Properties

Label 196.9.h.c.129.6
Level $196$
Weight $9$
Character 196.129
Analytic conductor $79.846$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 129.6
Character \(\chi\) \(=\) 196.129
Dual form 196.9.h.c.117.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-31.7145 - 18.3104i) q^{3} +(-917.948 + 529.978i) q^{5} +(-2609.96 - 4520.59i) q^{9} +(-87.7782 + 152.036i) q^{11} -463.876i q^{13} +38816.3 q^{15} +(-127008. - 73327.9i) q^{17} +(-7710.17 + 4451.47i) q^{19} +(-255214. - 442044. i) q^{23} +(366440. - 634693. i) q^{25} +431426. i q^{27} +406178. q^{29} +(-700595. - 404489. i) q^{31} +(5567.68 - 3214.50i) q^{33} +(-479821. - 831074. i) q^{37} +(-8493.73 + 14711.6i) q^{39} -1.28045e6i q^{41} -3.13224e6 q^{43} +(4.79162e6 + 2.76644e6i) q^{45} +(-6.80317e6 + 3.92781e6i) q^{47} +(2.68532e6 + 4.65111e6i) q^{51} +(-5.01639e6 + 8.68865e6i) q^{53} -186082. i q^{55} +326032. q^{57} +(1.49855e7 + 8.65189e6i) q^{59} +(7.40037e6 - 4.27260e6i) q^{61} +(245844. + 425814. i) q^{65} +(9.94850e6 - 1.72313e7i) q^{67} +1.86923e7i q^{69} +1.84731e7 q^{71} +(-1.63136e7 - 9.41869e6i) q^{73} +(-2.32429e7 + 1.34193e7i) q^{75} +(-3.02779e7 - 5.24429e7i) q^{79} +(-9.22439e6 + 1.59771e7i) q^{81} +4.13681e7i q^{83} +1.55449e8 q^{85} +(-1.28817e7 - 7.43727e6i) q^{87} +(3.73562e7 - 2.15676e7i) q^{89} +(1.48127e7 + 2.56563e7i) q^{93} +(4.71836e6 - 8.17243e6i) q^{95} +8.64109e7i q^{97} +916390. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 52264 q^{9} + 22776 q^{11} + 206064 q^{15} - 571560 q^{23} + 1030440 q^{25} - 5384256 q^{29} + 3376640 q^{37} + 10336136 q^{39} + 18525008 q^{43} + 16028856 q^{51} - 14106216 q^{53} - 4787360 q^{57}+ \cdots + 1119499328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −31.7145 18.3104i −0.391537 0.226054i 0.291289 0.956635i \(-0.405916\pi\)
−0.682826 + 0.730581i \(0.739249\pi\)
\(4\) 0 0
\(5\) −917.948 + 529.978i −1.46872 + 0.847964i −0.999385 0.0350572i \(-0.988839\pi\)
−0.469332 + 0.883022i \(0.655505\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2609.96 4520.59i −0.397799 0.689009i
\(10\) 0 0
\(11\) −87.7782 + 152.036i −0.00599537 + 0.0103843i −0.869008 0.494799i \(-0.835242\pi\)
0.863012 + 0.505183i \(0.168575\pi\)
\(12\) 0 0
\(13\) 463.876i 0.0162416i −0.999967 0.00812079i \(-0.997415\pi\)
0.999967 0.00812079i \(-0.00258496\pi\)
\(14\) 0 0
\(15\) 38816.3 0.766743
\(16\) 0 0
\(17\) −127008. 73327.9i −1.52067 0.877957i −0.999703 0.0243787i \(-0.992239\pi\)
−0.520964 0.853579i \(-0.674427\pi\)
\(18\) 0 0
\(19\) −7710.17 + 4451.47i −0.0591629 + 0.0341577i −0.529290 0.848441i \(-0.677542\pi\)
0.470127 + 0.882599i \(0.344208\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −255214. 442044.i −0.911997 1.57962i −0.811240 0.584714i \(-0.801207\pi\)
−0.100757 0.994911i \(-0.532126\pi\)
\(24\) 0 0
\(25\) 366440. 634693.i 0.938087 1.62482i
\(26\) 0 0
\(27\) 431426.i 0.811804i
\(28\) 0 0
\(29\) 406178. 0.574281 0.287140 0.957889i \(-0.407295\pi\)
0.287140 + 0.957889i \(0.407295\pi\)
\(30\) 0 0
\(31\) −700595. 404489.i −0.758613 0.437986i 0.0701842 0.997534i \(-0.477641\pi\)
−0.828798 + 0.559548i \(0.810975\pi\)
\(32\) 0 0
\(33\) 5567.68 3214.50i 0.00469481 0.00271055i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −479821. 831074.i −0.256019 0.443438i 0.709153 0.705055i \(-0.249078\pi\)
−0.965172 + 0.261617i \(0.915744\pi\)
\(38\) 0 0
\(39\) −8493.73 + 14711.6i −0.00367147 + 0.00635917i
\(40\) 0 0
\(41\) 1.28045e6i 0.453136i −0.973995 0.226568i \(-0.927249\pi\)
0.973995 0.226568i \(-0.0727506\pi\)
\(42\) 0 0
\(43\) −3.13224e6 −0.916182 −0.458091 0.888905i \(-0.651467\pi\)
−0.458091 + 0.888905i \(0.651467\pi\)
\(44\) 0 0
\(45\) 4.79162e6 + 2.76644e6i 1.16851 + 0.674639i
\(46\) 0 0
\(47\) −6.80317e6 + 3.92781e6i −1.39418 + 0.804932i −0.993775 0.111405i \(-0.964465\pi\)
−0.400408 + 0.916337i \(0.631131\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.68532e6 + 4.65111e6i 0.396931 + 0.687505i
\(52\) 0 0
\(53\) −5.01639e6 + 8.68865e6i −0.635753 + 1.10116i 0.350602 + 0.936524i \(0.385977\pi\)
−0.986355 + 0.164632i \(0.947356\pi\)
\(54\) 0 0
\(55\) 186082.i 0.0203354i
\(56\) 0 0
\(57\) 326032. 0.0308859
\(58\) 0 0
\(59\) 1.49855e7 + 8.65189e6i 1.23670 + 0.714008i 0.968418 0.249333i \(-0.0802113\pi\)
0.268280 + 0.963341i \(0.413545\pi\)
\(60\) 0 0
\(61\) 7.40037e6 4.27260e6i 0.534483 0.308584i −0.208357 0.978053i \(-0.566812\pi\)
0.742840 + 0.669469i \(0.233478\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 245844. + 425814.i 0.0137723 + 0.0238543i
\(66\) 0 0
\(67\) 9.94850e6 1.72313e7i 0.493695 0.855104i −0.506279 0.862370i \(-0.668979\pi\)
0.999974 + 0.00726554i \(0.00231271\pi\)
\(68\) 0 0
\(69\) 1.86923e7i 0.824642i
\(70\) 0 0
\(71\) 1.84731e7 0.726952 0.363476 0.931604i \(-0.381590\pi\)
0.363476 + 0.931604i \(0.381590\pi\)
\(72\) 0 0
\(73\) −1.63136e7 9.41869e6i −0.574460 0.331664i 0.184469 0.982838i \(-0.440944\pi\)
−0.758929 + 0.651174i \(0.774277\pi\)
\(74\) 0 0
\(75\) −2.32429e7 + 1.34193e7i −0.734591 + 0.424117i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.02779e7 5.24429e7i −0.777353 1.34641i −0.933463 0.358675i \(-0.883229\pi\)
0.156110 0.987740i \(-0.450105\pi\)
\(80\) 0 0
\(81\) −9.22439e6 + 1.59771e7i −0.214288 + 0.371157i
\(82\) 0 0
\(83\) 4.13681e7i 0.871673i 0.900026 + 0.435837i \(0.143547\pi\)
−0.900026 + 0.435837i \(0.856453\pi\)
\(84\) 0 0
\(85\) 1.55449e8 2.97791
\(86\) 0 0
\(87\) −1.28817e7 7.43727e6i −0.224852 0.129818i
\(88\) 0 0
\(89\) 3.73562e7 2.15676e7i 0.595392 0.343750i −0.171835 0.985126i \(-0.554969\pi\)
0.767227 + 0.641376i \(0.221636\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.48127e7 + 2.56563e7i 0.198017 + 0.342975i
\(94\) 0 0
\(95\) 4.71836e6 8.17243e6i 0.0579291 0.100336i
\(96\) 0 0
\(97\) 8.64109e7i 0.976071i 0.872824 + 0.488036i \(0.162286\pi\)
−0.872824 + 0.488036i \(0.837714\pi\)
\(98\) 0 0
\(99\) 916390. 0.00953981
\(100\) 0 0
\(101\) 1.20417e8 + 6.95230e7i 1.15719 + 0.668103i 0.950628 0.310332i \(-0.100440\pi\)
0.206559 + 0.978434i \(0.433773\pi\)
\(102\) 0 0
\(103\) −1.52953e8 + 8.83075e7i −1.35897 + 0.784600i −0.989485 0.144637i \(-0.953799\pi\)
−0.369483 + 0.929238i \(0.620465\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.60336e7 4.50915e7i −0.198609 0.344001i 0.749469 0.662040i \(-0.230309\pi\)
−0.948078 + 0.318039i \(0.896976\pi\)
\(108\) 0 0
\(109\) −6.74506e7 + 1.16828e8i −0.477837 + 0.827639i −0.999677 0.0254049i \(-0.991913\pi\)
0.521840 + 0.853043i \(0.325246\pi\)
\(110\) 0 0
\(111\) 3.51428e7i 0.231496i
\(112\) 0 0
\(113\) 1.53723e8 0.942813 0.471406 0.881916i \(-0.343747\pi\)
0.471406 + 0.881916i \(0.343747\pi\)
\(114\) 0 0
\(115\) 4.68547e8 + 2.70516e8i 2.67893 + 1.54668i
\(116\) 0 0
\(117\) −2.09699e6 + 1.21070e6i −0.0111906 + 0.00646089i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.07164e8 + 1.85614e8i 0.499928 + 0.865901i
\(122\) 0 0
\(123\) −2.34456e7 + 4.06089e7i −0.102433 + 0.177419i
\(124\) 0 0
\(125\) 3.62776e8i 1.48593i
\(126\) 0 0
\(127\) 2.59200e8 0.996370 0.498185 0.867071i \(-0.334000\pi\)
0.498185 + 0.867071i \(0.334000\pi\)
\(128\) 0 0
\(129\) 9.93375e7 + 5.73525e7i 0.358719 + 0.207107i
\(130\) 0 0
\(131\) −4.39996e8 + 2.54032e8i −1.49405 + 0.862587i −0.999977 0.00683548i \(-0.997824\pi\)
−0.494069 + 0.869423i \(0.664491\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.28646e8 3.96027e8i −0.688381 1.19231i
\(136\) 0 0
\(137\) −1.21484e8 + 2.10417e8i −0.344855 + 0.597307i −0.985327 0.170674i \(-0.945405\pi\)
0.640472 + 0.767981i \(0.278739\pi\)
\(138\) 0 0
\(139\) 1.11438e8i 0.298520i −0.988798 0.149260i \(-0.952311\pi\)
0.988798 0.149260i \(-0.0476891\pi\)
\(140\) 0 0
\(141\) 2.87679e8 0.727832
\(142\) 0 0
\(143\) 70525.9 + 40718.1i 0.000168657 + 9.73742e-5i
\(144\) 0 0
\(145\) −3.72850e8 + 2.15265e8i −0.843456 + 0.486970i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.30617e8 7.45851e8i −0.873668 1.51324i −0.858175 0.513358i \(-0.828401\pi\)
−0.0154936 0.999880i \(-0.504932\pi\)
\(150\) 0 0
\(151\) 4.39335e8 7.60950e8i 0.845060 1.46369i −0.0405083 0.999179i \(-0.512898\pi\)
0.885569 0.464508i \(-0.153769\pi\)
\(152\) 0 0
\(153\) 7.65532e8i 1.39700i
\(154\) 0 0
\(155\) 8.57481e8 1.48559
\(156\) 0 0
\(157\) 7.07634e7 + 4.08553e7i 0.116469 + 0.0672434i 0.557103 0.830444i \(-0.311913\pi\)
−0.440634 + 0.897687i \(0.645246\pi\)
\(158\) 0 0
\(159\) 3.18185e8 1.83704e8i 0.497841 0.287429i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.07541e8 + 3.59471e8i 0.294004 + 0.509229i 0.974753 0.223288i \(-0.0716789\pi\)
−0.680749 + 0.732517i \(0.738346\pi\)
\(164\) 0 0
\(165\) −3.40723e6 + 5.90149e6i −0.00459690 + 0.00796207i
\(166\) 0 0
\(167\) 1.05689e9i 1.35883i 0.733754 + 0.679416i \(0.237767\pi\)
−0.733754 + 0.679416i \(0.762233\pi\)
\(168\) 0 0
\(169\) 8.15516e8 0.999736
\(170\) 0 0
\(171\) 4.02465e7 + 2.32363e7i 0.0470699 + 0.0271758i
\(172\) 0 0
\(173\) −2.55913e7 + 1.47752e7i −0.0285699 + 0.0164948i −0.514217 0.857660i \(-0.671917\pi\)
0.485647 + 0.874155i \(0.338584\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.16839e8 5.48781e8i −0.322809 0.559121i
\(178\) 0 0
\(179\) −4.54211e8 + 7.86717e8i −0.442431 + 0.766314i −0.997869 0.0652444i \(-0.979217\pi\)
0.555438 + 0.831558i \(0.312551\pi\)
\(180\) 0 0
\(181\) 1.44603e9i 1.34729i −0.739053 0.673647i \(-0.764727\pi\)
0.739053 0.673647i \(-0.235273\pi\)
\(182\) 0 0
\(183\) −3.12932e8 −0.279026
\(184\) 0 0
\(185\) 8.80902e8 + 5.08589e8i 0.752039 + 0.434190i
\(186\) 0 0
\(187\) 2.22970e7 1.28732e7i 0.0182339 0.0105274i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.03683e9 + 1.79585e9i 0.779069 + 1.34939i 0.932479 + 0.361224i \(0.117641\pi\)
−0.153410 + 0.988163i \(0.549026\pi\)
\(192\) 0 0
\(193\) −6.32668e7 + 1.09581e8i −0.0455981 + 0.0789782i −0.887924 0.459991i \(-0.847853\pi\)
0.842326 + 0.538969i \(0.181186\pi\)
\(194\) 0 0
\(195\) 1.80060e7i 0.0124531i
\(196\) 0 0
\(197\) −2.58795e9 −1.71827 −0.859133 0.511752i \(-0.828997\pi\)
−0.859133 + 0.511752i \(0.828997\pi\)
\(198\) 0 0
\(199\) 3.30529e8 + 1.90831e8i 0.210764 + 0.121685i 0.601667 0.798747i \(-0.294504\pi\)
−0.390902 + 0.920432i \(0.627837\pi\)
\(200\) 0 0
\(201\) −6.31023e8 + 3.64321e8i −0.386599 + 0.223203i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.78612e8 + 1.17539e9i 0.384243 + 0.665529i
\(206\) 0 0
\(207\) −1.33220e9 + 2.30743e9i −0.725583 + 1.25675i
\(208\) 0 0
\(209\) 1.56297e6i 0.000819152i
\(210\) 0 0
\(211\) 2.82056e9 1.42300 0.711501 0.702685i \(-0.248016\pi\)
0.711501 + 0.702685i \(0.248016\pi\)
\(212\) 0 0
\(213\) −5.85864e8 3.38249e8i −0.284628 0.164330i
\(214\) 0 0
\(215\) 2.87524e9 1.66002e9i 1.34561 0.776890i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.44919e8 + 5.97418e8i 0.149948 + 0.259718i
\(220\) 0 0
\(221\) −3.40150e7 + 5.89157e7i −0.0142594 + 0.0246980i
\(222\) 0 0
\(223\) 3.79033e9i 1.53270i −0.642423 0.766350i \(-0.722071\pi\)
0.642423 0.766350i \(-0.277929\pi\)
\(224\) 0 0
\(225\) −3.82558e9 −1.49268
\(226\) 0 0
\(227\) −1.92233e9 1.10986e9i −0.723978 0.417989i 0.0922373 0.995737i \(-0.470598\pi\)
−0.816215 + 0.577748i \(0.803931\pi\)
\(228\) 0 0
\(229\) −9.72765e8 + 5.61626e8i −0.353725 + 0.204223i −0.666325 0.745662i \(-0.732134\pi\)
0.312600 + 0.949885i \(0.398800\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.64247e9 2.84485e9i −0.557281 0.965240i −0.997722 0.0674579i \(-0.978511\pi\)
0.440441 0.897782i \(-0.354822\pi\)
\(234\) 0 0
\(235\) 4.16330e9 7.21105e9i 1.36511 2.36443i
\(236\) 0 0
\(237\) 2.21760e9i 0.702894i
\(238\) 0 0
\(239\) −5.37385e9 −1.64700 −0.823500 0.567316i \(-0.807982\pi\)
−0.823500 + 0.567316i \(0.807982\pi\)
\(240\) 0 0
\(241\) −4.35723e9 2.51565e9i −1.29164 0.745730i −0.312696 0.949853i \(-0.601232\pi\)
−0.978945 + 0.204124i \(0.934566\pi\)
\(242\) 0 0
\(243\) 3.03645e9 1.75310e9i 0.870846 0.502783i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.06493e6 + 3.57656e6i 0.000554775 + 0.000960898i
\(248\) 0 0
\(249\) 7.57466e8 1.31197e9i 0.197045 0.341292i
\(250\) 0 0
\(251\) 1.11941e9i 0.282030i −0.990007 0.141015i \(-0.954963\pi\)
0.990007 0.141015i \(-0.0450366\pi\)
\(252\) 0 0
\(253\) 8.96089e7 0.0218710
\(254\) 0 0
\(255\) −4.92997e9 2.84632e9i −1.16596 0.673167i
\(256\) 0 0
\(257\) 1.23912e8 7.15406e7i 0.0284041 0.0163991i −0.485731 0.874108i \(-0.661446\pi\)
0.514135 + 0.857709i \(0.328113\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.06011e9 1.83616e9i −0.228449 0.395684i
\(262\) 0 0
\(263\) −1.57178e9 + 2.72240e9i −0.328525 + 0.569022i −0.982219 0.187737i \(-0.939885\pi\)
0.653695 + 0.756759i \(0.273218\pi\)
\(264\) 0 0
\(265\) 1.06343e10i 2.15638i
\(266\) 0 0
\(267\) −1.57964e9 −0.310824
\(268\) 0 0
\(269\) −5.65624e9 3.26563e9i −1.08024 0.623675i −0.149276 0.988796i \(-0.547694\pi\)
−0.930960 + 0.365121i \(0.881028\pi\)
\(270\) 0 0
\(271\) 1.01079e9 5.83581e8i 0.187407 0.108199i −0.403361 0.915041i \(-0.632158\pi\)
0.590768 + 0.806842i \(0.298825\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.43309e7 + 1.11424e8i 0.0112484 + 0.0194827i
\(276\) 0 0
\(277\) −5.20413e8 + 9.01382e8i −0.0883953 + 0.153105i −0.906833 0.421490i \(-0.861507\pi\)
0.818438 + 0.574595i \(0.194841\pi\)
\(278\) 0 0
\(279\) 4.22280e9i 0.696922i
\(280\) 0 0
\(281\) −6.19245e9 −0.993201 −0.496601 0.867979i \(-0.665419\pi\)
−0.496601 + 0.867979i \(0.665419\pi\)
\(282\) 0 0
\(283\) 6.32245e9 + 3.65027e9i 0.985688 + 0.569088i 0.903983 0.427569i \(-0.140630\pi\)
0.0817058 + 0.996656i \(0.473963\pi\)
\(284\) 0 0
\(285\) −2.99281e8 + 1.72790e8i −0.0453627 + 0.0261902i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.26608e9 + 1.25852e10i 1.04162 + 1.80414i
\(290\) 0 0
\(291\) 1.58221e9 2.74048e9i 0.220645 0.382168i
\(292\) 0 0
\(293\) 5.25584e9i 0.713134i −0.934270 0.356567i \(-0.883947\pi\)
0.934270 0.356567i \(-0.116053\pi\)
\(294\) 0 0
\(295\) −1.83412e10 −2.42181
\(296\) 0 0
\(297\) −6.55924e7 3.78698e7i −0.00843000 0.00486706i
\(298\) 0 0
\(299\) −2.05053e8 + 1.18388e8i −0.0256556 + 0.0148123i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.54598e9 4.40977e9i −0.302054 0.523173i
\(304\) 0 0
\(305\) −4.52877e9 + 7.84406e9i −0.523336 + 0.906445i
\(306\) 0 0
\(307\) 9.63110e9i 1.08423i −0.840304 0.542116i \(-0.817623\pi\)
0.840304 0.542116i \(-0.182377\pi\)
\(308\) 0 0
\(309\) 6.46777e9 0.709448
\(310\) 0 0
\(311\) 4.65131e9 + 2.68543e9i 0.497203 + 0.287060i 0.727558 0.686046i \(-0.240655\pi\)
−0.230355 + 0.973107i \(0.573989\pi\)
\(312\) 0 0
\(313\) 8.35072e9 4.82129e9i 0.870055 0.502326i 0.00268847 0.999996i \(-0.499144\pi\)
0.867367 + 0.497670i \(0.165811\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.64399e9 + 9.77568e9i 0.558919 + 0.968077i 0.997587 + 0.0694273i \(0.0221172\pi\)
−0.438668 + 0.898649i \(0.644549\pi\)
\(318\) 0 0
\(319\) −3.56536e7 + 6.17538e7i −0.00344302 + 0.00596349i
\(320\) 0 0
\(321\) 1.90674e9i 0.179585i
\(322\) 0 0
\(323\) 1.30567e9 0.119956
\(324\) 0 0
\(325\) −2.94419e8 1.69983e8i −0.0263896 0.0152360i
\(326\) 0 0
\(327\) 4.27832e9 2.47009e9i 0.374182 0.216034i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.78992e9 + 4.83228e9i 0.232423 + 0.402568i 0.958521 0.285023i \(-0.0920013\pi\)
−0.726098 + 0.687592i \(0.758668\pi\)
\(332\) 0 0
\(333\) −2.50463e9 + 4.33814e9i −0.203688 + 0.352799i
\(334\) 0 0
\(335\) 2.10899e10i 1.67454i
\(336\) 0 0
\(337\) 2.12480e10 1.64740 0.823701 0.567025i \(-0.191906\pi\)
0.823701 + 0.567025i \(0.191906\pi\)
\(338\) 0 0
\(339\) −4.87525e9 2.81473e9i −0.369146 0.213126i
\(340\) 0 0
\(341\) 1.22994e8 7.10106e7i 0.00909633 0.00525177i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.90648e9 1.71585e10i −0.699267 1.21117i
\(346\) 0 0
\(347\) 1.11294e10 1.92767e10i 0.767635 1.32958i −0.171208 0.985235i \(-0.554767\pi\)
0.938842 0.344347i \(-0.111900\pi\)
\(348\) 0 0
\(349\) 1.21543e9i 0.0819269i 0.999161 + 0.0409635i \(0.0130427\pi\)
−0.999161 + 0.0409635i \(0.986957\pi\)
\(350\) 0 0
\(351\) 2.00128e8 0.0131850
\(352\) 0 0
\(353\) −9.02354e9 5.20974e9i −0.581136 0.335519i 0.180449 0.983584i \(-0.442245\pi\)
−0.761585 + 0.648065i \(0.775578\pi\)
\(354\) 0 0
\(355\) −1.69573e10 + 9.79031e9i −1.06769 + 0.616429i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.28368e9 1.43477e10i −0.498707 0.863785i 0.501292 0.865278i \(-0.332858\pi\)
−0.999999 + 0.00149264i \(0.999525\pi\)
\(360\) 0 0
\(361\) −8.45215e9 + 1.46396e10i −0.497667 + 0.861984i
\(362\) 0 0
\(363\) 7.84885e9i 0.452043i
\(364\) 0 0
\(365\) 1.99668e10 1.12496
\(366\) 0 0
\(367\) 9.34056e8 + 5.39277e8i 0.0514883 + 0.0297268i 0.525523 0.850779i \(-0.323870\pi\)
−0.474035 + 0.880506i \(0.657203\pi\)
\(368\) 0 0
\(369\) −5.78840e9 + 3.34194e9i −0.312215 + 0.180257i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.02558e10 1.77636e10i −0.529827 0.917687i −0.999395 0.0347909i \(-0.988923\pi\)
0.469567 0.882897i \(-0.344410\pi\)
\(374\) 0 0
\(375\) 6.64256e9 1.15052e10i 0.335900 0.581796i
\(376\) 0 0
\(377\) 1.88416e8i 0.00932722i
\(378\) 0 0
\(379\) 1.71573e10 0.831557 0.415779 0.909466i \(-0.363509\pi\)
0.415779 + 0.909466i \(0.363509\pi\)
\(380\) 0 0
\(381\) −8.22040e9 4.74605e9i −0.390115 0.225233i
\(382\) 0 0
\(383\) 9.07510e9 5.23951e9i 0.421751 0.243498i −0.274075 0.961708i \(-0.588372\pi\)
0.695826 + 0.718210i \(0.255038\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.17504e9 + 1.41596e10i 0.364457 + 0.631257i
\(388\) 0 0
\(389\) −3.00887e9 + 5.21151e9i −0.131403 + 0.227596i −0.924218 0.381866i \(-0.875281\pi\)
0.792815 + 0.609463i \(0.208615\pi\)
\(390\) 0 0
\(391\) 7.48572e10i 3.20278i
\(392\) 0 0
\(393\) 1.86057e10 0.779965
\(394\) 0 0
\(395\) 5.55872e10 + 3.20933e10i 2.28342 + 1.31833i
\(396\) 0 0
\(397\) −2.22042e10 + 1.28196e10i −0.893869 + 0.516075i −0.875206 0.483751i \(-0.839274\pi\)
−0.0186627 + 0.999826i \(0.505941\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.26709e10 + 2.19467e10i 0.490039 + 0.848772i 0.999934 0.0114645i \(-0.00364934\pi\)
−0.509896 + 0.860236i \(0.670316\pi\)
\(402\) 0 0
\(403\) −1.87633e8 + 3.24989e8i −0.00711358 + 0.0123211i
\(404\) 0 0
\(405\) 1.95549e10i 0.726834i
\(406\) 0 0
\(407\) 1.68471e8 0.00613971
\(408\) 0 0
\(409\) 3.77946e10 + 2.18207e10i 1.35063 + 0.779788i 0.988338 0.152276i \(-0.0486603\pi\)
0.362294 + 0.932064i \(0.381994\pi\)
\(410\) 0 0
\(411\) 7.70561e9 4.44883e9i 0.270047 0.155912i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.19242e10 3.79738e10i −0.739148 1.28024i
\(416\) 0 0
\(417\) −2.04046e9 + 3.53419e9i −0.0674815 + 0.116881i
\(418\) 0 0
\(419\) 2.58977e10i 0.840244i −0.907468 0.420122i \(-0.861987\pi\)
0.907468 0.420122i \(-0.138013\pi\)
\(420\) 0 0
\(421\) −2.01494e10 −0.641406 −0.320703 0.947180i \(-0.603919\pi\)
−0.320703 + 0.947180i \(0.603919\pi\)
\(422\) 0 0
\(423\) 3.55120e10 + 2.05029e10i 1.10921 + 0.640403i
\(424\) 0 0
\(425\) −9.30814e10 + 5.37406e10i −2.85304 + 1.64720i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.49113e6 2.58271e6i −4.40236e−5 7.62512e-5i
\(430\) 0 0
\(431\) −1.63352e10 + 2.82934e10i −0.473387 + 0.819930i −0.999536 0.0304623i \(-0.990302\pi\)
0.526149 + 0.850392i \(0.323635\pi\)
\(432\) 0 0
\(433\) 1.85538e10i 0.527816i 0.964548 + 0.263908i \(0.0850115\pi\)
−0.964548 + 0.263908i \(0.914989\pi\)
\(434\) 0 0
\(435\) 1.57663e10 0.440326
\(436\) 0 0
\(437\) 3.93549e9 + 2.27215e9i 0.107913 + 0.0623034i
\(438\) 0 0
\(439\) 4.68257e10 2.70348e10i 1.26074 0.727889i 0.287523 0.957774i \(-0.407168\pi\)
0.973218 + 0.229884i \(0.0738348\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.76361e10 + 4.78671e10i 0.717566 + 1.24286i 0.961962 + 0.273184i \(0.0880769\pi\)
−0.244396 + 0.969675i \(0.578590\pi\)
\(444\) 0 0
\(445\) −2.28607e10 + 3.95959e10i −0.582975 + 1.00974i
\(446\) 0 0
\(447\) 3.15390e10i 0.789984i
\(448\) 0 0
\(449\) 2.75787e10 0.678561 0.339281 0.940685i \(-0.389816\pi\)
0.339281 + 0.940685i \(0.389816\pi\)
\(450\) 0 0
\(451\) 1.94675e8 + 1.12396e8i 0.00470549 + 0.00271672i
\(452\) 0 0
\(453\) −2.78665e10 + 1.60888e10i −0.661745 + 0.382058i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.63233e10 2.82727e10i −0.374233 0.648190i 0.615979 0.787763i \(-0.288761\pi\)
−0.990212 + 0.139572i \(0.955427\pi\)
\(458\) 0 0
\(459\) 3.16355e10 5.47944e10i 0.712729 1.23448i
\(460\) 0 0
\(461\) 1.05577e9i 0.0233758i 0.999932 + 0.0116879i \(0.00372046\pi\)
−0.999932 + 0.0116879i \(0.996280\pi\)
\(462\) 0 0
\(463\) 1.69452e10 0.368742 0.184371 0.982857i \(-0.440975\pi\)
0.184371 + 0.982857i \(0.440975\pi\)
\(464\) 0 0
\(465\) −2.71946e10 1.57008e10i −0.581661 0.335822i
\(466\) 0 0
\(467\) 4.14846e10 2.39512e10i 0.872207 0.503569i 0.00412614 0.999991i \(-0.498687\pi\)
0.868081 + 0.496422i \(0.165353\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.49615e9 2.59141e9i −0.0304013 0.0526565i
\(472\) 0 0
\(473\) 2.74943e8 4.76215e8i 0.00549285 0.00951389i
\(474\) 0 0
\(475\) 6.52479e9i 0.128172i
\(476\) 0 0
\(477\) 5.23704e10 1.01161
\(478\) 0 0
\(479\) −1.07269e10 6.19316e9i −0.203766 0.117644i 0.394645 0.918834i \(-0.370868\pi\)
−0.598411 + 0.801190i \(0.704201\pi\)
\(480\) 0 0
\(481\) −3.85515e8 + 2.22577e8i −0.00720213 + 0.00415815i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.57958e10 7.93207e10i −0.827674 1.43357i
\(486\) 0 0
\(487\) −9.17764e9 + 1.58961e10i −0.163160 + 0.282602i −0.936001 0.351999i \(-0.885502\pi\)
0.772840 + 0.634601i \(0.218835\pi\)
\(488\) 0 0
\(489\) 1.52006e10i 0.265843i
\(490\) 0 0
\(491\) 7.15516e10 1.23110 0.615550 0.788098i \(-0.288934\pi\)
0.615550 + 0.788098i \(0.288934\pi\)
\(492\) 0 0
\(493\) −5.15877e10 2.97842e10i −0.873290 0.504194i
\(494\) 0 0
\(495\) −8.41199e8 + 4.85667e8i −0.0140113 + 0.00808942i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.20718e10 + 2.09089e10i 0.194701 + 0.337232i 0.946803 0.321815i \(-0.104293\pi\)
−0.752101 + 0.659047i \(0.770960\pi\)
\(500\) 0 0
\(501\) 1.93521e10 3.35188e10i 0.307169 0.532032i
\(502\) 0 0
\(503\) 5.32847e10i 0.832397i 0.909274 + 0.416198i \(0.136638\pi\)
−0.909274 + 0.416198i \(0.863362\pi\)
\(504\) 0 0
\(505\) −1.47383e11 −2.26611
\(506\) 0 0
\(507\) −2.58637e10 1.49324e10i −0.391434 0.225994i
\(508\) 0 0
\(509\) 1.60975e10 9.29392e9i 0.239822 0.138461i −0.375273 0.926914i \(-0.622451\pi\)
0.615095 + 0.788453i \(0.289118\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.92048e9 3.32637e9i −0.0277294 0.0480287i
\(514\) 0 0
\(515\) 9.36020e10 1.62123e11i 1.33063 2.30471i
\(516\) 0 0
\(517\) 1.37910e9i 0.0193034i
\(518\) 0 0
\(519\) 1.08215e9 0.0149149
\(520\) 0 0
\(521\) −6.43174e10 3.71337e10i −0.872927 0.503985i −0.00460708 0.999989i \(-0.501466\pi\)
−0.868320 + 0.496005i \(0.834800\pi\)
\(522\) 0 0
\(523\) 1.11694e11 6.44867e10i 1.49288 0.861914i 0.492911 0.870080i \(-0.335933\pi\)
0.999967 + 0.00816598i \(0.00259934\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.93206e10 + 1.02746e11i 0.769066 + 1.33206i
\(528\) 0 0
\(529\) −9.11130e10 + 1.57812e11i −1.16348 + 2.01520i
\(530\) 0 0
\(531\) 9.03244e10i 1.13613i
\(532\) 0 0
\(533\) −5.93971e8 −0.00735964
\(534\) 0 0
\(535\) 4.77950e10 + 2.75945e10i 0.583401 + 0.336827i
\(536\) 0 0
\(537\) 2.88102e10 1.66336e10i 0.346456 0.200027i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00584e10 + 3.47422e10i 0.234157 + 0.405572i 0.959027 0.283314i \(-0.0914337\pi\)
−0.724870 + 0.688885i \(0.758100\pi\)
\(542\) 0 0
\(543\) −2.64773e10 + 4.58600e10i −0.304561 + 0.527515i
\(544\) 0 0
\(545\) 1.42989e11i 1.62076i
\(546\) 0 0
\(547\) −1.09122e11 −1.21889 −0.609444 0.792829i \(-0.708607\pi\)
−0.609444 + 0.792829i \(0.708607\pi\)
\(548\) 0 0
\(549\) −3.86293e10 2.23027e10i −0.425234 0.245509i
\(550\) 0 0
\(551\) −3.13170e9 + 1.80809e9i −0.0339761 + 0.0196161i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.86249e10 3.22593e10i −0.196301 0.340003i
\(556\) 0 0
\(557\) −6.00697e10 + 1.04044e11i −0.624072 + 1.08092i 0.364648 + 0.931145i \(0.381189\pi\)
−0.988720 + 0.149778i \(0.952144\pi\)
\(558\) 0 0
\(559\) 1.45297e9i 0.0148802i
\(560\) 0 0
\(561\) −9.42850e8 −0.00951900
\(562\) 0 0
\(563\) 9.79690e9 + 5.65624e9i 0.0975113 + 0.0562982i 0.547963 0.836503i \(-0.315404\pi\)
−0.450451 + 0.892801i \(0.648737\pi\)
\(564\) 0 0
\(565\) −1.41110e11 + 8.14698e10i −1.38473 + 0.799472i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.03143e10 + 1.21788e11i 0.670802 + 1.16186i 0.977677 + 0.210113i \(0.0673833\pi\)
−0.306875 + 0.951750i \(0.599283\pi\)
\(570\) 0 0
\(571\) 4.57449e10 7.92324e10i 0.430326 0.745347i −0.566575 0.824010i \(-0.691732\pi\)
0.996901 + 0.0786632i \(0.0250652\pi\)
\(572\) 0 0
\(573\) 7.59392e10i 0.704446i
\(574\) 0 0
\(575\) −3.74083e11 −3.42213
\(576\) 0 0
\(577\) −7.14434e9 4.12479e9i −0.0644554 0.0372133i 0.467426 0.884032i \(-0.345181\pi\)
−0.531881 + 0.846819i \(0.678515\pi\)
\(578\) 0 0
\(579\) 4.01295e9 2.31688e9i 0.0357067 0.0206153i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.80660e8 1.52535e9i −0.00762314 0.0132037i
\(584\) 0 0
\(585\) 1.28329e9 2.22272e9i 0.0109572 0.0189784i
\(586\) 0 0
\(587\) 4.08974e9i 0.0344463i 0.999852 + 0.0172232i \(0.00548258\pi\)
−0.999852 + 0.0172232i \(0.994517\pi\)
\(588\) 0 0
\(589\) 7.20228e9 0.0598424
\(590\) 0 0
\(591\) 8.20754e10 + 4.73863e10i 0.672765 + 0.388421i
\(592\) 0 0
\(593\) 7.98177e10 4.60828e10i 0.645477 0.372666i −0.141244 0.989975i \(-0.545110\pi\)
0.786721 + 0.617309i \(0.211777\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.98837e9 1.21042e10i −0.0550147 0.0952882i
\(598\) 0 0
\(599\) 8.48489e10 1.46963e11i 0.659081 1.14156i −0.321773 0.946817i \(-0.604279\pi\)
0.980854 0.194745i \(-0.0623879\pi\)
\(600\) 0 0
\(601\) 1.48134e11i 1.13542i −0.823229 0.567709i \(-0.807830\pi\)
0.823229 0.567709i \(-0.192170\pi\)
\(602\) 0 0
\(603\) −1.03861e11 −0.785566
\(604\) 0 0
\(605\) −1.96742e11 1.13589e11i −1.46851 0.847843i
\(606\) 0 0
\(607\) 1.30753e11 7.54902e10i 0.963155 0.556078i 0.0660126 0.997819i \(-0.478972\pi\)
0.897143 + 0.441741i \(0.145639\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.82202e9 + 3.15582e9i 0.0130734 + 0.0226437i
\(612\) 0 0
\(613\) 1.32080e10 2.28770e10i 0.0935398 0.162016i −0.815458 0.578816i \(-0.803515\pi\)
0.908998 + 0.416800i \(0.136848\pi\)
\(614\) 0 0
\(615\) 4.97025e10i 0.347439i
\(616\) 0 0
\(617\) 3.03709e10 0.209564 0.104782 0.994495i \(-0.466586\pi\)
0.104782 + 0.994495i \(0.466586\pi\)
\(618\) 0 0
\(619\) −1.10401e11 6.37398e10i −0.751984 0.434158i 0.0744264 0.997227i \(-0.476287\pi\)
−0.826410 + 0.563068i \(0.809621\pi\)
\(620\) 0 0
\(621\) 1.90709e11 1.10106e11i 1.28235 0.740363i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.91224e10 8.50825e10i −0.321929 0.557597i
\(626\) 0 0
\(627\) −2.86185e7 + 4.95687e7i −0.000185172 + 0.000320728i
\(628\) 0 0
\(629\) 1.40737e11i 0.899095i
\(630\) 0 0
\(631\) 1.33173e11 0.840039 0.420019 0.907515i \(-0.362023\pi\)
0.420019 + 0.907515i \(0.362023\pi\)
\(632\) 0 0
\(633\) −8.94525e10 5.16454e10i −0.557157 0.321675i
\(634\) 0 0
\(635\) −2.37932e11 + 1.37370e11i −1.46339 + 0.844886i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −4.82140e10 8.35091e10i −0.289181 0.500876i
\(640\) 0 0
\(641\) −5.22192e10 + 9.04464e10i −0.309313 + 0.535746i −0.978212 0.207607i \(-0.933432\pi\)
0.668899 + 0.743353i \(0.266766\pi\)
\(642\) 0 0
\(643\) 1.80997e10i 0.105883i −0.998598 0.0529415i \(-0.983140\pi\)
0.998598 0.0529415i \(-0.0168597\pi\)
\(644\) 0 0
\(645\) −1.21582e11 −0.702476
\(646\) 0 0
\(647\) −1.01442e11 5.85677e10i −0.578897 0.334226i 0.181798 0.983336i \(-0.441808\pi\)
−0.760695 + 0.649109i \(0.775142\pi\)
\(648\) 0 0
\(649\) −2.63080e9 + 1.51889e9i −0.0148289 + 0.00856148i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.71936e9 + 1.16383e10i 0.0369552 + 0.0640082i 0.883911 0.467654i \(-0.154901\pi\)
−0.846956 + 0.531663i \(0.821567\pi\)
\(654\) 0 0
\(655\) 2.69263e11 4.66376e11i 1.46289 2.53379i
\(656\) 0 0
\(657\) 9.83296e10i 0.527744i
\(658\) 0 0
\(659\) 3.08932e10 0.163803 0.0819015 0.996640i \(-0.473901\pi\)
0.0819015 + 0.996640i \(0.473901\pi\)
\(660\) 0 0
\(661\) −1.40945e11 8.13745e10i −0.738317 0.426268i 0.0831399 0.996538i \(-0.473505\pi\)
−0.821457 + 0.570270i \(0.806838\pi\)
\(662\) 0 0
\(663\) 2.15754e9 1.24565e9i 0.0111662 0.00644679i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.03662e11 1.79548e11i −0.523742 0.907148i
\(668\) 0 0
\(669\) −6.94022e10 + 1.20208e11i −0.346473 + 0.600108i
\(670\) 0 0
\(671\) 1.50017e9i 0.00740030i
\(672\) 0 0
\(673\) 1.99851e11 0.974195 0.487098 0.873347i \(-0.338056\pi\)
0.487098 + 0.873347i \(0.338056\pi\)
\(674\) 0 0
\(675\) 2.73823e11 + 1.58092e11i 1.31903 + 0.761543i
\(676\) 0 0
\(677\) −2.91620e10 + 1.68367e10i −0.138823 + 0.0801497i −0.567803 0.823164i \(-0.692207\pi\)
0.428980 + 0.903314i \(0.358873\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.06439e10 + 7.03972e10i 0.188976 + 0.327316i
\(682\) 0 0
\(683\) −1.84745e11 + 3.19987e11i −0.848964 + 1.47045i 0.0331691 + 0.999450i \(0.489440\pi\)
−0.882133 + 0.471000i \(0.843893\pi\)
\(684\) 0 0
\(685\) 2.57535e11i 1.16970i
\(686\) 0 0
\(687\) 4.11343e10 0.184662
\(688\) 0 0
\(689\) 4.03045e9 + 2.32698e9i 0.0178845 + 0.0103256i
\(690\) 0 0
\(691\) 2.31360e11 1.33576e11i 1.01479 0.585889i 0.102199 0.994764i \(-0.467412\pi\)
0.912590 + 0.408875i \(0.134079\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.90595e10 + 1.02294e11i 0.253134 + 0.438441i
\(696\) 0 0
\(697\) −9.38930e10 + 1.62627e11i −0.397834 + 0.689069i
\(698\) 0 0
\(699\) 1.20297e11i 0.503902i
\(700\) 0 0
\(701\) 1.51180e11 0.626071 0.313035 0.949741i \(-0.398654\pi\)
0.313035 + 0.949741i \(0.398654\pi\)
\(702\) 0 0
\(703\) 7.39900e9 + 4.27181e9i 0.0302936 + 0.0174900i
\(704\) 0 0
\(705\) −2.64074e11 + 1.52463e11i −1.06898 + 0.617175i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.70255e11 + 2.94890e11i 0.673774 + 1.16701i 0.976826 + 0.214036i \(0.0686611\pi\)
−0.303052 + 0.952974i \(0.598006\pi\)
\(710\) 0 0
\(711\) −1.58049e11 + 2.73748e11i −0.618461 + 1.07121i
\(712\) 0 0
\(713\) 4.12925e11i 1.59777i
\(714\) 0 0
\(715\) −8.63188e7 −0.000330279
\(716\) 0 0
\(717\) 1.70429e11 + 9.83971e10i 0.644861 + 0.372311i
\(718\) 0 0
\(719\) 1.13379e11 6.54596e10i 0.424247 0.244939i −0.272646 0.962114i \(-0.587899\pi\)
0.696893 + 0.717175i \(0.254565\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.21248e10 + 1.59565e11i 0.337150 + 0.583961i
\(724\) 0 0
\(725\) 1.48840e11 2.57798e11i 0.538726 0.933100i
\(726\) 0 0
\(727\) 2.05407e11i 0.735321i −0.929960 0.367660i \(-0.880159\pi\)
0.929960 0.367660i \(-0.119841\pi\)
\(728\) 0 0
\(729\) −7.35692e9 −0.0260487
\(730\) 0 0
\(731\) 3.97819e11 + 2.29681e11i 1.39321 + 0.804369i
\(732\) 0 0
\(733\) −2.00313e11 + 1.15651e11i −0.693894 + 0.400620i −0.805069 0.593181i \(-0.797872\pi\)
0.111175 + 0.993801i \(0.464538\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.74652e9 + 3.02507e9i 0.00591976 + 0.0102533i
\(738\) 0 0
\(739\) −2.38828e10 + 4.13663e10i −0.0800770 + 0.138697i −0.903283 0.429046i \(-0.858850\pi\)
0.823206 + 0.567743i \(0.192183\pi\)
\(740\) 0 0
\(741\) 1.51238e8i 0.000501636i
\(742\) 0 0
\(743\) 1.17658e11 0.386069 0.193034 0.981192i \(-0.438167\pi\)
0.193034 + 0.981192i \(0.438167\pi\)
\(744\) 0 0
\(745\) 7.90569e11 + 4.56435e11i 2.56634 + 1.48168i
\(746\) 0 0
\(747\) 1.87008e11 1.07969e11i 0.600590 0.346751i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.75286e9 1.51604e10i −0.0275163 0.0476596i 0.851939 0.523640i \(-0.175426\pi\)
−0.879456 + 0.475981i \(0.842093\pi\)
\(752\) 0 0
\(753\) −2.04969e10 + 3.55016e10i −0.0637540 + 0.110425i
\(754\) 0 0
\(755\) 9.31351e11i 2.86632i
\(756\) 0 0
\(757\) 4.82314e11 1.46875 0.734373 0.678746i \(-0.237476\pi\)
0.734373 + 0.678746i \(0.237476\pi\)
\(758\) 0 0
\(759\) −2.84190e9 1.64077e9i −0.00856331 0.00494403i
\(760\) 0 0
\(761\) −3.21337e11 + 1.85524e11i −0.958124 + 0.553173i −0.895595 0.444870i \(-0.853250\pi\)
−0.0625288 + 0.998043i \(0.519917\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.05715e11 7.02719e11i −1.18461 2.05180i
\(766\) 0 0
\(767\) 4.01340e9 6.95142e9i 0.0115966 0.0200859i
\(768\) 0 0
\(769\) 6.12899e11i 1.75260i −0.481762 0.876302i \(-0.660003\pi\)
0.481762 0.876302i \(-0.339997\pi\)
\(770\) 0 0
\(771\) −5.23974e9 −0.0148283
\(772\) 0 0
\(773\) −2.82531e11 1.63120e11i −0.791314 0.456865i 0.0491110 0.998793i \(-0.484361\pi\)
−0.840425 + 0.541928i \(0.817695\pi\)
\(774\) 0 0
\(775\) −5.13453e11 + 2.96442e11i −1.42329 + 0.821738i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.69990e9 + 9.87252e9i 0.0154781 + 0.0268088i
\(780\) 0 0
\(781\) −1.62153e9 + 2.80858e9i −0.00435834 + 0.00754887i
\(782\) 0 0
\(783\) 1.75236e11i 0.466203i
\(784\) 0 0
\(785\) −8.66096e10 −0.228080
\(786\) 0 0
\(787\) −1.82211e11 1.05200e11i −0.474981 0.274231i 0.243341 0.969941i \(-0.421757\pi\)
−0.718323 + 0.695710i \(0.755090\pi\)
\(788\) 0 0
\(789\) 9.96963e10 5.75597e10i 0.257259 0.148529i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.98196e9 3.43285e9i −0.00501189 0.00868085i
\(794\) 0 0
\(795\) −1.94718e11 + 3.37262e11i −0.487459 + 0.844303i
\(796\) 0 0
\(797\) 3.28855e11i 0.815026i 0.913199 + 0.407513i \(0.133604\pi\)
−0.913199 + 0.407513i \(0.866396\pi\)
\(798\) 0 0
\(799\) 1.15207e12 2.82678
\(800\) 0 0
\(801\) −1.94997e11 1.12581e11i −0.473693 0.273487i
\(802\) 0 0
\(803\) 2.86396e9 1.65351e9i 0.00688819 0.00397690i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.19590e11 + 2.07136e11i 0.281968 + 0.488383i
\(808\) 0 0
\(809\) 2.79667e11 4.84397e11i 0.652900 1.13086i −0.329516 0.944150i \(-0.606886\pi\)
0.982416 0.186705i \(-0.0597810\pi\)
\(810\) 0 0
\(811\) 4.12178e11i 0.952800i 0.879229 + 0.476400i \(0.158059\pi\)
−0.879229 + 0.476400i \(0.841941\pi\)
\(812\) 0 0
\(813\) −4.27423e10 −0.0978354
\(814\) 0 0
\(815\) −3.81023e11 2.19984e11i −0.863616 0.498609i
\(816\) 0 0
\(817\) 2.41501e10 1.39431e10i 0.0542040 0.0312947i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.80835e11 4.86420e11i −0.618128 1.07063i −0.989827 0.142276i \(-0.954558\pi\)
0.371699 0.928353i \(-0.378775\pi\)
\(822\) 0 0
\(823\) 2.15505e11 3.73266e11i 0.469741 0.813615i −0.529660 0.848210i \(-0.677681\pi\)
0.999401 + 0.0345944i \(0.0110139\pi\)
\(824\) 0 0
\(825\) 4.71169e9i 0.0101709i
\(826\) 0 0
\(827\) 1.77468e11 0.379402 0.189701 0.981842i \(-0.439248\pi\)
0.189701 + 0.981842i \(0.439248\pi\)
\(828\) 0 0
\(829\) 6.87102e11 + 3.96698e11i 1.45480 + 0.839928i 0.998748 0.0500256i \(-0.0159303\pi\)
0.456050 + 0.889954i \(0.349264\pi\)
\(830\) 0 0
\(831\) 3.30093e10 1.90579e10i 0.0692200 0.0399642i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.60130e11 9.70174e11i −1.15224 1.99574i
\(836\) 0 0
\(837\) 1.74507e11 3.02255e11i 0.355559 0.615845i
\(838\) 0 0
\(839\) 3.05327e11i 0.616194i −0.951355 0.308097i \(-0.900308\pi\)
0.951355 0.308097i \(-0.0996921\pi\)
\(840\) 0 0
\(841\) −3.35266e11 −0.670202
\(842\) 0 0
\(843\) 1.96390e11 + 1.13386e11i 0.388875 + 0.224517i
\(844\) 0 0
\(845\) −7.48601e11 + 4.32205e11i −1.46833 + 0.847741i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.33675e11 2.31533e11i −0.257289 0.445637i
\(850\) 0 0
\(851\) −2.44914e11 + 4.24204e11i −0.466977 + 0.808828i
\(852\) 0 0
\(853\) 5.62048e11i 1.06164i 0.847485 + 0.530820i \(0.178116\pi\)
−0.847485 + 0.530820i \(0.821884\pi\)
\(854\) 0 0
\(855\) −4.92589e10 −0.0921765
\(856\) 0 0
\(857\) −1.26700e11 7.31504e10i −0.234884 0.135611i 0.377939 0.925831i \(-0.376633\pi\)
−0.612823 + 0.790220i \(0.709966\pi\)
\(858\) 0 0
\(859\) 3.28952e10 1.89920e10i 0.0604171 0.0348818i −0.469487 0.882939i \(-0.655561\pi\)
0.529904 + 0.848057i \(0.322228\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.41661e11 + 9.38184e11i 0.976526 + 1.69139i 0.674803 + 0.737998i \(0.264229\pi\)
0.301723 + 0.953395i \(0.402438\pi\)
\(864\) 0 0
\(865\) 1.56610e10 2.71257e10i 0.0279740 0.0484525i
\(866\) 0 0
\(867\) 5.32178e11i 0.941847i
\(868\) 0 0
\(869\) 1.06310e10 0.0186421
\(870\) 0 0
\(871\) −7.99318e9 4.61487e9i −0.0138882 0.00801838i
\(872\) 0 0
\(873\) 3.90628e11 2.25529e11i 0.672521 0.388280i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.89645e11 + 5.01680e11i 0.489629 + 0.848063i 0.999929 0.0119339i \(-0.00379877\pi\)
−0.510299 + 0.859997i \(0.670465\pi\)
\(878\) 0 0
\(879\) −9.62363e10 + 1.66686e11i −0.161207 + 0.279218i
\(880\) 0 0
\(881\) 8.23483e11i 1.36694i 0.729976 + 0.683472i \(0.239531\pi\)
−0.729976 + 0.683472i \(0.760469\pi\)
\(882\) 0 0
\(883\) −4.34805e11 −0.715240 −0.357620 0.933867i \(-0.616412\pi\)
−0.357620 + 0.933867i \(0.616412\pi\)
\(884\) 0 0
\(885\) 5.81683e11 + 3.35835e11i 0.948229 + 0.547460i
\(886\) 0 0
\(887\) −3.35092e11 + 1.93465e11i −0.541339 + 0.312542i −0.745622 0.666370i \(-0.767847\pi\)
0.204282 + 0.978912i \(0.434514\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.61940e9 2.80488e9i −0.00256947 0.00445045i
\(892\) 0 0
\(893\) 3.49690e10 6.05681e10i 0.0549893 0.0952442i
\(894\) 0 0
\(895\) 9.62888e11i 1.50066i
\(896\) 0 0
\(897\) 8.67088e9 0.0133935
\(898\) 0 0
\(899\) −2.84566e11 1.64294e11i −0.435657 0.251527i
\(900\) 0 0
\(901\) 1.27424e12 7.35683e11i 1.93354 1.11633i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.66363e11 + 1.32738e12i 1.14246 + 1.97879i
\(906\) 0 0
\(907\) −3.96953e11 + 6.87543e11i −0.586557 + 1.01595i 0.408123 + 0.912927i \(0.366184\pi\)
−0.994679 + 0.103019i \(0.967150\pi\)
\(908\) 0 0
\(909\) 7.25809e11i 1.06308i
\(910\) 0 0
\(911\) −4.91456e11 −0.713528 −0.356764 0.934195i \(-0.616120\pi\)
−0.356764 + 0.934195i \(0.616120\pi\)
\(912\) 0 0
\(913\) −6.28946e9 3.63122e9i −0.00905170 0.00522600i
\(914\) 0 0
\(915\) 2.87255e11 1.65847e11i 0.409811 0.236604i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.39904e11 2.42320e11i −0.196141 0.339725i 0.751133 0.660151i \(-0.229508\pi\)
−0.947274 + 0.320425i \(0.896174\pi\)
\(920\) 0 0
\(921\) −1.76349e11 + 3.05445e11i −0.245095 + 0.424517i
\(922\) 0 0
\(923\) 8.56920e9i 0.0118068i
\(924\) 0 0
\(925\) −7.03303e11 −0.960673
\(926\) 0 0
\(927\) 7.98403e11 + 4.60958e11i 1.08119 + 0.624227i
\(928\) 0 0
\(929\) −4.64262e10 + 2.68042e10i −0.0623305 + 0.0359865i −0.530841 0.847471i \(-0.678124\pi\)
0.468511 + 0.883458i \(0.344791\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.83426e10 1.70334e11i −0.129782 0.224789i
\(934\) 0 0
\(935\) −1.36450e10 + 2.36338e10i −0.0178536 + 0.0309234i
\(936\) 0 0
\(937\) 3.98250e11i 0.516651i −0.966058 0.258325i \(-0.916829\pi\)
0.966058 0.258325i \(-0.0831707\pi\)
\(938\) 0 0
\(939\) −3.53118e11 −0.454211
\(940\) 0 0
\(941\) −8.62807e11 4.98142e11i −1.10041 0.635323i −0.164082 0.986447i \(-0.552466\pi\)
−0.936329 + 0.351124i \(0.885800\pi\)
\(942\) 0 0
\(943\) −5.66017e11 + 3.26790e11i −0.715785 + 0.413259i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.86942e10 + 1.01661e11i 0.0729786 + 0.126403i 0.900205 0.435465i \(-0.143416\pi\)
−0.827227 + 0.561868i \(0.810083\pi\)
\(948\) 0 0
\(949\) −4.36910e9 + 7.56750e9i −0.00538675 + 0.00933013i
\(950\) 0 0
\(951\) 4.13374e11i 0.505383i
\(952\) 0 0
\(953\) −1.23547e11 −0.149782 −0.0748911 0.997192i \(-0.523861\pi\)
−0.0748911 + 0.997192i \(0.523861\pi\)
\(954\) 0 0
\(955\) −1.90352e12 1.09900e12i −2.28846 1.32125i
\(956\) 0 0
\(957\) 2.26147e9 1.30566e9i 0.00269614 0.00155662i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.92228e10 1.71859e11i −0.116337 0.201502i
\(962\) 0 0
\(963\) −1.35893e11 + 2.35374e11i −0.158013 + 0.273687i
\(964\) 0 0
\(965\) 1.34120e11i 0.154662i
\(966\) 0 0
\(967\) −4.03225e11 −0.461150 −0.230575 0.973055i \(-0.574061\pi\)
−0.230575 + 0.973055i \(0.574061\pi\)
\(968\) 0 0
\(969\) −4.14085e10 2.39072e10i −0.0469672 0.0271165i
\(970\) 0 0
\(971\) −6.09791e11 + 3.52063e11i −0.685968 + 0.396044i −0.802100 0.597190i \(-0.796284\pi\)
0.116132 + 0.993234i \(0.462951\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.22489e9 + 1.07818e10i 0.00688832 + 0.0119309i
\(976\) 0 0
\(977\) 6.25270e11 1.08300e12i 0.686261 1.18864i −0.286777 0.957997i \(-0.592584\pi\)
0.973039 0.230642i \(-0.0740826\pi\)
\(978\) 0 0
\(979\) 7.57267e9i 0.00824362i
\(980\) 0 0
\(981\) 7.04174e11 0.760333
\(982\) 0 0
\(983\) −2.98262e11 1.72202e11i −0.319436 0.184426i 0.331705 0.943383i \(-0.392376\pi\)
−0.651141 + 0.758957i \(0.725709\pi\)
\(984\) 0 0
\(985\) 2.37560e12 1.37155e12i 2.52365 1.45703i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.99393e11 + 1.38459e12i 0.835555 + 1.44722i
\(990\) 0 0
\(991\) 2.51310e11 4.35281e11i 0.260564 0.451311i −0.705828 0.708384i \(-0.749425\pi\)
0.966392 + 0.257073i \(0.0827581\pi\)
\(992\) 0 0
\(993\) 2.04338e11i 0.210161i
\(994\) 0 0
\(995\) −4.04545e11 −0.412738
\(996\) 0 0
\(997\) −7.94732e11 4.58838e11i −0.804340 0.464386i 0.0406463 0.999174i \(-0.487058\pi\)
−0.844987 + 0.534788i \(0.820392\pi\)
\(998\) 0 0
\(999\) 3.58547e11 2.07007e11i 0.359985 0.207837i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.c.129.6 32
7.2 even 3 inner 196.9.h.c.117.11 32
7.3 odd 6 196.9.b.b.97.6 16
7.4 even 3 196.9.b.b.97.11 yes 16
7.5 odd 6 inner 196.9.h.c.117.6 32
7.6 odd 2 inner 196.9.h.c.129.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.9.b.b.97.6 16 7.3 odd 6
196.9.b.b.97.11 yes 16 7.4 even 3
196.9.h.c.117.6 32 7.5 odd 6 inner
196.9.h.c.117.11 32 7.2 even 3 inner
196.9.h.c.129.6 32 1.1 even 1 trivial
196.9.h.c.129.11 32 7.6 odd 2 inner