Properties

Label 196.9.h.c.117.3
Level $196$
Weight $9$
Character 196.117
Analytic conductor $79.846$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 117.3
Character \(\chi\) \(=\) 196.117
Dual form 196.9.h.c.129.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-106.882 + 61.7084i) q^{3} +(-149.792 - 86.4823i) q^{5} +(4335.35 - 7509.04i) q^{9} +(-2312.68 - 4005.68i) q^{11} +38424.8i q^{13} +21346.7 q^{15} +(18010.2 - 10398.2i) q^{17} +(59635.0 + 34430.3i) q^{19} +(-138965. + 240695. i) q^{23} +(-180354. - 312383. i) q^{25} +260371. i q^{27} -815335. q^{29} +(-1.44227e6 + 832694. i) q^{31} +(494368. + 285423. i) q^{33} +(-1.08184e6 + 1.87379e6i) q^{37} +(-2.37113e6 - 4.10692e6i) q^{39} +4.92685e6i q^{41} +2.84791e6 q^{43} +(-1.29880e6 + 749861. i) q^{45} +(3.90905e6 + 2.25689e6i) q^{47} +(-1.28331e6 + 2.22275e6i) q^{51} +(-6.74283e6 - 1.16789e7i) q^{53} +800023. i q^{55} -8.49855e6 q^{57} +(-1.10116e7 + 6.35756e6i) q^{59} +(-2.11485e6 - 1.22101e6i) q^{61} +(3.32307e6 - 5.75572e6i) q^{65} +(5.98497e6 + 1.03663e7i) q^{67} -3.43013e7i q^{69} +1.36325e6 q^{71} +(2.62076e7 - 1.51310e7i) q^{73} +(3.85532e7 + 2.22587e7i) q^{75} +(2.39976e7 - 4.15650e7i) q^{79} +(1.23771e7 + 2.14378e7i) q^{81} -3.39149e7i q^{83} -3.59703e6 q^{85} +(8.71446e7 - 5.03130e7i) q^{87} +(1.07589e7 + 6.21164e6i) q^{89} +(1.02768e8 - 1.78000e8i) q^{93} +(-5.95522e6 - 1.03147e7i) q^{95} -1.15877e8i q^{97} -4.01051e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 52264 q^{9} + 22776 q^{11} + 206064 q^{15} - 571560 q^{23} + 1030440 q^{25} - 5384256 q^{29} + 3376640 q^{37} + 10336136 q^{39} + 18525008 q^{43} + 16028856 q^{51} - 14106216 q^{53} - 4787360 q^{57}+ \cdots + 1119499328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −106.882 + 61.7084i −1.31953 + 0.761832i −0.983653 0.180074i \(-0.942366\pi\)
−0.335878 + 0.941905i \(0.609033\pi\)
\(4\) 0 0
\(5\) −149.792 86.4823i −0.239667 0.138372i 0.375357 0.926880i \(-0.377520\pi\)
−0.615024 + 0.788509i \(0.710853\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 4335.35 7509.04i 0.660775 1.14450i
\(10\) 0 0
\(11\) −2312.68 4005.68i −0.157959 0.273593i 0.776173 0.630519i \(-0.217158\pi\)
−0.934133 + 0.356926i \(0.883825\pi\)
\(12\) 0 0
\(13\) 38424.8i 1.34536i 0.739934 + 0.672680i \(0.234857\pi\)
−0.739934 + 0.672680i \(0.765143\pi\)
\(14\) 0 0
\(15\) 21346.7 0.421664
\(16\) 0 0
\(17\) 18010.2 10398.2i 0.215636 0.124498i −0.388292 0.921536i \(-0.626935\pi\)
0.603928 + 0.797039i \(0.293601\pi\)
\(18\) 0 0
\(19\) 59635.0 + 34430.3i 0.457601 + 0.264196i 0.711035 0.703157i \(-0.248227\pi\)
−0.253434 + 0.967353i \(0.581560\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −138965. + 240695.i −0.496587 + 0.860114i −0.999992 0.00393650i \(-0.998747\pi\)
0.503405 + 0.864050i \(0.332080\pi\)
\(24\) 0 0
\(25\) −180354. 312383.i −0.461707 0.799699i
\(26\) 0 0
\(27\) 260371.i 0.489935i
\(28\) 0 0
\(29\) −815335. −1.15277 −0.576387 0.817177i \(-0.695538\pi\)
−0.576387 + 0.817177i \(0.695538\pi\)
\(30\) 0 0
\(31\) −1.44227e6 + 832694.i −1.56171 + 0.901652i −0.564622 + 0.825350i \(0.690978\pi\)
−0.997085 + 0.0763019i \(0.975689\pi\)
\(32\) 0 0
\(33\) 494368. + 285423.i 0.416864 + 0.240676i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.08184e6 + 1.87379e6i −0.577237 + 0.999805i 0.418557 + 0.908190i \(0.362536\pi\)
−0.995795 + 0.0916141i \(0.970797\pi\)
\(38\) 0 0
\(39\) −2.37113e6 4.10692e6i −1.02494 1.77524i
\(40\) 0 0
\(41\) 4.92685e6i 1.74355i 0.489908 + 0.871774i \(0.337030\pi\)
−0.489908 + 0.871774i \(0.662970\pi\)
\(42\) 0 0
\(43\) 2.84791e6 0.833014 0.416507 0.909133i \(-0.363254\pi\)
0.416507 + 0.909133i \(0.363254\pi\)
\(44\) 0 0
\(45\) −1.29880e6 + 749861.i −0.316732 + 0.182865i
\(46\) 0 0
\(47\) 3.90905e6 + 2.25689e6i 0.801088 + 0.462508i 0.843851 0.536577i \(-0.180283\pi\)
−0.0427635 + 0.999085i \(0.513616\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.28331e6 + 2.22275e6i −0.189692 + 0.328557i
\(52\) 0 0
\(53\) −6.74283e6 1.16789e7i −0.854552 1.48013i −0.877060 0.480381i \(-0.840498\pi\)
0.0225073 0.999747i \(-0.492835\pi\)
\(54\) 0 0
\(55\) 800023.i 0.0874282i
\(56\) 0 0
\(57\) −8.49855e6 −0.805092
\(58\) 0 0
\(59\) −1.10116e7 + 6.35756e6i −0.908747 + 0.524665i −0.880028 0.474922i \(-0.842476\pi\)
−0.0287191 + 0.999588i \(0.509143\pi\)
\(60\) 0 0
\(61\) −2.11485e6 1.22101e6i −0.152743 0.0881862i 0.421681 0.906744i \(-0.361440\pi\)
−0.574423 + 0.818558i \(0.694774\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.32307e6 5.75572e6i 0.186160 0.322438i
\(66\) 0 0
\(67\) 5.98497e6 + 1.03663e7i 0.297004 + 0.514427i 0.975449 0.220225i \(-0.0706791\pi\)
−0.678445 + 0.734651i \(0.737346\pi\)
\(68\) 0 0
\(69\) 3.43013e7i 1.51326i
\(70\) 0 0
\(71\) 1.36325e6 0.0536464 0.0268232 0.999640i \(-0.491461\pi\)
0.0268232 + 0.999640i \(0.491461\pi\)
\(72\) 0 0
\(73\) 2.62076e7 1.51310e7i 0.922860 0.532813i 0.0383137 0.999266i \(-0.487801\pi\)
0.884546 + 0.466452i \(0.154468\pi\)
\(74\) 0 0
\(75\) 3.85532e7 + 2.22587e7i 1.21847 + 0.703485i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.39976e7 4.15650e7i 0.616111 1.06713i −0.374078 0.927397i \(-0.622041\pi\)
0.990189 0.139737i \(-0.0446259\pi\)
\(80\) 0 0
\(81\) 1.23771e7 + 2.14378e7i 0.287527 + 0.498012i
\(82\) 0 0
\(83\) 3.39149e7i 0.714626i −0.933985 0.357313i \(-0.883693\pi\)
0.933985 0.357313i \(-0.116307\pi\)
\(84\) 0 0
\(85\) −3.59703e6 −0.0689077
\(86\) 0 0
\(87\) 8.71446e7 5.03130e7i 1.52112 0.878219i
\(88\) 0 0
\(89\) 1.07589e7 + 6.21164e6i 0.171478 + 0.0990026i 0.583282 0.812269i \(-0.301768\pi\)
−0.411805 + 0.911272i \(0.635101\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.02768e8 1.78000e8i 1.37381 2.37952i
\(94\) 0 0
\(95\) −5.95522e6 1.03147e7i −0.0731145 0.126638i
\(96\) 0 0
\(97\) 1.15877e8i 1.30891i −0.756102 0.654454i \(-0.772899\pi\)
0.756102 0.654454i \(-0.227101\pi\)
\(98\) 0 0
\(99\) −4.01051e7 −0.417502
\(100\) 0 0
\(101\) −5.59126e7 + 3.22811e7i −0.537309 + 0.310215i −0.743988 0.668194i \(-0.767068\pi\)
0.206679 + 0.978409i \(0.433734\pi\)
\(102\) 0 0
\(103\) 1.05151e8 + 6.07090e7i 0.934254 + 0.539392i 0.888155 0.459545i \(-0.151987\pi\)
0.0460998 + 0.998937i \(0.485321\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.88872e7 + 8.46751e7i −0.372958 + 0.645982i −0.990019 0.140933i \(-0.954990\pi\)
0.617061 + 0.786915i \(0.288323\pi\)
\(108\) 0 0
\(109\) −3.68434e7 6.38146e7i −0.261008 0.452079i 0.705502 0.708708i \(-0.250721\pi\)
−0.966510 + 0.256629i \(0.917388\pi\)
\(110\) 0 0
\(111\) 2.67033e8i 1.75903i
\(112\) 0 0
\(113\) −9.96728e7 −0.611312 −0.305656 0.952142i \(-0.598876\pi\)
−0.305656 + 0.952142i \(0.598876\pi\)
\(114\) 0 0
\(115\) 4.16317e7 2.40361e7i 0.238031 0.137427i
\(116\) 0 0
\(117\) 2.88534e8 + 1.66585e8i 1.53976 + 0.888981i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.64825e7 1.67113e8i 0.450098 0.779592i
\(122\) 0 0
\(123\) −3.04028e8 5.26592e8i −1.32829 2.30067i
\(124\) 0 0
\(125\) 1.29954e8i 0.532292i
\(126\) 0 0
\(127\) 1.31508e8 0.505517 0.252759 0.967529i \(-0.418662\pi\)
0.252759 + 0.967529i \(0.418662\pi\)
\(128\) 0 0
\(129\) −3.04390e8 + 1.75740e8i −1.09919 + 0.634616i
\(130\) 0 0
\(131\) 3.62932e8 + 2.09539e8i 1.23237 + 0.711508i 0.967523 0.252783i \(-0.0813459\pi\)
0.264845 + 0.964291i \(0.414679\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.25175e7 3.90015e7i 0.0677930 0.117421i
\(136\) 0 0
\(137\) −3.15734e8 5.46868e8i −0.896271 1.55239i −0.832223 0.554441i \(-0.812932\pi\)
−0.0640481 0.997947i \(-0.520401\pi\)
\(138\) 0 0
\(139\) 2.37838e8i 0.637122i 0.947902 + 0.318561i \(0.103200\pi\)
−0.947902 + 0.318561i \(0.896800\pi\)
\(140\) 0 0
\(141\) −5.57077e8 −1.40941
\(142\) 0 0
\(143\) 1.53917e8 8.88643e7i 0.368081 0.212512i
\(144\) 0 0
\(145\) 1.22130e8 + 7.05120e7i 0.276281 + 0.159511i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.59717e8 4.49842e8i 0.526932 0.912673i −0.472575 0.881290i \(-0.656675\pi\)
0.999507 0.0313830i \(-0.00999118\pi\)
\(150\) 0 0
\(151\) −2.10947e8 3.65370e8i −0.405756 0.702790i 0.588653 0.808386i \(-0.299658\pi\)
−0.994409 + 0.105596i \(0.966325\pi\)
\(152\) 0 0
\(153\) 1.80319e8i 0.329060i
\(154\) 0 0
\(155\) 2.88053e8 0.499052
\(156\) 0 0
\(157\) −3.82356e8 + 2.20754e8i −0.629317 + 0.363337i −0.780488 0.625171i \(-0.785029\pi\)
0.151170 + 0.988508i \(0.451696\pi\)
\(158\) 0 0
\(159\) 1.44137e9 + 8.32178e8i 2.25522 + 1.30205i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.37137e8 + 7.57144e8i −0.619252 + 1.07258i 0.370370 + 0.928884i \(0.379231\pi\)
−0.989622 + 0.143692i \(0.954103\pi\)
\(164\) 0 0
\(165\) −4.93681e7 8.55081e7i −0.0666056 0.115364i
\(166\) 0 0
\(167\) 1.27186e9i 1.63521i −0.575783 0.817603i \(-0.695303\pi\)
0.575783 0.817603i \(-0.304697\pi\)
\(168\) 0 0
\(169\) −6.60737e8 −0.809994
\(170\) 0 0
\(171\) 5.17077e8 2.98535e8i 0.604743 0.349149i
\(172\) 0 0
\(173\) −9.99203e8 5.76890e8i −1.11550 0.644034i −0.175251 0.984524i \(-0.556074\pi\)
−0.940248 + 0.340490i \(0.889407\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.84629e8 1.35902e9i 0.799413 1.38462i
\(178\) 0 0
\(179\) 7.49730e8 + 1.29857e9i 0.730285 + 1.26489i 0.956761 + 0.290875i \(0.0939463\pi\)
−0.226476 + 0.974017i \(0.572720\pi\)
\(180\) 0 0
\(181\) 8.43686e8i 0.786079i −0.919521 0.393040i \(-0.871423\pi\)
0.919521 0.393040i \(-0.128577\pi\)
\(182\) 0 0
\(183\) 3.01387e8 0.268732
\(184\) 0 0
\(185\) 3.24100e8 1.87119e8i 0.276689 0.159747i
\(186\) 0 0
\(187\) −8.33034e7 4.80952e7i −0.0681234 0.0393311i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.03352e8 1.21824e9i 0.528493 0.915377i −0.470955 0.882157i \(-0.656090\pi\)
0.999448 0.0332199i \(-0.0105762\pi\)
\(192\) 0 0
\(193\) 7.60769e7 + 1.31769e8i 0.0548307 + 0.0949695i 0.892138 0.451763i \(-0.149205\pi\)
−0.837307 + 0.546733i \(0.815871\pi\)
\(194\) 0 0
\(195\) 8.20244e8i 0.567289i
\(196\) 0 0
\(197\) 1.63587e8 0.108614 0.0543069 0.998524i \(-0.482705\pi\)
0.0543069 + 0.998524i \(0.482705\pi\)
\(198\) 0 0
\(199\) 1.91243e9 1.10414e9i 1.21948 0.704067i 0.254673 0.967027i \(-0.418032\pi\)
0.964807 + 0.262961i \(0.0846990\pi\)
\(200\) 0 0
\(201\) −1.27937e9 7.38646e8i −0.783813 0.452535i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.26085e8 7.38001e8i 0.241258 0.417870i
\(206\) 0 0
\(207\) 1.20493e9 + 2.08699e9i 0.656265 + 1.13668i
\(208\) 0 0
\(209\) 3.18505e8i 0.166929i
\(210\) 0 0
\(211\) 3.36732e9 1.69885 0.849425 0.527709i \(-0.176949\pi\)
0.849425 + 0.527709i \(0.176949\pi\)
\(212\) 0 0
\(213\) −1.45706e8 + 8.41237e7i −0.0707881 + 0.0408695i
\(214\) 0 0
\(215\) −4.26593e8 2.46293e8i −0.199646 0.115265i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.86741e9 + 3.23446e9i −0.811828 + 1.40613i
\(220\) 0 0
\(221\) 3.99548e8 + 6.92037e8i 0.167494 + 0.290108i
\(222\) 0 0
\(223\) 1.18163e9i 0.477817i −0.971042 0.238908i \(-0.923210\pi\)
0.971042 0.238908i \(-0.0767895\pi\)
\(224\) 0 0
\(225\) −3.12759e9 −1.22034
\(226\) 0 0
\(227\) −8.36430e8 + 4.82913e8i −0.315011 + 0.181872i −0.649167 0.760646i \(-0.724882\pi\)
0.334155 + 0.942518i \(0.391549\pi\)
\(228\) 0 0
\(229\) −9.41321e8 5.43472e8i −0.342291 0.197622i 0.318994 0.947757i \(-0.396655\pi\)
−0.661285 + 0.750135i \(0.729989\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.53281e9 + 2.65490e9i −0.520072 + 0.900792i 0.479655 + 0.877457i \(0.340762\pi\)
−0.999728 + 0.0233347i \(0.992572\pi\)
\(234\) 0 0
\(235\) −3.90362e8 6.76128e8i −0.127996 0.221696i
\(236\) 0 0
\(237\) 5.92340e9i 1.87749i
\(238\) 0 0
\(239\) −3.16844e8 −0.0971078 −0.0485539 0.998821i \(-0.515461\pi\)
−0.0485539 + 0.998821i \(0.515461\pi\)
\(240\) 0 0
\(241\) −5.14474e9 + 2.97031e9i −1.52509 + 0.880510i −0.525530 + 0.850775i \(0.676133\pi\)
−0.999558 + 0.0297348i \(0.990534\pi\)
\(242\) 0 0
\(243\) −4.12521e9 2.38169e9i −1.18310 0.683062i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.32298e9 + 2.29147e9i −0.355439 + 0.615638i
\(248\) 0 0
\(249\) 2.09284e9 + 3.62490e9i 0.544425 + 0.942971i
\(250\) 0 0
\(251\) 5.99415e9i 1.51019i 0.655613 + 0.755097i \(0.272410\pi\)
−0.655613 + 0.755097i \(0.727590\pi\)
\(252\) 0 0
\(253\) 1.28553e9 0.313762
\(254\) 0 0
\(255\) 3.84458e8 2.21967e8i 0.0909259 0.0524961i
\(256\) 0 0
\(257\) −1.93545e9 1.11743e9i −0.443658 0.256146i 0.261490 0.965206i \(-0.415786\pi\)
−0.705148 + 0.709060i \(0.749120\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.53476e9 + 6.12238e9i −0.761724 + 1.31934i
\(262\) 0 0
\(263\) −4.64032e9 8.03728e9i −0.969896 1.67991i −0.695841 0.718195i \(-0.744968\pi\)
−0.274055 0.961714i \(-0.588365\pi\)
\(264\) 0 0
\(265\) 2.33254e9i 0.472983i
\(266\) 0 0
\(267\) −1.53324e9 −0.301693
\(268\) 0 0
\(269\) −2.04502e9 + 1.18069e9i −0.390561 + 0.225490i −0.682403 0.730976i \(-0.739065\pi\)
0.291842 + 0.956466i \(0.405732\pi\)
\(270\) 0 0
\(271\) −1.99405e9 1.15126e9i −0.369708 0.213451i 0.303623 0.952792i \(-0.401804\pi\)
−0.673331 + 0.739341i \(0.735137\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.34202e8 + 1.44488e9i −0.145862 + 0.252640i
\(276\) 0 0
\(277\) 4.42211e8 + 7.65932e8i 0.0751122 + 0.130098i 0.901135 0.433538i \(-0.142735\pi\)
−0.826023 + 0.563637i \(0.809402\pi\)
\(278\) 0 0
\(279\) 1.44401e10i 2.38316i
\(280\) 0 0
\(281\) 1.08376e10 1.73823 0.869116 0.494609i \(-0.164689\pi\)
0.869116 + 0.494609i \(0.164689\pi\)
\(282\) 0 0
\(283\) 2.25665e9 1.30288e9i 0.351818 0.203122i −0.313668 0.949533i \(-0.601558\pi\)
0.665486 + 0.746411i \(0.268224\pi\)
\(284\) 0 0
\(285\) 1.27301e9 + 7.34974e8i 0.192954 + 0.111402i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.27163e9 + 5.66664e9i −0.469001 + 0.812333i
\(290\) 0 0
\(291\) 7.15056e9 + 1.23851e10i 0.997168 + 1.72714i
\(292\) 0 0
\(293\) 8.03400e9i 1.09009i −0.838408 0.545043i \(-0.816513\pi\)
0.838408 0.545043i \(-0.183487\pi\)
\(294\) 0 0
\(295\) 2.19926e9 0.290395
\(296\) 0 0
\(297\) 1.04296e9 6.02155e8i 0.134043 0.0773896i
\(298\) 0 0
\(299\) −9.24867e9 5.33972e9i −1.15716 0.668088i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.98403e9 6.90055e9i 0.472664 0.818678i
\(304\) 0 0
\(305\) 2.11192e8 + 3.65795e8i 0.0244049 + 0.0422706i
\(306\) 0 0
\(307\) 6.40529e9i 0.721083i −0.932743 0.360542i \(-0.882592\pi\)
0.932743 0.360542i \(-0.117408\pi\)
\(308\) 0 0
\(309\) −1.49850e10 −1.64370
\(310\) 0 0
\(311\) −8.57644e9 + 4.95161e9i −0.916781 + 0.529304i −0.882607 0.470112i \(-0.844213\pi\)
−0.0341741 + 0.999416i \(0.510880\pi\)
\(312\) 0 0
\(313\) −1.11525e10 6.43889e9i −1.16197 0.670863i −0.210194 0.977660i \(-0.567410\pi\)
−0.951775 + 0.306797i \(0.900743\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.45499e9 + 4.25216e9i −0.243115 + 0.421088i −0.961600 0.274455i \(-0.911503\pi\)
0.718485 + 0.695543i \(0.244836\pi\)
\(318\) 0 0
\(319\) 1.88561e9 + 3.26597e9i 0.182091 + 0.315391i
\(320\) 0 0
\(321\) 1.20670e10i 1.13652i
\(322\) 0 0
\(323\) 1.43205e9 0.131567
\(324\) 0 0
\(325\) 1.20032e10 6.93008e9i 1.07588 0.621162i
\(326\) 0 0
\(327\) 7.87579e9 + 4.54709e9i 0.688816 + 0.397688i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.05763e10 1.83187e10i 0.881096 1.52610i 0.0309714 0.999520i \(-0.490140\pi\)
0.850124 0.526582i \(-0.176527\pi\)
\(332\) 0 0
\(333\) 9.38027e9 + 1.62471e10i 0.762848 + 1.32129i
\(334\) 0 0
\(335\) 2.07037e9i 0.164388i
\(336\) 0 0
\(337\) 1.66609e10 1.29175 0.645876 0.763442i \(-0.276492\pi\)
0.645876 + 0.763442i \(0.276492\pi\)
\(338\) 0 0
\(339\) 1.06532e10 6.15065e9i 0.806645 0.465717i
\(340\) 0 0
\(341\) 6.67101e9 + 3.85151e9i 0.493371 + 0.284848i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.96646e9 + 5.13805e9i −0.209393 + 0.362679i
\(346\) 0 0
\(347\) −3.77345e8 6.53581e8i −0.0260268 0.0450797i 0.852719 0.522370i \(-0.174952\pi\)
−0.878745 + 0.477291i \(0.841619\pi\)
\(348\) 0 0
\(349\) 1.22867e10i 0.828195i −0.910232 0.414098i \(-0.864097\pi\)
0.910232 0.414098i \(-0.135903\pi\)
\(350\) 0 0
\(351\) −1.00047e10 −0.659138
\(352\) 0 0
\(353\) 1.97054e10 1.13769e10i 1.26907 0.732698i 0.294258 0.955726i \(-0.404927\pi\)
0.974812 + 0.223028i \(0.0715940\pi\)
\(354\) 0 0
\(355\) −2.04203e8 1.17897e8i −0.0128573 0.00742314i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.33032e10 2.30418e10i 0.800899 1.38720i −0.118126 0.992999i \(-0.537689\pi\)
0.919025 0.394199i \(-0.128978\pi\)
\(360\) 0 0
\(361\) −6.12089e9 1.06017e10i −0.360401 0.624232i
\(362\) 0 0
\(363\) 2.38151e10i 1.37160i
\(364\) 0 0
\(365\) −5.23424e9 −0.294905
\(366\) 0 0
\(367\) −1.52175e10 + 8.78584e9i −0.838841 + 0.484305i −0.856870 0.515532i \(-0.827594\pi\)
0.0180288 + 0.999837i \(0.494261\pi\)
\(368\) 0 0
\(369\) 3.69959e10 + 2.13596e10i 1.99548 + 1.15209i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.49956e9 + 7.79346e9i −0.232453 + 0.402620i −0.958529 0.284994i \(-0.908008\pi\)
0.726077 + 0.687614i \(0.241342\pi\)
\(374\) 0 0
\(375\) −8.01925e9 1.38897e10i −0.405517 0.702375i
\(376\) 0 0
\(377\) 3.13291e10i 1.55090i
\(378\) 0 0
\(379\) 1.44215e10 0.698964 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(380\) 0 0
\(381\) −1.40558e10 + 8.11512e9i −0.667046 + 0.385119i
\(382\) 0 0
\(383\) −2.03270e10 1.17358e10i −0.944664 0.545402i −0.0532446 0.998581i \(-0.516956\pi\)
−0.891419 + 0.453180i \(0.850290\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.23467e10 2.13851e10i 0.550435 0.953381i
\(388\) 0 0
\(389\) −7.60413e9 1.31707e10i −0.332087 0.575191i 0.650834 0.759220i \(-0.274419\pi\)
−0.982921 + 0.184029i \(0.941086\pi\)
\(390\) 0 0
\(391\) 5.77994e9i 0.247296i
\(392\) 0 0
\(393\) −5.17212e10 −2.16820
\(394\) 0 0
\(395\) −7.18927e9 + 4.15073e9i −0.295322 + 0.170504i
\(396\) 0 0
\(397\) 2.14552e10 + 1.23872e10i 0.863717 + 0.498667i 0.865255 0.501332i \(-0.167156\pi\)
−0.00153819 + 0.999999i \(0.500490\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.16435e10 + 2.01672e10i −0.450305 + 0.779951i −0.998405 0.0564621i \(-0.982018\pi\)
0.548100 + 0.836413i \(0.315351\pi\)
\(402\) 0 0
\(403\) −3.19961e10 5.54189e10i −1.21305 2.10106i
\(404\) 0 0
\(405\) 4.28160e9i 0.159143i
\(406\) 0 0
\(407\) 1.00078e10 0.364720
\(408\) 0 0
\(409\) −3.81857e10 + 2.20465e10i −1.36461 + 0.787856i −0.990233 0.139422i \(-0.955476\pi\)
−0.374374 + 0.927278i \(0.622142\pi\)
\(410\) 0 0
\(411\) 6.74926e10 + 3.89669e10i 2.36532 + 1.36562i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.93304e9 + 5.08018e9i −0.0988839 + 0.171272i
\(416\) 0 0
\(417\) −1.46766e10 2.54206e10i −0.485380 0.840702i
\(418\) 0 0
\(419\) 1.28016e10i 0.415343i −0.978199 0.207672i \(-0.933411\pi\)
0.978199 0.207672i \(-0.0665886\pi\)
\(420\) 0 0
\(421\) −9.73575e8 −0.0309914 −0.0154957 0.999880i \(-0.504933\pi\)
−0.0154957 + 0.999880i \(0.504933\pi\)
\(422\) 0 0
\(423\) 3.38942e10 1.95688e10i 1.05868 0.611228i
\(424\) 0 0
\(425\) −6.49641e9 3.75070e9i −0.199121 0.114963i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.09673e10 + 1.89960e10i −0.323797 + 0.560832i
\(430\) 0 0
\(431\) −1.39835e10 2.42201e10i −0.405235 0.701887i 0.589114 0.808050i \(-0.299477\pi\)
−0.994349 + 0.106163i \(0.966143\pi\)
\(432\) 0 0
\(433\) 3.09448e10i 0.880310i −0.897922 0.440155i \(-0.854923\pi\)
0.897922 0.440155i \(-0.145077\pi\)
\(434\) 0 0
\(435\) −1.74047e10 −0.486083
\(436\) 0 0
\(437\) −1.65744e10 + 9.56924e9i −0.454478 + 0.262393i
\(438\) 0 0
\(439\) −1.08633e10 6.27191e9i −0.292484 0.168866i 0.346577 0.938021i \(-0.387344\pi\)
−0.639062 + 0.769156i \(0.720677\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.96973e10 3.41167e10i 0.511437 0.885835i −0.488475 0.872578i \(-0.662447\pi\)
0.999912 0.0132570i \(-0.00421996\pi\)
\(444\) 0 0
\(445\) −1.07439e9 1.86091e9i −0.0273983 0.0474552i
\(446\) 0 0
\(447\) 6.41068e10i 1.60573i
\(448\) 0 0
\(449\) 6.70984e10 1.65092 0.825462 0.564458i \(-0.190915\pi\)
0.825462 + 0.564458i \(0.190915\pi\)
\(450\) 0 0
\(451\) 1.97354e10 1.13942e10i 0.477023 0.275409i
\(452\) 0 0
\(453\) 4.50928e10 + 2.60343e10i 1.07082 + 0.618235i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.60678e10 4.51508e10i 0.597640 1.03514i −0.395528 0.918454i \(-0.629438\pi\)
0.993168 0.116690i \(-0.0372283\pi\)
\(458\) 0 0
\(459\) 2.70738e9 + 4.68933e9i 0.0609957 + 0.105648i
\(460\) 0 0
\(461\) 6.17475e9i 0.136715i −0.997661 0.0683574i \(-0.978224\pi\)
0.997661 0.0683574i \(-0.0217758\pi\)
\(462\) 0 0
\(463\) 1.26457e9 0.0275182 0.0137591 0.999905i \(-0.495620\pi\)
0.0137591 + 0.999905i \(0.495620\pi\)
\(464\) 0 0
\(465\) −3.07877e10 + 1.77753e10i −0.658515 + 0.380194i
\(466\) 0 0
\(467\) 1.58865e10 + 9.17206e9i 0.334010 + 0.192841i 0.657620 0.753350i \(-0.271563\pi\)
−0.323610 + 0.946191i \(0.604897\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.72447e10 4.71892e10i 0.553603 0.958868i
\(472\) 0 0
\(473\) −6.58630e9 1.14078e10i −0.131582 0.227907i
\(474\) 0 0
\(475\) 2.48386e10i 0.487924i
\(476\) 0 0
\(477\) −1.16930e11 −2.25867
\(478\) 0 0
\(479\) 7.31345e10 4.22243e10i 1.38925 0.802084i 0.396020 0.918242i \(-0.370391\pi\)
0.993231 + 0.116158i \(0.0370579\pi\)
\(480\) 0 0
\(481\) −7.20002e10 4.15694e10i −1.34510 0.776592i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.00213e10 + 1.73574e10i −0.181116 + 0.313702i
\(486\) 0 0
\(487\) 4.61531e10 + 7.99394e10i 0.820511 + 1.42117i 0.905302 + 0.424769i \(0.139645\pi\)
−0.0847905 + 0.996399i \(0.527022\pi\)
\(488\) 0 0
\(489\) 1.07900e11i 1.88706i
\(490\) 0 0
\(491\) 3.08704e10 0.531149 0.265574 0.964090i \(-0.414438\pi\)
0.265574 + 0.964090i \(0.414438\pi\)
\(492\) 0 0
\(493\) −1.46843e10 + 8.47799e9i −0.248580 + 0.143518i
\(494\) 0 0
\(495\) 6.00740e9 + 3.46838e9i 0.100061 + 0.0577704i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.90238e10 + 3.29501e10i −0.306828 + 0.531441i −0.977667 0.210162i \(-0.932601\pi\)
0.670839 + 0.741603i \(0.265934\pi\)
\(500\) 0 0
\(501\) 7.84842e10 + 1.35939e11i 1.24575 + 2.15770i
\(502\) 0 0
\(503\) 1.64419e10i 0.256850i −0.991719 0.128425i \(-0.959008\pi\)
0.991719 0.128425i \(-0.0409921\pi\)
\(504\) 0 0
\(505\) 1.11670e10 0.171700
\(506\) 0 0
\(507\) 7.06209e10 4.07730e10i 1.06881 0.617079i
\(508\) 0 0
\(509\) −1.65983e10 9.58304e9i −0.247282 0.142768i 0.371237 0.928538i \(-0.378934\pi\)
−0.618519 + 0.785770i \(0.712267\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.96467e9 + 1.55273e10i −0.129439 + 0.224195i
\(514\) 0 0
\(515\) −1.05005e10 1.81874e10i −0.149273 0.258549i
\(516\) 0 0
\(517\) 2.08779e10i 0.292230i
\(518\) 0 0
\(519\) 1.42396e11 1.96258
\(520\) 0 0
\(521\) −2.48583e10 + 1.43520e10i −0.337381 + 0.194787i −0.659113 0.752044i \(-0.729068\pi\)
0.321732 + 0.946831i \(0.395735\pi\)
\(522\) 0 0
\(523\) 6.28180e9 + 3.62680e9i 0.0839609 + 0.0484748i 0.541393 0.840770i \(-0.317897\pi\)
−0.457432 + 0.889245i \(0.651231\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.73170e10 + 2.99939e10i −0.224507 + 0.388858i
\(528\) 0 0
\(529\) 5.32724e8 + 9.22704e8i 0.00680267 + 0.0117826i
\(530\) 0 0
\(531\) 1.10249e11i 1.38674i
\(532\) 0 0
\(533\) −1.89313e11 −2.34570
\(534\) 0 0
\(535\) 1.46458e10 8.45575e9i 0.178771 0.103214i
\(536\) 0 0
\(537\) −1.60265e11 9.25292e10i −1.92727 1.11271i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.49646e10 6.05604e10i 0.408168 0.706968i −0.586516 0.809937i \(-0.699501\pi\)
0.994685 + 0.102970i \(0.0328344\pi\)
\(542\) 0 0
\(543\) 5.20625e10 + 9.01749e10i 0.598860 + 1.03726i
\(544\) 0 0
\(545\) 1.27452e10i 0.144464i
\(546\) 0 0
\(547\) 1.52716e11 1.70583 0.852913 0.522054i \(-0.174834\pi\)
0.852913 + 0.522054i \(0.174834\pi\)
\(548\) 0 0
\(549\) −1.83373e10 + 1.05870e10i −0.201858 + 0.116543i
\(550\) 0 0
\(551\) −4.86225e10 2.80722e10i −0.527511 0.304558i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.30936e10 + 3.99994e10i −0.243400 + 0.421581i
\(556\) 0 0
\(557\) −8.61047e9 1.49138e10i −0.0894553 0.154941i 0.817826 0.575466i \(-0.195179\pi\)
−0.907281 + 0.420525i \(0.861846\pi\)
\(558\) 0 0
\(559\) 1.09430e11i 1.12070i
\(560\) 0 0
\(561\) 1.18715e10 0.119855
\(562\) 0 0
\(563\) −2.95498e10 + 1.70606e10i −0.294118 + 0.169809i −0.639797 0.768544i \(-0.720982\pi\)
0.345680 + 0.938353i \(0.387648\pi\)
\(564\) 0 0
\(565\) 1.49302e10 + 8.61993e9i 0.146511 + 0.0845882i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.86901e10 + 8.43337e10i −0.464506 + 0.804549i −0.999179 0.0405106i \(-0.987102\pi\)
0.534673 + 0.845059i \(0.320435\pi\)
\(570\) 0 0
\(571\) −2.48222e10 4.29933e10i −0.233505 0.404442i 0.725332 0.688399i \(-0.241686\pi\)
−0.958837 + 0.283957i \(0.908353\pi\)
\(572\) 0 0
\(573\) 1.73611e11i 1.61049i
\(574\) 0 0
\(575\) 1.00252e11 0.917110
\(576\) 0 0
\(577\) −1.08670e11 + 6.27405e10i −0.980405 + 0.566037i −0.902392 0.430915i \(-0.858191\pi\)
−0.0780124 + 0.996952i \(0.524857\pi\)
\(578\) 0 0
\(579\) −1.62625e10 9.38916e9i −0.144702 0.0835435i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.11880e10 + 5.40192e10i −0.269969 + 0.467599i
\(584\) 0 0
\(585\) −2.88133e10 4.99061e10i −0.246019 0.426118i
\(586\) 0 0
\(587\) 1.19946e11i 1.01026i 0.863043 + 0.505130i \(0.168556\pi\)
−0.863043 + 0.505130i \(0.831444\pi\)
\(588\) 0 0
\(589\) −1.14680e11 −0.952852
\(590\) 0 0
\(591\) −1.74846e10 + 1.00947e10i −0.143319 + 0.0827455i
\(592\) 0 0
\(593\) −1.55033e11 8.95084e10i −1.25374 0.723844i −0.281886 0.959448i \(-0.590960\pi\)
−0.971849 + 0.235604i \(0.924293\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.36270e11 + 2.36026e11i −1.07276 + 1.85808i
\(598\) 0 0
\(599\) −5.45483e10 9.44805e10i −0.423715 0.733897i 0.572584 0.819846i \(-0.305941\pi\)
−0.996300 + 0.0859494i \(0.972608\pi\)
\(600\) 0 0
\(601\) 1.02458e11i 0.785325i −0.919683 0.392663i \(-0.871554\pi\)
0.919683 0.392663i \(-0.128446\pi\)
\(602\) 0 0
\(603\) 1.03788e11 0.785012
\(604\) 0 0
\(605\) −2.89045e10 + 1.66880e10i −0.215747 + 0.124562i
\(606\) 0 0
\(607\) 4.97148e10 + 2.87029e10i 0.366211 + 0.211432i 0.671802 0.740731i \(-0.265521\pi\)
−0.305591 + 0.952163i \(0.598854\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.67207e10 + 1.50205e11i −0.622240 + 1.07775i
\(612\) 0 0
\(613\) 7.03556e10 + 1.21860e11i 0.498261 + 0.863014i 0.999998 0.00200674i \(-0.000638766\pi\)
−0.501737 + 0.865020i \(0.667305\pi\)
\(614\) 0 0
\(615\) 1.05172e11i 0.735191i
\(616\) 0 0
\(617\) −2.78345e10 −0.192063 −0.0960313 0.995378i \(-0.530615\pi\)
−0.0960313 + 0.995378i \(0.530615\pi\)
\(618\) 0 0
\(619\) 5.33247e10 3.07870e10i 0.363217 0.209703i −0.307274 0.951621i \(-0.599417\pi\)
0.670491 + 0.741918i \(0.266084\pi\)
\(620\) 0 0
\(621\) −6.26701e10 3.61826e10i −0.421400 0.243295i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.92121e10 + 1.02558e11i −0.388053 + 0.672127i
\(626\) 0 0
\(627\) 1.96544e10 + 3.40425e10i 0.127172 + 0.220268i
\(628\) 0 0
\(629\) 4.49964e10i 0.287459i
\(630\) 0 0
\(631\) −1.98125e11 −1.24975 −0.624874 0.780726i \(-0.714850\pi\)
−0.624874 + 0.780726i \(0.714850\pi\)
\(632\) 0 0
\(633\) −3.59906e11 + 2.07792e11i −2.24169 + 1.29424i
\(634\) 0 0
\(635\) −1.96987e10 1.13731e10i −0.121156 0.0699492i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.91014e9 1.02367e10i 0.0354482 0.0613981i
\(640\) 0 0
\(641\) −7.76040e9 1.34414e10i −0.0459676 0.0796183i 0.842126 0.539281i \(-0.181304\pi\)
−0.888094 + 0.459662i \(0.847970\pi\)
\(642\) 0 0
\(643\) 2.33886e11i 1.36824i 0.729371 + 0.684118i \(0.239813\pi\)
−0.729371 + 0.684118i \(0.760187\pi\)
\(644\) 0 0
\(645\) 6.07935e10 0.351251
\(646\) 0 0
\(647\) 1.87182e11 1.08069e11i 1.06818 0.616716i 0.140499 0.990081i \(-0.455129\pi\)
0.927685 + 0.373364i \(0.121796\pi\)
\(648\) 0 0
\(649\) 5.09327e10 + 2.94060e10i 0.287090 + 0.165751i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.60346e11 2.77727e11i 0.881869 1.52744i 0.0326087 0.999468i \(-0.489618\pi\)
0.849261 0.527974i \(-0.177048\pi\)
\(654\) 0 0
\(655\) −3.62428e10 6.27744e10i −0.196905 0.341049i
\(656\) 0 0
\(657\) 2.62392e11i 1.40828i
\(658\) 0 0
\(659\) −9.25294e10 −0.490612 −0.245306 0.969446i \(-0.578888\pi\)
−0.245306 + 0.969446i \(0.578888\pi\)
\(660\) 0 0
\(661\) 8.25004e10 4.76316e10i 0.432166 0.249511i −0.268103 0.963390i \(-0.586397\pi\)
0.700269 + 0.713879i \(0.253063\pi\)
\(662\) 0 0
\(663\) −8.54090e10 4.93109e10i −0.442027 0.255205i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.13303e11 1.96247e11i 0.572452 0.991517i
\(668\) 0 0
\(669\) 7.29163e10 + 1.26295e11i 0.364016 + 0.630494i
\(670\) 0 0
\(671\) 1.12952e10i 0.0557192i
\(672\) 0 0
\(673\) 3.91328e11 1.90757 0.953787 0.300485i \(-0.0971485\pi\)
0.953787 + 0.300485i \(0.0971485\pi\)
\(674\) 0 0
\(675\) 8.13355e10 4.69590e10i 0.391800 0.226206i
\(676\) 0 0
\(677\) 9.24478e10 + 5.33748e10i 0.440091 + 0.254086i 0.703636 0.710561i \(-0.251559\pi\)
−0.263545 + 0.964647i \(0.584892\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.95996e10 1.03230e11i 0.277112 0.479971i
\(682\) 0 0
\(683\) 1.34438e11 + 2.32853e11i 0.617787 + 1.07004i 0.989889 + 0.141847i \(0.0453040\pi\)
−0.372101 + 0.928192i \(0.621363\pi\)
\(684\) 0 0
\(685\) 1.09222e11i 0.496074i
\(686\) 0 0
\(687\) 1.34147e11 0.602219
\(688\) 0 0
\(689\) 4.48761e11 2.59092e11i 1.99131 1.14968i
\(690\) 0 0
\(691\) −8.39256e10 4.84545e10i −0.368114 0.212531i 0.304520 0.952506i \(-0.401504\pi\)
−0.672634 + 0.739975i \(0.734837\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.05688e10 3.56262e10i 0.0881596 0.152697i
\(696\) 0 0
\(697\) 5.12302e10 + 8.87333e10i 0.217068 + 0.375972i
\(698\) 0 0
\(699\) 3.78348e11i 1.58483i
\(700\) 0 0
\(701\) −4.51079e11 −1.86802 −0.934008 0.357252i \(-0.883714\pi\)
−0.934008 + 0.357252i \(0.883714\pi\)
\(702\) 0 0
\(703\) −1.29031e11 + 7.44959e10i −0.528289 + 0.305008i
\(704\) 0 0
\(705\) 8.34455e10 + 4.81773e10i 0.337790 + 0.195023i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.09020e11 + 3.62033e11i −0.827184 + 1.43272i 0.0730544 + 0.997328i \(0.476725\pi\)
−0.900239 + 0.435397i \(0.856608\pi\)
\(710\) 0 0
\(711\) −2.08075e11 3.60397e11i −0.814221 1.41027i
\(712\) 0 0
\(713\) 4.62863e11i 1.79099i
\(714\) 0 0
\(715\) −3.07407e10 −0.117622
\(716\) 0 0
\(717\) 3.38649e10 1.95519e10i 0.128137 0.0739798i
\(718\) 0 0
\(719\) 1.81302e11 + 1.04674e11i 0.678400 + 0.391675i 0.799252 0.600996i \(-0.205229\pi\)
−0.120852 + 0.992671i \(0.538563\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.66587e11 6.34946e11i 1.34160 2.32372i
\(724\) 0 0
\(725\) 1.47049e11 + 2.54696e11i 0.532243 + 0.921872i
\(726\) 0 0
\(727\) 1.87662e11i 0.671797i −0.941898 0.335899i \(-0.890960\pi\)
0.941898 0.335899i \(-0.109040\pi\)
\(728\) 0 0
\(729\) 4.25469e11 1.50646
\(730\) 0 0
\(731\) 5.12912e10 2.96130e10i 0.179628 0.103708i
\(732\) 0 0
\(733\) 3.72577e11 + 2.15107e11i 1.29062 + 0.745143i 0.978765 0.204986i \(-0.0657148\pi\)
0.311860 + 0.950128i \(0.399048\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.76826e10 4.79477e10i 0.0938291 0.162517i
\(738\) 0 0
\(739\) 1.83158e11 + 3.17240e11i 0.614114 + 1.06368i 0.990539 + 0.137230i \(0.0438199\pi\)
−0.376425 + 0.926447i \(0.622847\pi\)
\(740\) 0 0
\(741\) 3.26555e11i 1.08314i
\(742\) 0 0
\(743\) −3.84706e11 −1.26233 −0.631166 0.775648i \(-0.717423\pi\)
−0.631166 + 0.775648i \(0.717423\pi\)
\(744\) 0 0
\(745\) −7.78068e10 + 4.49218e10i −0.252576 + 0.145825i
\(746\) 0 0
\(747\) −2.54669e11 1.47033e11i −0.817887 0.472207i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.28104e11 3.95088e11i 0.717090 1.24204i −0.245058 0.969508i \(-0.578807\pi\)
0.962148 0.272528i \(-0.0878597\pi\)
\(752\) 0 0
\(753\) −3.69889e11 6.40667e11i −1.15051 1.99275i
\(754\) 0 0
\(755\) 7.29726e10i 0.224580i
\(756\) 0 0
\(757\) −5.39134e11 −1.64177 −0.820886 0.571092i \(-0.806520\pi\)
−0.820886 + 0.571092i \(0.806520\pi\)
\(758\) 0 0
\(759\) −1.37400e11 + 7.93279e10i −0.414018 + 0.239034i
\(760\) 0 0
\(761\) −1.54194e11 8.90242e10i −0.459759 0.265442i 0.252184 0.967679i \(-0.418851\pi\)
−0.711943 + 0.702237i \(0.752185\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.55944e10 + 2.70102e10i −0.0455325 + 0.0788647i
\(766\) 0 0
\(767\) −2.44288e11 4.23119e11i −0.705864 1.22259i
\(768\) 0 0
\(769\) 3.25479e10i 0.0930717i −0.998917 0.0465358i \(-0.985182\pi\)
0.998917 0.0465358i \(-0.0148182\pi\)
\(770\) 0 0
\(771\) 2.75819e11 0.780562
\(772\) 0 0
\(773\) 6.46687e10 3.73365e10i 0.181124 0.104572i −0.406697 0.913563i \(-0.633319\pi\)
0.587821 + 0.808991i \(0.299986\pi\)
\(774\) 0 0
\(775\) 5.20238e11 + 3.00360e11i 1.44210 + 0.832597i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.69633e11 + 2.93813e11i −0.460639 + 0.797850i
\(780\) 0 0
\(781\) −3.15275e9 5.46072e9i −0.00847394 0.0146773i
\(782\) 0 0
\(783\) 2.12290e11i 0.564784i
\(784\) 0 0
\(785\) 7.63651e10 0.201102
\(786\) 0 0
\(787\) −3.52056e11 + 2.03260e11i −0.917727 + 0.529850i −0.882909 0.469544i \(-0.844418\pi\)
−0.0348175 + 0.999394i \(0.511085\pi\)
\(788\) 0 0
\(789\) 9.91934e11 + 5.72694e11i 2.55962 + 1.47780i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.69172e10 8.12629e10i 0.118642 0.205494i
\(794\) 0 0
\(795\) −1.43937e11 2.49307e11i −0.360334 0.624116i
\(796\) 0 0
\(797\) 7.13612e11i 1.76860i 0.466922 + 0.884298i \(0.345363\pi\)
−0.466922 + 0.884298i \(0.654637\pi\)
\(798\) 0 0
\(799\) 9.38702e10 0.230325
\(800\) 0 0
\(801\) 9.32870e10 5.38593e10i 0.226616 0.130837i
\(802\) 0 0
\(803\) −1.21220e11 6.99861e10i −0.291548 0.168325i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.45717e11 2.52390e11i 0.343571 0.595083i
\(808\) 0 0
\(809\) −4.01982e11 6.96254e11i −0.938454 1.62545i −0.768356 0.640022i \(-0.778925\pi\)
−0.170097 0.985427i \(-0.554408\pi\)
\(810\) 0 0
\(811\) 4.34692e11i 1.00484i 0.864623 + 0.502422i \(0.167557\pi\)
−0.864623 + 0.502422i \(0.832443\pi\)
\(812\) 0 0
\(813\) 2.84171e11 0.650454
\(814\) 0 0
\(815\) 1.30959e11 7.56093e10i 0.296828 0.171374i
\(816\) 0 0
\(817\) 1.69835e11 + 9.80543e10i 0.381188 + 0.220079i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.42253e11 + 2.46389e11i −0.313103 + 0.542311i −0.979033 0.203704i \(-0.934702\pi\)
0.665929 + 0.746015i \(0.268035\pi\)
\(822\) 0 0
\(823\) 1.77486e10 + 3.07414e10i 0.0386869 + 0.0670077i 0.884721 0.466122i \(-0.154349\pi\)
−0.846034 + 0.533130i \(0.821016\pi\)
\(824\) 0 0
\(825\) 2.05909e11i 0.444488i
\(826\) 0 0
\(827\) −8.15466e11 −1.74335 −0.871673 0.490087i \(-0.836965\pi\)
−0.871673 + 0.490087i \(0.836965\pi\)
\(828\) 0 0
\(829\) 5.67873e11 3.27861e11i 1.20236 0.694180i 0.241277 0.970456i \(-0.422434\pi\)
0.961078 + 0.276276i \(0.0891004\pi\)
\(830\) 0 0
\(831\) −9.45288e10 5.45762e10i −0.198226 0.114446i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.09993e11 + 1.90514e11i −0.226266 + 0.391904i
\(836\) 0 0
\(837\) −2.16810e11 3.75525e11i −0.441750 0.765134i
\(838\) 0 0
\(839\) 9.47661e10i 0.191252i 0.995417 + 0.0956258i \(0.0304852\pi\)
−0.995417 + 0.0956258i \(0.969515\pi\)
\(840\) 0 0
\(841\) 1.64524e11 0.328887
\(842\) 0 0
\(843\) −1.15834e12 + 6.68770e11i −2.29365 + 1.32424i
\(844\) 0 0
\(845\) 9.89728e10 + 5.71420e10i 0.194128 + 0.112080i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.60797e11 + 2.78508e11i −0.309490 + 0.536052i
\(850\) 0 0
\(851\) −3.00676e11 5.20785e11i −0.573297 0.992980i
\(852\) 0 0
\(853\) 9.59002e10i 0.181144i −0.995890 0.0905718i \(-0.971131\pi\)
0.995890 0.0905718i \(-0.0288695\pi\)
\(854\) 0 0
\(855\) −1.03272e11 −0.193249
\(856\) 0 0
\(857\) −3.26016e10 + 1.88226e10i −0.0604388 + 0.0348944i −0.529915 0.848051i \(-0.677776\pi\)
0.469476 + 0.882945i \(0.344443\pi\)
\(858\) 0 0
\(859\) 6.33374e11 + 3.65679e11i 1.16329 + 0.671625i 0.952090 0.305818i \(-0.0989298\pi\)
0.211199 + 0.977443i \(0.432263\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.07380e11 1.85987e11i 0.193588 0.335305i −0.752848 0.658194i \(-0.771321\pi\)
0.946437 + 0.322889i \(0.104654\pi\)
\(864\) 0 0
\(865\) 9.97815e10 + 1.72827e11i 0.178232 + 0.308707i
\(866\) 0 0
\(867\) 8.07549e11i 1.42920i
\(868\) 0 0
\(869\) −2.21995e11 −0.389281
\(870\) 0 0
\(871\) −3.98322e11 + 2.29971e11i −0.692089 + 0.399578i
\(872\) 0 0
\(873\) −8.70122e11 5.02365e11i −1.49804 0.864894i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.89034e11 3.27416e11i 0.319552 0.553480i −0.660843 0.750524i \(-0.729801\pi\)
0.980395 + 0.197044i \(0.0631343\pi\)
\(878\) 0 0
\(879\) 4.95765e11 + 8.58690e11i 0.830463 + 1.43840i
\(880\) 0 0
\(881\) 1.50034e11i 0.249050i 0.992216 + 0.124525i \(0.0397407\pi\)
−0.992216 + 0.124525i \(0.960259\pi\)
\(882\) 0 0
\(883\) −6.07752e11 −0.999733 −0.499866 0.866103i \(-0.666618\pi\)
−0.499866 + 0.866103i \(0.666618\pi\)
\(884\) 0 0
\(885\) −2.35062e11 + 1.35713e11i −0.383185 + 0.221232i
\(886\) 0 0
\(887\) −3.26886e11 1.88727e11i −0.528082 0.304888i 0.212153 0.977236i \(-0.431952\pi\)
−0.740235 + 0.672348i \(0.765286\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.72486e10 9.91575e10i 0.0908352 0.157331i
\(892\) 0 0
\(893\) 1.55411e11 + 2.69180e11i 0.244386 + 0.423289i
\(894\) 0 0
\(895\) 2.59353e11i 0.404203i
\(896\) 0 0
\(897\) 1.31802e12 2.03588
\(898\) 0 0
\(899\) 1.17593e12 6.78925e11i 1.80029 1.03940i
\(900\) 0 0
\(901\) −2.42879e11 1.40226e11i −0.368545 0.212779i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.29639e10 + 1.26377e11i −0.108771 + 0.188397i
\(906\) 0 0
\(907\) 2.04500e11 + 3.54205e11i 0.302179 + 0.523390i 0.976629 0.214931i \(-0.0689525\pi\)
−0.674450 + 0.738321i \(0.735619\pi\)
\(908\) 0 0
\(909\) 5.59800e11i 0.819930i
\(910\) 0 0
\(911\) −4.33314e11 −0.629115 −0.314557 0.949239i \(-0.601856\pi\)
−0.314557 + 0.949239i \(0.601856\pi\)
\(912\) 0 0
\(913\) −1.35852e11 + 7.84344e10i −0.195517 + 0.112882i
\(914\) 0 0
\(915\) −4.51452e10 2.60646e10i −0.0644061 0.0371849i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.35099e11 + 1.10002e12i −0.890389 + 1.54220i −0.0509790 + 0.998700i \(0.516234\pi\)
−0.839410 + 0.543499i \(0.817099\pi\)
\(920\) 0 0
\(921\) 3.95260e11 + 6.84611e11i 0.549344 + 0.951492i
\(922\) 0 0
\(923\) 5.23825e10i 0.0721737i
\(924\) 0 0
\(925\) 7.80454e11 1.06606
\(926\) 0 0
\(927\) 9.11733e11 5.26389e11i 1.23466 0.712834i
\(928\) 0 0
\(929\) 1.79688e10 + 1.03743e10i 0.0241244 + 0.0139282i 0.512014 0.858977i \(-0.328900\pi\)
−0.487889 + 0.872906i \(0.662233\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.11112e11 1.05848e12i 0.806481 1.39687i
\(934\) 0 0
\(935\) 8.31877e9 + 1.44085e10i 0.0108846 + 0.0188527i
\(936\) 0 0
\(937\) 2.21313e11i 0.287111i 0.989642 + 0.143555i \(0.0458535\pi\)
−0.989642 + 0.143555i \(0.954146\pi\)
\(938\) 0 0
\(939\) 1.58933e12 2.04434
\(940\) 0 0
\(941\) 6.98331e11 4.03182e11i 0.890642 0.514212i 0.0164894 0.999864i \(-0.494751\pi\)
0.874152 + 0.485652i \(0.161418\pi\)
\(942\) 0 0
\(943\) −1.18587e12 6.84662e11i −1.49965 0.865824i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.63382e10 + 1.66863e11i −0.119784 + 0.207472i −0.919682 0.392664i \(-0.871554\pi\)
0.799898 + 0.600136i \(0.204887\pi\)
\(948\) 0 0
\(949\) 5.81405e11 + 1.00702e12i 0.716826 + 1.24158i
\(950\) 0 0
\(951\) 6.05973e11i 0.740851i
\(952\) 0 0
\(953\) −1.09675e12 −1.32965 −0.664823 0.747000i \(-0.731493\pi\)
−0.664823 + 0.747000i \(0.731493\pi\)
\(954\) 0 0
\(955\) −2.10713e11 + 1.21655e11i −0.253324 + 0.146257i
\(956\) 0 0
\(957\) −4.03075e11 2.32716e11i −0.480550 0.277445i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.60314e11 1.66331e12i 1.12595 1.95021i
\(962\) 0 0
\(963\) 4.23886e11 + 7.34191e11i 0.492883 + 0.853698i
\(964\) 0 0
\(965\) 2.63172e10i 0.0303480i
\(966\) 0 0
\(967\) 4.69070e10 0.0536453 0.0268226 0.999640i \(-0.491461\pi\)
0.0268226 + 0.999640i \(0.491461\pi\)
\(968\) 0 0
\(969\) −1.53060e11 + 8.83694e10i −0.173607 + 0.100232i
\(970\) 0 0
\(971\) −7.66248e11 4.42394e11i −0.861971 0.497659i 0.00270091 0.999996i \(-0.499140\pi\)
−0.864672 + 0.502337i \(0.832474\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −8.55287e11 + 1.48140e12i −0.946441 + 1.63928i
\(976\) 0 0
\(977\) 2.68415e11 + 4.64908e11i 0.294597 + 0.510257i 0.974891 0.222682i \(-0.0714813\pi\)
−0.680294 + 0.732939i \(0.738148\pi\)
\(978\) 0 0
\(979\) 5.74622e10i 0.0625534i
\(980\) 0 0
\(981\) −6.38915e11 −0.689870
\(982\) 0 0
\(983\) 4.96400e11 2.86597e11i 0.531640 0.306943i −0.210044 0.977692i \(-0.567361\pi\)
0.741684 + 0.670749i \(0.234027\pi\)
\(984\) 0 0
\(985\) −2.45040e10 1.41474e10i −0.0260311 0.0150291i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.95761e11 + 6.85478e11i −0.413664 + 0.716487i
\(990\) 0 0
\(991\) 3.54723e11 + 6.14399e11i 0.367786 + 0.637024i 0.989219 0.146443i \(-0.0467826\pi\)
−0.621433 + 0.783467i \(0.713449\pi\)
\(992\) 0 0
\(993\) 2.61059e12i 2.68499i
\(994\) 0 0
\(995\) −3.81956e11 −0.389691
\(996\) 0 0
\(997\) −1.00436e12 + 5.79868e11i −1.01650 + 0.586879i −0.913089 0.407759i \(-0.866310\pi\)
−0.103415 + 0.994638i \(0.532977\pi\)
\(998\) 0 0
\(999\) −4.87882e11 2.81679e11i −0.489839 0.282809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.c.117.3 32
7.2 even 3 196.9.b.b.97.3 16
7.3 odd 6 inner 196.9.h.c.129.3 32
7.4 even 3 inner 196.9.h.c.129.14 32
7.5 odd 6 196.9.b.b.97.14 yes 16
7.6 odd 2 inner 196.9.h.c.117.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.9.b.b.97.3 16 7.2 even 3
196.9.b.b.97.14 yes 16 7.5 odd 6
196.9.h.c.117.3 32 1.1 even 1 trivial
196.9.h.c.117.14 32 7.6 odd 2 inner
196.9.h.c.129.3 32 7.3 odd 6 inner
196.9.h.c.129.14 32 7.4 even 3 inner