200 + 0.995664i \(0.470348\pi\)
\(468\) −2.19711e17 −0.966617
\(469\) −1.40202e17 −0.608316
\(470\) 5.59479e17 2.39413
\(471\) 3.43759e17 1.45084
\(472\) 7.85920e17 3.27156
\(473\) −1.65699e17 −0.680335
\(474\) −6.66612e17 −2.69969
\(475\) −1.46923e17 −0.586922
\(476\) 2.15979e17 0.851072
\(477\) −1.91692e16 −0.0745136
\(478\) 8.02366e17 3.07674
\(479\) 9.96294e16 0.376883 0.188442 0.982084i \(-0.439656\pi\)
0.188442 + 0.982084i \(0.439656\pi\)
\(480\) −3.00400e17 −1.12107
\(481\) 2.88956e17 1.06387
\(482\) 2.41903e17 0.878689
\(483\) 8.61113e16 0.308605
\(484\) 6.73847e17 2.38269
\(485\) −2.78255e17 −0.970781
\(486\) −4.02848e17 −1.38677
\(487\) 4.08953e17 1.38911 0.694553 0.719441i \(-0.255602\pi\)
0.694553 + 0.719441i \(0.255602\pi\)
\(488\) −8.77206e17 −2.94017
\(489\) 4.11372e17 1.36059
\(490\) 3.17155e17 1.03514
\(491\) 2.83532e17 0.913215 0.456607 0.889668i \(-0.349064\pi\)
0.456607 + 0.889668i \(0.349064\pi\)
\(492\) −9.64038e16 −0.306423
\(493\) 1.21937e17 0.382499
\(494\) −6.20541e17 −1.92108
\(495\) 1.22387e17 0.373941
\(496\) −4.02196e17 −1.21285
\(497\) −1.81885e16 −0.0541353
\(498\) −7.25884e17 −2.13244
\(499\) −2.26848e17 −0.657781 −0.328891 0.944368i \(-0.606675\pi\)
−0.328891 + 0.944368i \(0.606675\pi\)
\(500\) −8.95409e17 −2.56281
\(501\) −3.27327e17 −0.924776
\(502\) −2.39709e17 −0.668514
\(503\) 2.79315e17 0.768958 0.384479 0.923134i \(-0.374381\pi\)
0.384479 + 0.923134i \(0.374381\pi\)
\(504\) −1.64771e17 −0.447797
\(505\) −2.06409e17 −0.553776
\(506\) −9.63499e17 −2.55195
\(507\) −1.36815e16 −0.0357751
\(508\) 1.42453e17 0.367754
\(509\) 2.57680e17 0.656772 0.328386 0.944544i \(-0.393495\pi\)
0.328386 + 0.944544i \(0.393495\pi\)
\(510\) 3.22573e17 0.811749
\(511\) 1.63209e17 0.405517
\(512\) 6.12434e17 1.50247
\(513\) −4.72593e17 −1.14479
\(514\) −8.37982e17 −2.00435
\(515\) −2.05830e17 −0.486141
\(516\) 3.98388e17 0.929144
\(517\) 1.17331e18 2.70225
\(518\) 3.63939e17 0.827724
\(519\) 2.78183e16 0.0624803
\(520\) −8.04590e17 −1.78465
\(521\) 2.39796e17 0.525287 0.262643 0.964893i \(-0.415406\pi\)
0.262643 + 0.964893i \(0.415406\pi\)
\(522\) −1.56233e17 −0.337999
\(523\) 4.83508e17 1.03310 0.516551 0.856257i \(-0.327216\pi\)
0.516551 + 0.856257i \(0.327216\pi\)
\(524\) 1.23708e18 2.61062
\(525\) 8.42259e16 0.175554
\(526\) −1.15612e18 −2.38011
\(527\) 1.90916e17 0.388216
\(528\) −1.42513e18 −2.86242
\(529\) −2.26156e16 −0.0448690
\(530\) −1.17895e17 −0.231049
\(531\) 2.46763e17 0.477712
\(532\) −5.56447e17 −1.06414
\(533\) −8.27654e16 −0.156359
\(534\) −4.36192e17 −0.814067
\(535\) −5.37978e16 −0.0991893
\(536\) −2.24574e18 −4.09062
\(537\) 6.46217e17 1.16291
\(538\) −3.56347e17 −0.633561
\(539\) 6.65123e17 1.16836
\(540\) −1.02911e18 −1.78608
\(541\) 1.04736e17 0.179603 0.0898016 0.995960i \(-0.471377\pi\)
0.0898016 + 0.995960i \(0.471377\pi\)
\(542\) −6.55838e17 −1.11122
\(543\) 6.10586e17 1.02223
\(544\) 1.10892e18 1.83445
\(545\) 1.91689e17 0.313343
\(546\) 3.55735e17 0.574612
\(547\) −6.03348e17 −0.963054 −0.481527 0.876431i \(-0.659918\pi\)
−0.481527 + 0.876431i \(0.659918\pi\)
\(548\) −4.85879e16 −0.0766398
\(549\) −2.75425e17 −0.429323
\(550\) −9.42403e17 −1.45171
\(551\) −3.14158e17 −0.478258
\(552\) 1.37933e18 2.07522
\(553\) −5.13193e17 −0.763076
\(554\) 7.85292e17 1.15403
\(555\) 3.86992e17 0.562079
\(556\) −2.74081e18 −3.93453
\(557\) 1.94030e16 0.0275302 0.0137651 0.999905i \(-0.495618\pi\)
0.0137651 + 0.999905i \(0.495618\pi\)
\(558\) −2.44614e17 −0.343051
\(559\) 3.42027e17 0.474115
\(560\) −5.23156e17 −0.716819
\(561\) 6.76485e17 0.916219
\(562\) −1.43431e18 −1.92025
\(563\) 7.77947e17 1.02955 0.514773 0.857327i \(-0.327876\pi\)
0.514773 + 0.857327i \(0.327876\pi\)
\(564\) −2.82098e18 −3.69050
\(565\) 4.70120e17 0.607987
\(566\) 8.46833e17 1.08266
\(567\) 1.41722e17 0.179121
\(568\) −2.91343e17 −0.364032
\(569\) −9.09128e17 −1.12304 −0.561520 0.827463i \(-0.689783\pi\)
−0.561520 + 0.827463i \(0.689783\pi\)
\(570\) −8.31075e17 −1.01497
\(571\) −1.52398e18 −1.84011 −0.920057 0.391784i \(-0.871858\pi\)
−0.920057 + 0.391784i \(0.871858\pi\)
\(572\) −2.83384e18 −3.38299
\(573\) 4.74321e17 0.559844
\(574\) −1.04243e17 −0.121652
\(575\) 4.70880e17 0.543337
\(576\) −4.95027e17 −0.564784
\(577\) 1.21715e18 1.37309 0.686546 0.727086i \(-0.259126\pi\)
0.686546 + 0.727086i \(0.259126\pi\)
\(578\) 4.79575e17 0.534966
\(579\) −6.66113e17 −0.734746
\(580\) −6.84103e17 −0.746173
\(581\) −5.58825e17 −0.602741
\(582\) 1.97062e18 2.10186
\(583\) −2.47245e17 −0.260784
\(584\) 2.61428e18 2.72690
\(585\) −2.52625e17 −0.260594
\(586\) 2.48549e17 0.253558
\(587\) 8.69734e17 0.877483 0.438742 0.898613i \(-0.355424\pi\)
0.438742 + 0.898613i \(0.355424\pi\)
\(588\) −1.59915e18 −1.59564
\(589\) −4.91875e17 −0.485406
\(590\) 1.51765e18 1.48127
\(591\) 5.71488e16 0.0551682
\(592\) 3.00951e18 2.87346
\(593\) −5.90997e17 −0.558123 −0.279061 0.960273i \(-0.590023\pi\)
−0.279061 + 0.960273i \(0.590023\pi\)
\(594\) −3.03134e18 −2.83154
\(595\) 2.48334e17 0.229443
\(596\) 4.45881e18 4.07491
\(597\) −6.83476e17 −0.617860
\(598\) 1.98880e18 1.77842
\(599\) 9.71699e17 0.859523 0.429762 0.902942i \(-0.358598\pi\)
0.429762 + 0.902942i \(0.358598\pi\)
\(600\) 1.34913e18 1.18051
\(601\) 1.40573e18 1.21680 0.608399 0.793631i \(-0.291812\pi\)
0.608399 + 0.793631i \(0.291812\pi\)
\(602\) 4.30782e17 0.368876
\(603\) −7.05120e17 −0.597311
\(604\) −2.10734e18 −1.76602
\(605\) 7.74793e17 0.642356
\(606\) 1.46180e18 1.19899
\(607\) −2.00311e18 −1.62547 −0.812734 0.582635i \(-0.802022\pi\)
−0.812734 + 0.582635i \(0.802022\pi\)
\(608\) −2.85701e18 −2.29371
\(609\) 1.80096e17 0.143051
\(610\) −1.69393e18 −1.33123
\(611\) −2.42189e18 −1.88316
\(612\) 1.08623e18 0.835674
\(613\) 1.42761e18 1.08672 0.543360 0.839500i \(-0.317152\pi\)
0.543360 + 0.839500i \(0.317152\pi\)
\(614\) 2.09352e18 1.57682
\(615\) −1.10846e17 −0.0826096
\(616\) −2.12521e18 −1.56721
\(617\) −6.56052e17 −0.478724 −0.239362 0.970930i \(-0.576938\pi\)
−0.239362 + 0.970930i \(0.576938\pi\)
\(618\) 1.45770e18 1.05255
\(619\) 2.07305e18 1.48123 0.740613 0.671932i \(-0.234535\pi\)
0.740613 + 0.671932i \(0.234535\pi\)
\(620\) −1.07110e18 −0.757326
\(621\) 1.51464e18 1.05977
\(622\) −8.41541e17 −0.582690
\(623\) −3.35804e17 −0.230099
\(624\) 2.94167e18 1.99478
\(625\) −2.01112e17 −0.134964
\(626\) −1.71476e16 −0.0113886
\(627\) −1.74289e18 −1.14560
\(628\) 7.11933e18 4.63129
\(629\) −1.42857e18 −0.919754
\(630\) −3.18181e17 −0.202750
\(631\) −5.78882e17 −0.365089 −0.182545 0.983198i \(-0.558433\pi\)
−0.182545 + 0.983198i \(0.558433\pi\)
\(632\) −8.22031e18 −5.13130
\(633\) −1.14230e17 −0.0705756
\(634\) 2.05877e18 1.25901
\(635\) 1.63793e17 0.0991442
\(636\) 5.94447e17 0.356157
\(637\) −1.37291e18 −0.814210
\(638\) −2.01509e18 −1.18294
\(639\) −9.14759e16 −0.0531558
\(640\) −5.27549e17 −0.303454
\(641\) −1.85697e18 −1.05737 −0.528687 0.848817i \(-0.677315\pi\)
−0.528687 + 0.848817i \(0.677315\pi\)
\(642\) 3.80999e17 0.214757
\(643\) −9.29050e17 −0.518403 −0.259202 0.965823i \(-0.583459\pi\)
−0.259202 + 0.965823i \(0.583459\pi\)
\(644\) 1.78339e18 0.985115
\(645\) 4.58069e17 0.250491
\(646\) 3.06788e18 1.66084
\(647\) 2.68373e18 1.43834 0.719170 0.694834i \(-0.244522\pi\)
0.719170 + 0.694834i \(0.244522\pi\)
\(648\) 2.27010e18 1.20450
\(649\) 3.18275e18 1.67191
\(650\) 1.94526e18 1.01167
\(651\) 2.81976e17 0.145189
\(652\) 8.51962e18 4.34321
\(653\) 9.76106e17 0.492676 0.246338 0.969184i \(-0.420773\pi\)
0.246338 + 0.969184i \(0.420773\pi\)
\(654\) −1.35756e18 −0.678426
\(655\) 1.42240e18 0.703805
\(656\) −8.62012e17 −0.422317
\(657\) 8.20833e17 0.398181
\(658\) −3.05036e18 −1.46515
\(659\) −3.05827e18 −1.45452 −0.727261 0.686361i \(-0.759207\pi\)
−0.727261 + 0.686361i \(0.759207\pi\)
\(660\) −3.79528e18 −1.78735
\(661\) 4.02652e18 1.87768 0.938838 0.344359i \(-0.111904\pi\)
0.938838 + 0.344359i \(0.111904\pi\)
\(662\) −4.79040e18 −2.21205
\(663\) −1.39636e18 −0.638500
\(664\) −8.95123e18 −4.05313
\(665\) −6.39806e17 −0.286885
\(666\) 1.83037e18 0.812749
\(667\) 1.00686e18 0.442742
\(668\) −6.77902e18 −2.95203
\(669\) 1.79240e18 0.772976
\(670\) −4.33665e18 −1.85212
\(671\) −3.55243e18 −1.50255
\(672\) 1.63783e18 0.686069
\(673\) 2.53323e18 1.05094 0.525468 0.850814i \(-0.323890\pi\)
0.525468 + 0.850814i \(0.323890\pi\)
\(674\) 7.21269e18 2.96352
\(675\) 1.48147e18 0.602864
\(676\) −2.83347e17 −0.114200
\(677\) 1.77456e18 0.708379 0.354189 0.935174i \(-0.384757\pi\)
0.354189 + 0.935174i \(0.384757\pi\)
\(678\) −3.32942e18 −1.31636
\(679\) 1.51709e18 0.594096
\(680\) 3.97780e18 1.54289
\(681\) −2.11514e18 −0.812611
\(682\) −3.15502e18 −1.20062
\(683\) 3.40712e18 1.28426 0.642130 0.766596i \(-0.278051\pi\)
0.642130 + 0.766596i \(0.278051\pi\)
\(684\) −2.79855e18 −1.04489
\(685\) −5.58666e16 −0.0206616
\(686\) −3.80329e18 −1.39332
\(687\) −2.08583e18 −0.756939
\(688\) 3.56226e18 1.28056
\(689\) 5.10350e17 0.181737
\(690\) 2.66355e18 0.939599
\(691\) 2.47368e18 0.864443 0.432221 0.901768i \(-0.357730\pi\)
0.432221 + 0.901768i \(0.357730\pi\)
\(692\) 5.76125e17 0.199447
\(693\) −6.67274e17 −0.228843
\(694\) −2.52951e18 −0.859408
\(695\) −3.15140e18 −1.06072
\(696\) 2.88477e18 0.961947
\(697\) 4.09183e17 0.135178
\(698\) −1.49206e18 −0.488345
\(699\) −1.83797e17 −0.0595987
\(700\) 1.74434e18 0.560394
\(701\) −5.59856e18 −1.78201 −0.891003 0.453998i \(-0.849997\pi\)
−0.891003 + 0.453998i \(0.849997\pi\)
\(702\) 6.25714e18 1.97326
\(703\) 3.68055e18 1.15001
\(704\) −6.38485e18 −1.97664
\(705\) −3.24358e18 −0.994936
\(706\) 7.87118e18 2.39226
\(707\) 1.12537e18 0.338899
\(708\) −7.65224e18 −2.28335
\(709\) 4.84633e18 1.43289 0.716444 0.697644i \(-0.245768\pi\)
0.716444 + 0.697644i \(0.245768\pi\)
\(710\) −5.62598e17 −0.164823
\(711\) −2.58102e18 −0.749270
\(712\) −5.37890e18 −1.54730
\(713\) 1.57644e18 0.449360
\(714\) −1.75872e18 −0.496772
\(715\) −3.25836e18 −0.912031
\(716\) 1.33833e19 3.71218
\(717\) −4.65172e18 −1.27861
\(718\) −9.08943e18 −2.47587
\(719\) 4.13840e18 1.11711 0.558554 0.829468i \(-0.311356\pi\)
0.558554 + 0.829468i \(0.311356\pi\)
\(720\) −2.63112e18 −0.703850
\(721\) 1.12222e18 0.297507
\(722\) −8.12121e17 −0.213368
\(723\) −1.40243e18 −0.365159
\(724\) 1.26454e19 3.26311
\(725\) 9.84815e17 0.251859
\(726\) −5.48714e18 −1.39078
\(727\) 2.30819e18 0.579827 0.289914 0.957053i \(-0.406373\pi\)
0.289914 + 0.957053i \(0.406373\pi\)
\(728\) 4.38674e18 1.09217
\(729\) 4.11553e18 1.01554
\(730\) 5.04832e18 1.23466
\(731\) −1.69095e18 −0.409889
\(732\) 8.54106e18 2.05206
\(733\) 9.74851e17 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(734\) 8.22392e18 1.94113
\(735\) −1.83871e18 −0.430174
\(736\) 9.15658e18 2.12338
\(737\) −9.09462e18 −2.09048
\(738\) −5.24271e17 −0.119451
\(739\) −1.83041e18 −0.413390 −0.206695 0.978405i \(-0.566271\pi\)
−0.206695 + 0.978405i \(0.566271\pi\)
\(740\) 8.01469e18 1.79424
\(741\) 3.59758e18 0.798349
\(742\) 6.42784e17 0.141397
\(743\) 9.61873e17 0.209745 0.104872 0.994486i \(-0.466557\pi\)
0.104872 + 0.994486i \(0.466557\pi\)
\(744\) 4.51667e18 0.976325
\(745\) 5.12677e18 1.09857
\(746\) −1.00683e19 −2.13873
\(747\) −2.81051e18 −0.591836
\(748\) 1.40102e19 2.92471
\(749\) 2.93314e17 0.0607017
\(750\) 7.29131e18 1.49592
\(751\) −2.27503e16 −0.00462731 −0.00231365 0.999997i \(-0.500736\pi\)
−0.00231365 + 0.999997i \(0.500736\pi\)
\(752\) −2.52243e19 −5.08631
\(753\) 1.38971e18 0.277817
\(754\) 4.15945e18 0.824370
\(755\) −2.42303e18 −0.476107
\(756\) 5.61085e18 1.09304
\(757\) 1.33460e16 0.00257768 0.00128884 0.999999i \(-0.499590\pi\)
0.00128884 + 0.999999i \(0.499590\pi\)
\(758\) −7.62791e18 −1.46068
\(759\) 5.58588e18 1.06052
\(760\) −1.02484e19 −1.92915
\(761\) −7.44101e18 −1.38877 −0.694387 0.719602i \(-0.744324\pi\)
−0.694387 + 0.719602i \(0.744324\pi\)
\(762\) −1.16000e18 −0.214659
\(763\) −1.04512e18 −0.191759
\(764\) 9.82330e18 1.78711
\(765\) 1.24895e18 0.225292
\(766\) −1.11447e18 −0.199334
\(767\) −6.56967e18 −1.16513
\(768\) −2.47443e18 −0.435139
\(769\) −5.10767e18 −0.890638 −0.445319 0.895372i \(-0.646910\pi\)
−0.445319 + 0.895372i \(0.646910\pi\)
\(770\) −4.10389e18 −0.709588
\(771\) 4.85820e18 0.832955
\(772\) −1.37954e19 −2.34542
\(773\) −5.37726e18 −0.906555 −0.453278 0.891369i \(-0.649745\pi\)
−0.453278 + 0.891369i \(0.649745\pi\)
\(774\) 2.16654e18 0.362202
\(775\) 1.54192e18 0.255623
\(776\) 2.43006e19 3.99500
\(777\) −2.10994e18 −0.343980
\(778\) 1.56219e19 2.52561
\(779\) −1.05422e18 −0.169019
\(780\) 7.83402e18 1.24558
\(781\) −1.17985e18 −0.186036
\(782\) −9.83242e18 −1.53751
\(783\) 3.16776e18 0.491249
\(784\) −1.42990e19 −2.19914
\(785\) 8.18585e18 1.24856
\(786\) −1.00735e19 −1.52382
\(787\) −7.93261e18 −1.19009 −0.595045 0.803692i \(-0.702866\pi\)
−0.595045 + 0.803692i \(0.702866\pi\)
\(788\) 1.18357e18 0.176105
\(789\) 6.70263e18 0.989110
\(790\) −1.58739e19 −2.32331
\(791\) −2.56317e18 −0.372074
\(792\) −1.06884e19 −1.53886
\(793\) 7.33275e18 1.04711
\(794\) 4.68095e18 0.662981
\(795\) 6.83498e17 0.0960176
\(796\) −1.41550e19 −1.97230
\(797\) −4.94222e18 −0.683035 −0.341517 0.939875i \(-0.610941\pi\)
−0.341517 + 0.939875i \(0.610941\pi\)
\(798\) 4.53115e18 0.621140
\(799\) 1.19736e19 1.62806
\(800\) 8.95609e18 1.20791
\(801\) −1.68887e18 −0.225936
\(802\) 8.35992e18 1.10935
\(803\) 1.05871e19 1.39356
\(804\) 2.18661e19 2.85500
\(805\) 2.05055e18 0.265581
\(806\) 6.51244e18 0.836692
\(807\) 2.06592e18 0.263291
\(808\) 1.80262e19 2.27892
\(809\) 9.58960e18 1.20264 0.601319 0.799009i \(-0.294642\pi\)
0.601319 + 0.799009i \(0.294642\pi\)
\(810\) 4.38368e18 0.545364
\(811\) 1.48266e19 1.82981 0.914905 0.403670i \(-0.132266\pi\)
0.914905 + 0.403670i \(0.132266\pi\)
\(812\) 3.72983e18 0.456641
\(813\) 3.80222e18 0.461794
\(814\) 2.36081e19 2.84448
\(815\) 9.79591e18 1.17090
\(816\) −1.45433e19 −1.72455
\(817\) 4.35654e18 0.512505
\(818\) −2.21766e18 −0.258820
\(819\) 1.37735e18 0.159478
\(820\) −2.29564e18 −0.263702
\(821\) −9.00025e18 −1.02571 −0.512854 0.858476i \(-0.671412\pi\)
−0.512854 + 0.858476i \(0.671412\pi\)
\(822\) 3.95651e17 0.0447348
\(823\) 5.63543e18 0.632162 0.316081 0.948732i \(-0.397633\pi\)
0.316081 + 0.948732i \(0.397633\pi\)
\(824\) 1.79756e19 2.00059
\(825\) 5.46358e18 0.603291
\(826\) −8.27448e18 −0.906505
\(827\) 4.31129e18 0.468620 0.234310 0.972162i \(-0.424717\pi\)
0.234310 + 0.972162i \(0.424717\pi\)
\(828\) 8.96923e18 0.967292
\(829\) 5.67661e17 0.0607413 0.0303707 0.999539i \(-0.490331\pi\)
0.0303707 + 0.999539i \(0.490331\pi\)
\(830\) −1.72853e19 −1.83514
\(831\) −4.55273e18 −0.479585
\(832\) 1.31793e19 1.37749
\(833\) 6.78752e18 0.703913
\(834\) 2.23184e19 2.29659
\(835\) −7.79456e18 −0.795847
\(836\) −3.60957e19 −3.65691
\(837\) 4.95975e18 0.498591
\(838\) 2.54332e19 2.53697
\(839\) −4.18939e18 −0.414666 −0.207333 0.978270i \(-0.566478\pi\)
−0.207333 + 0.978270i \(0.566478\pi\)
\(840\) 5.87506e18 0.577028
\(841\) −8.15485e18 −0.794771
\(842\) −1.40619e18 −0.135993
\(843\) 8.31541e18 0.798003
\(844\) −2.36572e18 −0.225288
\(845\) −3.25794e17 −0.0307875
\(846\) −1.53413e19 −1.43865
\(847\) −4.22429e18 −0.393108
\(848\) 5.31535e18 0.490862
\(849\) −4.90951e18 −0.449923
\(850\) −9.61714e18 −0.874627
\(851\) −1.17960e19 −1.06461
\(852\) 2.83671e18 0.254072
\(853\) 8.68784e18 0.772224 0.386112 0.922452i \(-0.373818\pi\)
0.386112 + 0.922452i \(0.373818\pi\)
\(854\) 9.23557e18 0.814681
\(855\) −3.21779e18 −0.281694
\(856\) 4.69829e18 0.408188
\(857\) −2.31006e18 −0.199181 −0.0995906 0.995029i \(-0.531753\pi\)
−0.0995906 + 0.995029i \(0.531753\pi\)
\(858\) 2.30759e19 1.97466
\(859\) 9.12762e18 0.775179 0.387589 0.921832i \(-0.373308\pi\)
0.387589 + 0.921832i \(0.373308\pi\)
\(860\) 9.48671e18 0.799606
\(861\) 6.04347e17 0.0505552
\(862\) −6.63599e18 −0.550945
\(863\) −8.94008e18 −0.736667 −0.368333 0.929694i \(-0.620072\pi\)
−0.368333 + 0.929694i \(0.620072\pi\)
\(864\) 2.88082e19 2.35601
\(865\) 6.62431e17 0.0537695
\(866\) −2.15454e19 −1.73575
\(867\) −2.78034e18 −0.222317
\(868\) 5.83978e18 0.463467
\(869\) −3.32899e19 −2.62231
\(870\) 5.57065e18 0.435543
\(871\) 1.87726e19 1.45683
\(872\) −1.67407e19 −1.28948
\(873\) 7.62992e18 0.583348
\(874\) 2.53322e19 1.92242
\(875\) 5.61324e18 0.422826
\(876\) −2.54544e19 −1.90321
\(877\) −1.53523e18 −0.113940 −0.0569699 0.998376i \(-0.518144\pi\)
−0.0569699 + 0.998376i \(0.518144\pi\)
\(878\) −4.53075e19 −3.33777
\(879\) −1.44096e18 −0.105372
\(880\) −3.39362e19 −2.46335
\(881\) −4.06751e18 −0.293080 −0.146540 0.989205i \(-0.546814\pi\)
−0.146540 + 0.989205i \(0.546814\pi\)
\(882\) −8.69660e18 −0.622019
\(883\) 1.66406e18 0.118148 0.0590739 0.998254i \(-0.481185\pi\)
0.0590739 + 0.998254i \(0.481185\pi\)
\(884\) −2.89190e19 −2.03819
\(885\) −8.79859e18 −0.615576
\(886\) −4.15514e19 −2.88580
\(887\) −1.40781e19 −0.970598 −0.485299 0.874348i \(-0.661289\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(888\) −3.37969e19 −2.31309
\(889\) −8.93027e17 −0.0606740
\(890\) −1.03869e19 −0.700572
\(891\) 9.19325e18 0.615551
\(892\) 3.71211e19 2.46746
\(893\) −3.08486e19 −2.03564
\(894\) −3.63081e19 −2.37853
\(895\) 1.53882e19 1.00078
\(896\) 2.87628e18 0.185707
\(897\) −1.15301e19 −0.739063
\(898\) −3.38681e19 −2.15523
\(899\) 3.29701e18 0.208297
\(900\) 8.77285e18 0.550255
\(901\) −2.52311e18 −0.157118
\(902\) −6.76204e18 −0.418057
\(903\) −2.49746e18 −0.153295
\(904\) −4.10567e19 −2.50201
\(905\) 1.45397e19 0.879713
\(906\) 1.71601e19 1.03083
\(907\) 1.07645e19 0.642018 0.321009 0.947076i \(-0.395978\pi\)
0.321009 + 0.947076i \(0.395978\pi\)
\(908\) −4.38050e19 −2.59398
\(909\) 5.65986e18 0.332767
\(910\) 8.47104e18 0.494502
\(911\) −5.38036e18 −0.311847 −0.155924 0.987769i \(-0.549835\pi\)
−0.155924 + 0.987769i \(0.549835\pi\)
\(912\) 3.74693e19 2.15630
\(913\) −3.62499e19 −2.07132
\(914\) 3.72573e19 2.11379
\(915\) 9.82056e18 0.553222
\(916\) −4.31981e19 −2.41626
\(917\) −7.75513e18 −0.430713
\(918\) −3.09346e19 −1.70595
\(919\) −3.08489e18 −0.168923 −0.0844614 0.996427i \(-0.526917\pi\)
−0.0844614 + 0.996427i \(0.526917\pi\)
\(920\) 3.28456e19 1.78590
\(921\) −1.21372e19 −0.655285
\(922\) −4.48880e19 −2.40646
\(923\) 2.43539e18 0.129646
\(924\) 2.06925e19 1.09382
\(925\) −1.15377e19 −0.605618
\(926\) −3.13776e19 −1.63549
\(927\) 5.64400e18 0.292125
\(928\) 1.91504e19 0.984273
\(929\) 4.76854e18 0.243379 0.121690 0.992568i \(-0.461169\pi\)
0.121690 + 0.992568i \(0.461169\pi\)
\(930\) 8.72194e18 0.442052
\(931\) −1.74873e19 −0.880138
\(932\) −3.80648e18 −0.190248
\(933\) 4.87883e18 0.242150
\(934\) −7.03292e18 −0.346642
\(935\) 1.61090e19 0.788483
\(936\) 2.20624e19 1.07241
\(937\) 1.56454e19 0.755232 0.377616 0.925962i \(-0.376744\pi\)
0.377616 + 0.925962i \(0.376744\pi\)
\(938\) 2.36441e19 1.13345
\(939\) 9.94133e16 0.00473280
\(940\) −6.71753e19 −3.17599
\(941\) 1.99139e19 0.935024 0.467512 0.883987i \(-0.345150\pi\)
0.467512 + 0.883987i \(0.345150\pi\)
\(942\) −5.79727e19 −2.70329
\(943\) 3.37871e18 0.156468
\(944\) −6.84239e19 −3.14695
\(945\) 6.45139e18 0.294677
\(946\) 2.79441e19 1.26764
\(947\) 9.90709e18 0.446346 0.223173 0.974779i \(-0.428359\pi\)
0.223173 + 0.974779i \(0.428359\pi\)
\(948\) 8.00385e19 3.58133
\(949\) −2.18533e19 −0.971152
\(950\) 2.47775e19 1.09359
\(951\) −1.19357e19 −0.523210
\(952\) −2.16876e19 −0.944215
\(953\) 8.48243e18 0.366789 0.183395 0.983039i \(-0.441291\pi\)
0.183395 + 0.983039i \(0.441291\pi\)
\(954\) 3.23277e18 0.138839
\(955\) 1.12949e19 0.481792
\(956\) −9.63382e19 −4.08152
\(957\) 1.16825e19 0.491596
\(958\) −1.68018e19 −0.702233
\(959\) 3.04593e17 0.0126444
\(960\) 1.76507e19 0.727776
\(961\) −1.92554e19 −0.788590
\(962\) −4.87306e19 −1.98227
\(963\) 1.47517e18 0.0596034
\(964\) −2.90447e19 −1.16564
\(965\) −1.58620e19 −0.632310
\(966\) −1.45221e19 −0.575014
\(967\) 1.71826e19 0.675797 0.337898 0.941183i \(-0.390284\pi\)
0.337898 + 0.941183i \(0.390284\pi\)
\(968\) −6.76645e19 −2.64345
\(969\) −1.77861e19 −0.690200
\(970\) 4.69258e19 1.80882
\(971\) −4.44228e19 −1.70091 −0.850454 0.526050i \(-0.823673\pi\)
−0.850454 + 0.526050i \(0.823673\pi\)
\(972\) 4.83690e19 1.83965
\(973\) 1.71819e19 0.649139
\(974\) −6.89673e19 −2.58827
\(975\) −1.12776e19 −0.420424
\(976\) 7.63715e19 2.82818
\(977\) 1.89917e19 0.698635 0.349317 0.937004i \(-0.386413\pi\)
0.349317 + 0.937004i \(0.386413\pi\)
\(978\) −6.93752e19 −2.53514
\(979\) −2.17830e19 −0.790734
\(980\) −3.80801e19 −1.37318
\(981\) −5.25625e18 −0.188290
\(982\) −4.78159e19 −1.70156
\(983\) −1.07021e19 −0.378331 −0.189165 0.981945i \(-0.560578\pi\)
−0.189165 + 0.981945i \(0.560578\pi\)
\(984\) 9.68041e18 0.339958
\(985\) 1.36087e18 0.0474768
\(986\) −2.05639e19 −0.712697
\(987\) 1.76845e19 0.608879
\(988\) 7.45069e19 2.54845
\(989\) −1.39625e19 −0.474447
\(990\) −2.06398e19 −0.696750
\(991\) −5.41492e18 −0.181599 −0.0907995 0.995869i \(-0.528942\pi\)
−0.0907995 + 0.995869i \(0.528942\pi\)
\(992\) 2.99837e19 0.998985
\(993\) 2.77723e19 0.919268
\(994\) 3.06737e18 0.100868
\(995\) −1.62754e19 −0.531720
\(996\) 8.71552e19 2.82883
\(997\) 2.11859e19 0.683169 0.341584 0.939851i \(-0.389037\pi\)
0.341584 + 0.939851i \(0.389037\pi\)
\(998\) 3.82564e19 1.22562
\(999\) −3.71123e19 −1.18125
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.6 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.6 109 1.1 even 1 trivial