Properties

Label 196.9.h.b.117.5
Level $196$
Weight $9$
Character 196.117
Analytic conductor $79.846$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 720x^{10} + 409912x^{8} + 71803008x^{6} + 9498639424x^{4} + 342190245888x^{2} + 9948826238976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{7}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 117.5
Root \(-6.26546 + 10.8521i\) of defining polynomial
Character \(\chi\) \(=\) 196.117
Dual form 196.9.h.b.129.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(67.7219 - 39.0993i) q^{3} +(594.021 + 342.958i) q^{5} +(-222.993 + 386.236i) q^{9} +(-12258.7 - 21232.7i) q^{11} -275.445i q^{13} +53637.7 q^{15} +(-133739. + 77214.5i) q^{17} +(9691.07 + 5595.14i) q^{19} +(-142793. + 247324. i) q^{23} +(39928.0 + 69157.3i) q^{25} +547936. i q^{27} -266410. q^{29} +(-1.28048e6 + 739287. i) q^{31} +(-1.66037e6 - 958612. i) q^{33} +(1.24589e6 - 2.15795e6i) q^{37} +(-10769.7 - 18653.7i) q^{39} -708210. i q^{41} -1.28062e6 q^{43} +(-264925. + 152955. i) q^{45} +(-1.44828e6 - 836165. i) q^{47} +(-6.03806e6 + 1.04582e7i) q^{51} +(980232. + 1.69781e6i) q^{53} -1.68169e7i q^{55} +875064. q^{57} +(-1.09884e7 + 6.34416e6i) q^{59} +(4.25289e6 + 2.45541e6i) q^{61} +(94466.2 - 163620. i) q^{65} +(-1.33945e7 - 2.31999e7i) q^{67} +2.23323e7i q^{69} -5.66931e6 q^{71} +(3.59285e7 - 2.07433e7i) q^{73} +(5.40800e6 + 3.12231e6i) q^{75} +(-1.42627e7 + 2.47037e7i) q^{79} +(1.99608e7 + 3.45732e7i) q^{81} +6.35086e7i q^{83} -1.05925e8 q^{85} +(-1.80418e7 + 1.04164e7i) q^{87} +(-1.00789e7 - 5.81903e6i) q^{89} +(-5.78112e7 + 1.00132e8i) q^{93} +(3.83780e6 + 6.64726e6i) q^{95} -8.14742e6i q^{97} +1.09344e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18234 q^{9} - 24492 q^{11} - 306816 q^{15} + 11604 q^{23} + 678714 q^{25} + 2528664 q^{29} - 3184332 q^{37} - 5634240 q^{39} - 15566760 q^{43} - 6877824 q^{51} + 8340660 q^{53} - 35901696 q^{57}+ \cdots - 1191795624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 67.7219 39.0993i 0.836073 0.482707i −0.0198543 0.999803i \(-0.506320\pi\)
0.855928 + 0.517096i \(0.172987\pi\)
\(4\) 0 0
\(5\) 594.021 + 342.958i 0.950433 + 0.548733i 0.893216 0.449629i \(-0.148444\pi\)
0.0572178 + 0.998362i \(0.481777\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −222.993 + 386.236i −0.0339877 + 0.0588685i
\(10\) 0 0
\(11\) −12258.7 21232.7i −0.837286 1.45022i −0.892156 0.451728i \(-0.850808\pi\)
0.0548702 0.998493i \(-0.482526\pi\)
\(12\) 0 0
\(13\) 275.445i 0.00964410i −0.999988 0.00482205i \(-0.998465\pi\)
0.999988 0.00482205i \(-0.00153491\pi\)
\(14\) 0 0
\(15\) 53637.7 1.05951
\(16\) 0 0
\(17\) −133739. + 77214.5i −1.60127 + 0.924492i −0.610033 + 0.792376i \(0.708844\pi\)
−0.991234 + 0.132116i \(0.957823\pi\)
\(18\) 0 0
\(19\) 9691.07 + 5595.14i 0.0743631 + 0.0429336i 0.536721 0.843760i \(-0.319663\pi\)
−0.462357 + 0.886694i \(0.652996\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −142793. + 247324.i −0.510263 + 0.883802i 0.489666 + 0.871910i \(0.337119\pi\)
−0.999929 + 0.0118918i \(0.996215\pi\)
\(24\) 0 0
\(25\) 39928.0 + 69157.3i 0.102216 + 0.177043i
\(26\) 0 0
\(27\) 547936.i 1.03104i
\(28\) 0 0
\(29\) −266410. −0.376668 −0.188334 0.982105i \(-0.560309\pi\)
−0.188334 + 0.982105i \(0.560309\pi\)
\(30\) 0 0
\(31\) −1.28048e6 + 739287.i −1.38652 + 0.800510i −0.992922 0.118771i \(-0.962104\pi\)
−0.393602 + 0.919281i \(0.628771\pi\)
\(32\) 0 0
\(33\) −1.66037e6 958612.i −1.40006 0.808327i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.24589e6 2.15795e6i 0.664774 1.15142i −0.314572 0.949234i \(-0.601861\pi\)
0.979346 0.202189i \(-0.0648056\pi\)
\(38\) 0 0
\(39\) −10769.7 18653.7i −0.00465528 0.00806318i
\(40\) 0 0
\(41\) 708210.i 0.250626i −0.992117 0.125313i \(-0.960006\pi\)
0.992117 0.125313i \(-0.0399936\pi\)
\(42\) 0 0
\(43\) −1.28062e6 −0.374582 −0.187291 0.982304i \(-0.559971\pi\)
−0.187291 + 0.982304i \(0.559971\pi\)
\(44\) 0 0
\(45\) −264925. + 152955.i −0.0646061 + 0.0373004i
\(46\) 0 0
\(47\) −1.44828e6 836165.i −0.296798 0.171356i 0.344205 0.938894i \(-0.388148\pi\)
−0.641004 + 0.767538i \(0.721482\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −6.03806e6 + 1.04582e7i −0.892518 + 1.54589i
\(52\) 0 0
\(53\) 980232. + 1.69781e6i 0.124230 + 0.215172i 0.921432 0.388541i \(-0.127021\pi\)
−0.797202 + 0.603713i \(0.793687\pi\)
\(54\) 0 0
\(55\) 1.68169e7i 1.83778i
\(56\) 0 0
\(57\) 875064. 0.0828973
\(58\) 0 0
\(59\) −1.09884e7 + 6.34416e6i −0.906831 + 0.523559i −0.879410 0.476065i \(-0.842063\pi\)
−0.0274209 + 0.999624i \(0.508729\pi\)
\(60\) 0 0
\(61\) 4.25289e6 + 2.45541e6i 0.307160 + 0.177339i 0.645655 0.763629i \(-0.276584\pi\)
−0.338495 + 0.940968i \(0.609918\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 94466.2 163620.i 0.00529204 0.00916608i
\(66\) 0 0
\(67\) −1.33945e7 2.31999e7i −0.664701 1.15130i −0.979366 0.202093i \(-0.935226\pi\)
0.314666 0.949203i \(-0.398108\pi\)
\(68\) 0 0
\(69\) 2.23323e7i 0.985231i
\(70\) 0 0
\(71\) −5.66931e6 −0.223098 −0.111549 0.993759i \(-0.535581\pi\)
−0.111549 + 0.993759i \(0.535581\pi\)
\(72\) 0 0
\(73\) 3.59285e7 2.07433e7i 1.26517 0.730444i 0.291097 0.956694i \(-0.405980\pi\)
0.974069 + 0.226249i \(0.0726464\pi\)
\(74\) 0 0
\(75\) 5.40800e6 + 3.12231e6i 0.170920 + 0.0986805i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.42627e7 + 2.47037e7i −0.366178 + 0.634239i −0.988964 0.148153i \(-0.952667\pi\)
0.622786 + 0.782392i \(0.286001\pi\)
\(80\) 0 0
\(81\) 1.99608e7 + 3.45732e7i 0.463702 + 0.803155i
\(82\) 0 0
\(83\) 6.35086e7i 1.33820i 0.743173 + 0.669099i \(0.233320\pi\)
−0.743173 + 0.669099i \(0.766680\pi\)
\(84\) 0 0
\(85\) −1.05925e8 −2.02920
\(86\) 0 0
\(87\) −1.80418e7 + 1.04164e7i −0.314922 + 0.181820i
\(88\) 0 0
\(89\) −1.00789e7 5.81903e6i −0.160639 0.0927451i 0.417525 0.908665i \(-0.362897\pi\)
−0.578165 + 0.815920i \(0.696231\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.78112e7 + 1.00132e8i −0.772823 + 1.33857i
\(94\) 0 0
\(95\) 3.83780e6 + 6.64726e6i 0.0471181 + 0.0816110i
\(96\) 0 0
\(97\) 8.14742e6i 0.0920308i −0.998941 0.0460154i \(-0.985348\pi\)
0.998941 0.0460154i \(-0.0146523\pi\)
\(98\) 0 0
\(99\) 1.09344e7 0.113830
\(100\) 0 0
\(101\) 1.37112e8 7.91615e7i 1.31762 0.760727i 0.334273 0.942476i \(-0.391509\pi\)
0.983345 + 0.181750i \(0.0581760\pi\)
\(102\) 0 0
\(103\) 1.07837e8 + 6.22600e7i 0.958122 + 0.553172i 0.895594 0.444871i \(-0.146751\pi\)
0.0625273 + 0.998043i \(0.480084\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.60979e7 + 1.31805e8i −0.580547 + 1.00554i 0.414867 + 0.909882i \(0.363828\pi\)
−0.995415 + 0.0956552i \(0.969505\pi\)
\(108\) 0 0
\(109\) −1.33605e8 2.31411e8i −0.946492 1.63937i −0.752735 0.658323i \(-0.771266\pi\)
−0.193757 0.981050i \(-0.562067\pi\)
\(110\) 0 0
\(111\) 1.94854e8i 1.28356i
\(112\) 0 0
\(113\) −1.04288e8 −0.639619 −0.319809 0.947482i \(-0.603619\pi\)
−0.319809 + 0.947482i \(0.603619\pi\)
\(114\) 0 0
\(115\) −1.69644e8 + 9.79437e7i −0.969942 + 0.559997i
\(116\) 0 0
\(117\) 106387. + 61422.5i 0.000567733 + 0.000327781i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.93372e8 + 3.34930e8i −0.902095 + 1.56247i
\(122\) 0 0
\(123\) −2.76905e7 4.79614e7i −0.120979 0.209542i
\(124\) 0 0
\(125\) 2.13161e8i 0.873109i
\(126\) 0 0
\(127\) −4.31517e8 −1.65876 −0.829380 0.558685i \(-0.811306\pi\)
−0.829380 + 0.558685i \(0.811306\pi\)
\(128\) 0 0
\(129\) −8.67262e7 + 5.00714e7i −0.313178 + 0.180813i
\(130\) 0 0
\(131\) −3.37412e8 1.94805e8i −1.14571 0.661478i −0.197874 0.980227i \(-0.563404\pi\)
−0.947839 + 0.318750i \(0.896737\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.87919e8 + 3.25486e8i −0.565765 + 0.979934i
\(136\) 0 0
\(137\) 2.21893e8 + 3.84330e8i 0.629886 + 1.09099i 0.987574 + 0.157153i \(0.0502317\pi\)
−0.357688 + 0.933841i \(0.616435\pi\)
\(138\) 0 0
\(139\) 5.79636e8i 1.55273i 0.630283 + 0.776366i \(0.282939\pi\)
−0.630283 + 0.776366i \(0.717061\pi\)
\(140\) 0 0
\(141\) −1.30774e8 −0.330860
\(142\) 0 0
\(143\) −5.84844e6 + 3.37660e6i −0.0139861 + 0.00807487i
\(144\) 0 0
\(145\) −1.58253e8 9.13675e7i −0.357998 0.206690i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.06244e7 + 1.05005e8i −0.122999 + 0.213041i −0.920949 0.389683i \(-0.872585\pi\)
0.797950 + 0.602724i \(0.205918\pi\)
\(150\) 0 0
\(151\) −9.42994e7 1.63331e8i −0.181385 0.314168i 0.760967 0.648790i \(-0.224725\pi\)
−0.942352 + 0.334622i \(0.891391\pi\)
\(152\) 0 0
\(153\) 6.88733e7i 0.125685i
\(154\) 0 0
\(155\) −1.01418e9 −1.75706
\(156\) 0 0
\(157\) −6.60437e8 + 3.81304e8i −1.08701 + 0.627584i −0.932778 0.360451i \(-0.882623\pi\)
−0.154230 + 0.988035i \(0.549290\pi\)
\(158\) 0 0
\(159\) 1.32766e8 + 7.66528e7i 0.207730 + 0.119933i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.23425e8 + 5.60189e8i −0.458167 + 0.793569i −0.998864 0.0476488i \(-0.984827\pi\)
0.540697 + 0.841217i \(0.318161\pi\)
\(164\) 0 0
\(165\) −6.57528e8 1.13887e9i −0.887112 1.53652i
\(166\) 0 0
\(167\) 5.45334e8i 0.701126i 0.936539 + 0.350563i \(0.114010\pi\)
−0.936539 + 0.350563i \(0.885990\pi\)
\(168\) 0 0
\(169\) 8.15655e8 0.999907
\(170\) 0 0
\(171\) −4.32209e6 + 2.49536e6i −0.00505486 + 0.00291843i
\(172\) 0 0
\(173\) −5.23771e8 3.02400e8i −0.584733 0.337596i 0.178279 0.983980i \(-0.442947\pi\)
−0.763012 + 0.646384i \(0.776280\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.96104e8 + 8.59277e8i −0.505451 + 0.875468i
\(178\) 0 0
\(179\) 1.53940e8 + 2.66632e8i 0.149947 + 0.259717i 0.931208 0.364489i \(-0.118756\pi\)
−0.781260 + 0.624205i \(0.785423\pi\)
\(180\) 0 0
\(181\) 1.25107e9i 1.16565i −0.812598 0.582824i \(-0.801948\pi\)
0.812598 0.582824i \(-0.198052\pi\)
\(182\) 0 0
\(183\) 3.84018e8 0.342411
\(184\) 0 0
\(185\) 1.48017e9 8.54579e8i 1.26365 0.729567i
\(186\) 0 0
\(187\) 3.27894e9 + 1.89310e9i 2.68144 + 1.54813i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.34642e8 5.79616e8i 0.251447 0.435519i −0.712477 0.701695i \(-0.752427\pi\)
0.963924 + 0.266176i \(0.0857602\pi\)
\(192\) 0 0
\(193\) 7.39705e8 + 1.28121e9i 0.533125 + 0.923400i 0.999252 + 0.0386815i \(0.0123158\pi\)
−0.466127 + 0.884718i \(0.654351\pi\)
\(194\) 0 0
\(195\) 1.47742e7i 0.0102180i
\(196\) 0 0
\(197\) −1.47444e9 −0.978954 −0.489477 0.872016i \(-0.662812\pi\)
−0.489477 + 0.872016i \(0.662812\pi\)
\(198\) 0 0
\(199\) 1.90002e9 1.09698e9i 1.21156 0.699495i 0.248462 0.968642i \(-0.420075\pi\)
0.963099 + 0.269146i \(0.0867415\pi\)
\(200\) 0 0
\(201\) −1.81420e9 1.04743e9i −1.11148 0.641711i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.42886e8 4.20692e8i 0.137527 0.238204i
\(206\) 0 0
\(207\) −6.36836e7 1.10303e8i −0.0346854 0.0600768i
\(208\) 0 0
\(209\) 2.74357e8i 0.143791i
\(210\) 0 0
\(211\) 1.88972e9 0.953382 0.476691 0.879071i \(-0.341836\pi\)
0.476691 + 0.879071i \(0.341836\pi\)
\(212\) 0 0
\(213\) −3.83936e8 + 2.21666e8i −0.186527 + 0.107691i
\(214\) 0 0
\(215\) −7.60716e8 4.39200e8i −0.356015 0.205546i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.62210e9 2.80956e9i 0.705181 1.22141i
\(220\) 0 0
\(221\) 2.12684e7 + 3.68379e7i 0.00891590 + 0.0154428i
\(222\) 0 0
\(223\) 1.22281e9i 0.494470i 0.968956 + 0.247235i \(0.0795220\pi\)
−0.968956 + 0.247235i \(0.920478\pi\)
\(224\) 0 0
\(225\) −3.56147e7 −0.0138963
\(226\) 0 0
\(227\) 2.98893e8 1.72566e8i 0.112567 0.0649908i −0.442659 0.896690i \(-0.645965\pi\)
0.555227 + 0.831699i \(0.312632\pi\)
\(228\) 0 0
\(229\) 6.62134e8 + 3.82283e8i 0.240771 + 0.139009i 0.615531 0.788113i \(-0.288942\pi\)
−0.374760 + 0.927122i \(0.622275\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.55495e9 4.42530e9i 0.866879 1.50148i 0.00170905 0.999999i \(-0.499456\pi\)
0.865170 0.501479i \(-0.167211\pi\)
\(234\) 0 0
\(235\) −5.73539e8 9.93399e8i −0.188058 0.325726i
\(236\) 0 0
\(237\) 2.23064e9i 0.707027i
\(238\) 0 0
\(239\) 2.77466e9 0.850391 0.425196 0.905101i \(-0.360205\pi\)
0.425196 + 0.905101i \(0.360205\pi\)
\(240\) 0 0
\(241\) −2.84196e9 + 1.64081e9i −0.842461 + 0.486395i −0.858100 0.513483i \(-0.828355\pi\)
0.0156390 + 0.999878i \(0.495022\pi\)
\(242\) 0 0
\(243\) −4.09795e8 2.36595e8i −0.117528 0.0678549i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.54116e6 2.66936e6i 0.000414056 0.000717165i
\(248\) 0 0
\(249\) 2.48314e9 + 4.30093e9i 0.645958 + 1.11883i
\(250\) 0 0
\(251\) 2.86848e9i 0.722697i −0.932431 0.361349i \(-0.882316\pi\)
0.932431 0.361349i \(-0.117684\pi\)
\(252\) 0 0
\(253\) 7.00180e9 1.70894
\(254\) 0 0
\(255\) −7.17347e9 + 4.14160e9i −1.69656 + 0.979508i
\(256\) 0 0
\(257\) −3.28758e9 1.89809e9i −0.753606 0.435095i 0.0733894 0.997303i \(-0.476618\pi\)
−0.826995 + 0.562209i \(0.809952\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.94077e7 1.02897e8i 0.0128021 0.0221739i
\(262\) 0 0
\(263\) −9.67855e8 1.67637e9i −0.202296 0.350387i 0.746972 0.664856i \(-0.231507\pi\)
−0.949268 + 0.314469i \(0.898174\pi\)
\(264\) 0 0
\(265\) 1.34471e9i 0.272676i
\(266\) 0 0
\(267\) −9.10080e8 −0.179075
\(268\) 0 0
\(269\) −2.62009e9 + 1.51271e9i −0.500389 + 0.288900i −0.728874 0.684648i \(-0.759956\pi\)
0.228485 + 0.973547i \(0.426623\pi\)
\(270\) 0 0
\(271\) −3.04991e8 1.76087e8i −0.0565471 0.0326475i 0.471460 0.881887i \(-0.343727\pi\)
−0.528007 + 0.849240i \(0.677061\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.78931e8 1.69556e9i 0.171168 0.296471i
\(276\) 0 0
\(277\) 3.44391e8 + 5.96503e8i 0.0584969 + 0.101320i 0.893791 0.448484i \(-0.148036\pi\)
−0.835294 + 0.549804i \(0.814703\pi\)
\(278\) 0 0
\(279\) 6.59425e8i 0.108830i
\(280\) 0 0
\(281\) 8.08996e9 1.29754 0.648771 0.760984i \(-0.275283\pi\)
0.648771 + 0.760984i \(0.275283\pi\)
\(282\) 0 0
\(283\) 3.05863e9 1.76590e9i 0.476849 0.275309i −0.242254 0.970213i \(-0.577887\pi\)
0.719102 + 0.694904i \(0.244553\pi\)
\(284\) 0 0
\(285\) 5.19806e8 + 3.00110e8i 0.0787884 + 0.0454885i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.43628e9 1.46121e10i 1.20937 2.09469i
\(290\) 0 0
\(291\) −3.18558e8 5.51759e8i −0.0444239 0.0769445i
\(292\) 0 0
\(293\) 8.15872e9i 1.10701i −0.832846 0.553505i \(-0.813290\pi\)
0.832846 0.553505i \(-0.186710\pi\)
\(294\) 0 0
\(295\) −8.70312e9 −1.14918
\(296\) 0 0
\(297\) 1.16342e10 6.71699e9i 1.49523 0.863274i
\(298\) 0 0
\(299\) 6.81242e7 + 3.93315e7i 0.00852348 + 0.00492103i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.19032e9 1.07219e10i 0.734417 1.27205i
\(304\) 0 0
\(305\) 1.68420e9 + 2.91712e9i 0.194623 + 0.337097i
\(306\) 0 0
\(307\) 3.48446e9i 0.392267i 0.980577 + 0.196134i \(0.0628387\pi\)
−0.980577 + 0.196134i \(0.937161\pi\)
\(308\) 0 0
\(309\) 9.73728e9 1.06808
\(310\) 0 0
\(311\) 7.16218e9 4.13509e9i 0.765603 0.442021i −0.0657008 0.997839i \(-0.520928\pi\)
0.831304 + 0.555818i \(0.187595\pi\)
\(312\) 0 0
\(313\) 9.69809e9 + 5.59920e9i 1.01044 + 0.583376i 0.911319 0.411700i \(-0.135065\pi\)
0.0991170 + 0.995076i \(0.468398\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.58253e9 + 1.48654e10i −0.849921 + 1.47211i 0.0313580 + 0.999508i \(0.490017\pi\)
−0.881278 + 0.472597i \(0.843317\pi\)
\(318\) 0 0
\(319\) 3.26584e9 + 5.65660e9i 0.315379 + 0.546252i
\(320\) 0 0
\(321\) 1.19015e10i 1.12094i
\(322\) 0 0
\(323\) −1.72810e9 −0.158767
\(324\) 0 0
\(325\) 1.90491e7 1.09980e7i 0.00170742 0.000985779i
\(326\) 0 0
\(327\) −1.80960e10 1.04477e10i −1.58267 0.913757i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.07141e9 + 3.58778e9i −0.172565 + 0.298892i −0.939316 0.343053i \(-0.888539\pi\)
0.766751 + 0.641945i \(0.221872\pi\)
\(332\) 0 0
\(333\) 5.55652e8 + 9.62418e8i 0.0451883 + 0.0782685i
\(334\) 0 0
\(335\) 1.83750e10i 1.45897i
\(336\) 0 0
\(337\) −1.40450e10 −1.08894 −0.544469 0.838781i \(-0.683269\pi\)
−0.544469 + 0.838781i \(0.683269\pi\)
\(338\) 0 0
\(339\) −7.06260e9 + 4.07759e9i −0.534768 + 0.308749i
\(340\) 0 0
\(341\) 3.13941e10 + 1.81254e10i 2.32183 + 1.34051i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.65906e9 + 1.32659e10i −0.540629 + 0.936396i
\(346\) 0 0
\(347\) −4.46784e9 7.73853e9i −0.308163 0.533753i 0.669798 0.742543i \(-0.266381\pi\)
−0.977960 + 0.208790i \(0.933047\pi\)
\(348\) 0 0
\(349\) 7.14294e9i 0.481477i 0.970590 + 0.240738i \(0.0773896\pi\)
−0.970590 + 0.240738i \(0.922610\pi\)
\(350\) 0 0
\(351\) 1.50926e8 0.00994344
\(352\) 0 0
\(353\) 1.09256e9 6.30789e8i 0.0703633 0.0406243i −0.464406 0.885623i \(-0.653732\pi\)
0.534769 + 0.844998i \(0.320399\pi\)
\(354\) 0 0
\(355\) −3.36769e9 1.94433e9i −0.212040 0.122421i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.16161e8 + 1.06722e9i −0.0370951 + 0.0642506i −0.883977 0.467531i \(-0.845144\pi\)
0.846882 + 0.531781i \(0.178477\pi\)
\(360\) 0 0
\(361\) −8.42917e9 1.45998e10i −0.496313 0.859640i
\(362\) 0 0
\(363\) 3.02428e10i 1.74179i
\(364\) 0 0
\(365\) 2.84564e10 1.60328
\(366\) 0 0
\(367\) 1.01355e10 5.85176e9i 0.558705 0.322569i −0.193920 0.981017i \(-0.562120\pi\)
0.752626 + 0.658449i \(0.228787\pi\)
\(368\) 0 0
\(369\) 2.73536e8 + 1.57926e8i 0.0147540 + 0.00851822i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.35740e9 + 1.10113e10i −0.328431 + 0.568860i −0.982201 0.187834i \(-0.939853\pi\)
0.653769 + 0.756694i \(0.273187\pi\)
\(374\) 0 0
\(375\) −8.33446e9 1.44357e10i −0.421456 0.729983i
\(376\) 0 0
\(377\) 7.33814e7i 0.00363262i
\(378\) 0 0
\(379\) −3.32897e10 −1.61344 −0.806720 0.590934i \(-0.798759\pi\)
−0.806720 + 0.590934i \(0.798759\pi\)
\(380\) 0 0
\(381\) −2.92232e10 + 1.68720e10i −1.38684 + 0.800695i
\(382\) 0 0
\(383\) −2.06925e10 1.19468e10i −0.961653 0.555210i −0.0649714 0.997887i \(-0.520696\pi\)
−0.896681 + 0.442677i \(0.854029\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.85570e8 4.94622e8i 0.0127312 0.0220511i
\(388\) 0 0
\(389\) 1.07117e10 + 1.85532e10i 0.467799 + 0.810251i 0.999323 0.0367921i \(-0.0117139\pi\)
−0.531524 + 0.847043i \(0.678381\pi\)
\(390\) 0 0
\(391\) 4.41026e10i 1.88694i
\(392\) 0 0
\(393\) −3.04670e10 −1.27720
\(394\) 0 0
\(395\) −1.69446e10 + 9.78299e9i −0.696056 + 0.401868i
\(396\) 0 0
\(397\) −3.18830e10 1.84077e10i −1.28351 0.741032i −0.306018 0.952026i \(-0.598997\pi\)
−0.977488 + 0.210993i \(0.932330\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.84595e10 + 3.19729e10i −0.713910 + 1.23653i 0.249468 + 0.968383i \(0.419744\pi\)
−0.963378 + 0.268146i \(0.913589\pi\)
\(402\) 0 0
\(403\) 2.03633e8 + 3.52703e8i 0.00772020 + 0.0133718i
\(404\) 0 0
\(405\) 2.73829e10i 1.01779i
\(406\) 0 0
\(407\) −6.10922e10 −2.22642
\(408\) 0 0
\(409\) 3.27839e10 1.89278e10i 1.17157 0.676405i 0.217519 0.976056i \(-0.430204\pi\)
0.954049 + 0.299651i \(0.0968702\pi\)
\(410\) 0 0
\(411\) 3.00541e10 + 1.73517e10i 1.05326 + 0.608101i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.17808e10 + 3.77254e10i −0.734313 + 1.27187i
\(416\) 0 0
\(417\) 2.26634e10 + 3.92541e10i 0.749515 + 1.29820i
\(418\) 0 0
\(419\) 1.32942e9i 0.0431326i 0.999767 + 0.0215663i \(0.00686529\pi\)
−0.999767 + 0.0215663i \(0.993135\pi\)
\(420\) 0 0
\(421\) 3.33376e10 1.06122 0.530611 0.847616i \(-0.321963\pi\)
0.530611 + 0.847616i \(0.321963\pi\)
\(422\) 0 0
\(423\) 6.45914e8 3.72919e8i 0.0201750 0.0116480i
\(424\) 0 0
\(425\) −1.06799e10 6.16604e9i −0.327349 0.188995i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.64045e8 + 4.57340e8i −0.00779559 + 0.0135024i
\(430\) 0 0
\(431\) −2.65259e10 4.59442e10i −0.768707 1.33144i −0.938265 0.345919i \(-0.887567\pi\)
0.169558 0.985520i \(-0.445766\pi\)
\(432\) 0 0
\(433\) 6.87668e10i 1.95626i −0.207990 0.978131i \(-0.566692\pi\)
0.207990 0.978131i \(-0.433308\pi\)
\(434\) 0 0
\(435\) −1.42896e10 −0.399083
\(436\) 0 0
\(437\) −2.76763e9 + 1.59789e9i −0.0758895 + 0.0438148i
\(438\) 0 0
\(439\) −5.25587e9 3.03448e9i −0.141510 0.0817007i 0.427574 0.903981i \(-0.359369\pi\)
−0.569083 + 0.822280i \(0.692702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.02667e10 + 1.77825e10i −0.266574 + 0.461720i −0.967975 0.251047i \(-0.919225\pi\)
0.701401 + 0.712767i \(0.252558\pi\)
\(444\) 0 0
\(445\) −3.99137e9 6.91325e9i −0.101785 0.176296i
\(446\) 0 0
\(447\) 9.48148e9i 0.237490i
\(448\) 0 0
\(449\) 8.27711e9 0.203654 0.101827 0.994802i \(-0.467531\pi\)
0.101827 + 0.994802i \(0.467531\pi\)
\(450\) 0 0
\(451\) −1.50372e10 + 8.68174e9i −0.363464 + 0.209846i
\(452\) 0 0
\(453\) −1.27723e10 7.37408e9i −0.303302 0.175112i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.14518e9 1.58399e10i 0.209666 0.363152i −0.741943 0.670462i \(-0.766096\pi\)
0.951609 + 0.307311i \(0.0994291\pi\)
\(458\) 0 0
\(459\) −4.23086e10 7.32807e10i −0.953187 1.65097i
\(460\) 0 0
\(461\) 1.74969e10i 0.387398i 0.981061 + 0.193699i \(0.0620485\pi\)
−0.981061 + 0.193699i \(0.937952\pi\)
\(462\) 0 0
\(463\) 1.40067e10 0.304797 0.152399 0.988319i \(-0.451300\pi\)
0.152399 + 0.988319i \(0.451300\pi\)
\(464\) 0 0
\(465\) −6.86821e10 + 3.96536e10i −1.46903 + 0.848147i
\(466\) 0 0
\(467\) 5.86513e10 + 3.38623e10i 1.23313 + 0.711950i 0.967682 0.252174i \(-0.0811456\pi\)
0.265452 + 0.964124i \(0.414479\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.98174e10 + 5.16452e10i −0.605879 + 1.04941i
\(472\) 0 0
\(473\) 1.56988e10 + 2.71910e10i 0.313632 + 0.543227i
\(474\) 0 0
\(475\) 8.93612e8i 0.0175539i
\(476\) 0 0
\(477\) −8.74342e8 −0.0168891
\(478\) 0 0
\(479\) 6.06493e10 3.50159e10i 1.15208 0.665156i 0.202689 0.979243i \(-0.435032\pi\)
0.949394 + 0.314087i \(0.101698\pi\)
\(480\) 0 0
\(481\) −5.94398e8 3.43176e8i −0.0111044 0.00641115i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.79422e9 4.83974e9i 0.0505003 0.0874692i
\(486\) 0 0
\(487\) 1.52789e10 + 2.64639e10i 0.271629 + 0.470476i 0.969279 0.245963i \(-0.0791042\pi\)
−0.697650 + 0.716439i \(0.745771\pi\)
\(488\) 0 0
\(489\) 5.05828e10i 0.884642i
\(490\) 0 0
\(491\) −7.30623e10 −1.25709 −0.628546 0.777772i \(-0.716350\pi\)
−0.628546 + 0.777772i \(0.716350\pi\)
\(492\) 0 0
\(493\) 3.56295e10 2.05707e10i 0.603146 0.348226i
\(494\) 0 0
\(495\) 6.49528e9 + 3.75005e9i 0.108188 + 0.0624621i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.23165e10 2.13328e10i 0.198649 0.344069i −0.749442 0.662070i \(-0.769678\pi\)
0.948090 + 0.318001i \(0.103011\pi\)
\(500\) 0 0
\(501\) 2.13221e10 + 3.69310e10i 0.338439 + 0.586193i
\(502\) 0 0
\(503\) 7.46256e10i 1.16578i 0.812552 + 0.582889i \(0.198078\pi\)
−0.812552 + 0.582889i \(0.801922\pi\)
\(504\) 0 0
\(505\) 1.08596e11 1.66974
\(506\) 0 0
\(507\) 5.52377e10 3.18915e10i 0.835995 0.482662i
\(508\) 0 0
\(509\) −2.11793e10 1.22279e10i −0.315530 0.182171i 0.333868 0.942620i \(-0.391646\pi\)
−0.649398 + 0.760448i \(0.724979\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.06578e9 + 5.31009e9i −0.0442662 + 0.0766712i
\(514\) 0 0
\(515\) 4.27051e10 + 7.39675e10i 0.607087 + 1.05151i
\(516\) 0 0
\(517\) 4.10012e10i 0.573897i
\(518\) 0 0
\(519\) −4.72944e10 −0.651839
\(520\) 0 0
\(521\) 5.17214e10 2.98613e10i 0.701971 0.405283i −0.106110 0.994354i \(-0.533840\pi\)
0.808081 + 0.589071i \(0.200506\pi\)
\(522\) 0 0
\(523\) 4.67456e9 + 2.69886e9i 0.0624790 + 0.0360723i 0.530914 0.847426i \(-0.321849\pi\)
−0.468435 + 0.883498i \(0.655182\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.14167e11 1.97744e11i 1.48013 2.56366i
\(528\) 0 0
\(529\) −1.62394e9 2.81275e9i −0.0207371 0.0359178i
\(530\) 0 0
\(531\) 5.65882e9i 0.0711783i
\(532\) 0 0
\(533\) −1.95073e8 −0.00241707
\(534\) 0 0
\(535\) −9.04075e10 + 5.21968e10i −1.10354 + 0.637131i
\(536\) 0 0
\(537\) 2.08502e10 + 1.20379e10i 0.250734 + 0.144761i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.88609e9 8.46295e9i 0.0570390 0.0987945i −0.836096 0.548583i \(-0.815167\pi\)
0.893135 + 0.449789i \(0.148501\pi\)
\(542\) 0 0
\(543\) −4.89160e10 8.47249e10i −0.562667 0.974567i
\(544\) 0 0
\(545\) 1.83284e11i 2.07749i
\(546\) 0 0
\(547\) 1.72001e10 0.192124 0.0960620 0.995375i \(-0.469375\pi\)
0.0960620 + 0.995375i \(0.469375\pi\)
\(548\) 0 0
\(549\) −1.89673e9 + 1.09508e9i −0.0208793 + 0.0120547i
\(550\) 0 0
\(551\) −2.58180e9 1.49060e9i −0.0280102 0.0161717i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.68268e10 1.15747e11i 0.704334 1.21994i
\(556\) 0 0
\(557\) 3.75938e10 + 6.51143e10i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(558\) 0 0
\(559\) 3.52741e8i 0.00361251i
\(560\) 0 0
\(561\) 2.96075e11 2.98917
\(562\) 0 0
\(563\) 4.79026e10 2.76566e10i 0.476788 0.275274i −0.242289 0.970204i \(-0.577898\pi\)
0.719077 + 0.694930i \(0.244565\pi\)
\(564\) 0 0
\(565\) −6.19493e10 3.57665e10i −0.607915 0.350980i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.49212e10 + 1.12447e11i −0.619352 + 1.07275i 0.370252 + 0.928931i \(0.379271\pi\)
−0.989604 + 0.143818i \(0.954062\pi\)
\(570\) 0 0
\(571\) −6.84703e10 1.18594e11i −0.644107 1.11563i −0.984507 0.175345i \(-0.943896\pi\)
0.340400 0.940281i \(-0.389437\pi\)
\(572\) 0 0
\(573\) 5.23370e10i 0.485501i
\(574\) 0 0
\(575\) −2.28057e10 −0.208628
\(576\) 0 0
\(577\) 5.08263e10 2.93446e10i 0.458548 0.264743i −0.252885 0.967496i \(-0.581380\pi\)
0.711434 + 0.702753i \(0.248046\pi\)
\(578\) 0 0
\(579\) 1.00188e11 + 5.78438e10i 0.891463 + 0.514686i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.40327e10 4.16259e10i 0.208032 0.360321i
\(584\) 0 0
\(585\) 4.21307e7 + 7.29725e7i 0.000359729 + 0.000623068i
\(586\) 0 0
\(587\) 6.05036e10i 0.509600i 0.966994 + 0.254800i \(0.0820096\pi\)
−0.966994 + 0.254800i \(0.917990\pi\)
\(588\) 0 0
\(589\) −1.65457e10 −0.137475
\(590\) 0 0
\(591\) −9.98520e10 + 5.76496e10i −0.818478 + 0.472548i
\(592\) 0 0
\(593\) 6.76283e9 + 3.90452e9i 0.0546902 + 0.0315754i 0.527096 0.849806i \(-0.323281\pi\)
−0.472406 + 0.881381i \(0.656614\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.57819e10 1.48579e11i 0.675303 1.16966i
\(598\) 0 0
\(599\) 1.03537e11 + 1.79332e11i 0.804247 + 1.39300i 0.916798 + 0.399350i \(0.130764\pi\)
−0.112552 + 0.993646i \(0.535902\pi\)
\(600\) 0 0
\(601\) 2.04173e11i 1.56495i −0.622680 0.782476i \(-0.713956\pi\)
0.622680 0.782476i \(-0.286044\pi\)
\(602\) 0 0
\(603\) 1.19475e10 0.0903666
\(604\) 0 0
\(605\) −2.29734e11 + 1.32637e11i −1.71476 + 0.990018i
\(606\) 0 0
\(607\) −6.20308e10 3.58135e10i −0.456933 0.263810i 0.253821 0.967251i \(-0.418313\pi\)
−0.710754 + 0.703441i \(0.751646\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.30318e8 + 3.98922e8i −0.00165258 + 0.00286235i
\(612\) 0 0
\(613\) 4.93732e10 + 8.55169e10i 0.349663 + 0.605634i 0.986189 0.165621i \(-0.0529628\pi\)
−0.636527 + 0.771255i \(0.719630\pi\)
\(614\) 0 0
\(615\) 3.79867e10i 0.265541i
\(616\) 0 0
\(617\) 2.68662e11 1.85381 0.926906 0.375294i \(-0.122458\pi\)
0.926906 + 0.375294i \(0.122458\pi\)
\(618\) 0 0
\(619\) −1.34653e11 + 7.77420e10i −0.917178 + 0.529533i −0.882734 0.469874i \(-0.844300\pi\)
−0.0344445 + 0.999407i \(0.510966\pi\)
\(620\) 0 0
\(621\) −1.35518e11 7.82412e10i −0.911234 0.526101i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 8.87023e10 1.53637e11i 0.581320 1.00688i
\(626\) 0 0
\(627\) −1.07271e10 1.85800e10i −0.0694087 0.120219i
\(628\) 0 0
\(629\) 3.84804e11i 2.45831i
\(630\) 0 0
\(631\) −1.48914e11 −0.939327 −0.469663 0.882846i \(-0.655625\pi\)
−0.469663 + 0.882846i \(0.655625\pi\)
\(632\) 0 0
\(633\) 1.27975e11 7.38866e10i 0.797097 0.460204i
\(634\) 0 0
\(635\) −2.56330e11 1.47992e11i −1.57654 0.910216i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.26422e9 2.18969e9i 0.00758261 0.0131335i
\(640\) 0 0
\(641\) 1.32267e10 + 2.29093e10i 0.0783463 + 0.135700i 0.902537 0.430613i \(-0.141703\pi\)
−0.824190 + 0.566313i \(0.808369\pi\)
\(642\) 0 0
\(643\) 1.31229e11i 0.767689i 0.923398 + 0.383845i \(0.125400\pi\)
−0.923398 + 0.383845i \(0.874600\pi\)
\(644\) 0 0
\(645\) −6.86895e10 −0.396873
\(646\) 0 0
\(647\) 5.00024e10 2.88689e10i 0.285347 0.164745i −0.350494 0.936565i \(-0.613986\pi\)
0.635842 + 0.771819i \(0.280653\pi\)
\(648\) 0 0
\(649\) 2.69407e11 + 1.55542e11i 1.51855 + 0.876737i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.86237e10 4.95778e10i 0.157425 0.272668i −0.776514 0.630099i \(-0.783014\pi\)
0.933939 + 0.357431i \(0.116347\pi\)
\(654\) 0 0
\(655\) −1.33620e11 2.31437e11i −0.725949 1.25738i
\(656\) 0 0
\(657\) 1.85025e10i 0.0993045i
\(658\) 0 0
\(659\) −7.42215e10 −0.393539 −0.196770 0.980450i \(-0.563045\pi\)
−0.196770 + 0.980450i \(0.563045\pi\)
\(660\) 0 0
\(661\) 2.04993e11 1.18353e11i 1.07382 0.619973i 0.144601 0.989490i \(-0.453810\pi\)
0.929224 + 0.369517i \(0.120477\pi\)
\(662\) 0 0
\(663\) 2.88067e9 + 1.66316e9i 0.0149087 + 0.00860753i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.80414e10 6.58896e10i 0.192200 0.332900i
\(668\) 0 0
\(669\) 4.78111e10 + 8.28112e10i 0.238684 + 0.413413i
\(670\) 0 0
\(671\) 1.20400e11i 0.593933i
\(672\) 0 0
\(673\) −3.95895e10 −0.192983 −0.0964917 0.995334i \(-0.530762\pi\)
−0.0964917 + 0.995334i \(0.530762\pi\)
\(674\) 0 0
\(675\) −3.78938e10 + 2.18780e10i −0.182538 + 0.105388i
\(676\) 0 0
\(677\) 8.58629e10 + 4.95730e10i 0.408743 + 0.235988i 0.690250 0.723571i \(-0.257501\pi\)
−0.281506 + 0.959559i \(0.590834\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.34944e10 2.33730e10i 0.0627430 0.108674i
\(682\) 0 0
\(683\) 5.00961e9 + 8.67690e9i 0.0230208 + 0.0398733i 0.877306 0.479931i \(-0.159338\pi\)
−0.854285 + 0.519804i \(0.826005\pi\)
\(684\) 0 0
\(685\) 3.04400e11i 1.38256i
\(686\) 0 0
\(687\) 5.97880e10 0.268403
\(688\) 0 0
\(689\) 4.67654e8 2.70000e8i 0.00207514 0.00119808i
\(690\) 0 0
\(691\) 7.96091e10 + 4.59623e10i 0.349181 + 0.201600i 0.664324 0.747444i \(-0.268719\pi\)
−0.315144 + 0.949044i \(0.602053\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.98791e11 + 3.44316e11i −0.852035 + 1.47577i
\(696\) 0 0
\(697\) 5.46841e10 + 9.47156e10i 0.231702 + 0.401320i
\(698\) 0 0
\(699\) 3.99586e11i 1.67379i
\(700\) 0 0
\(701\) 7.64528e10 0.316608 0.158304 0.987390i \(-0.449397\pi\)
0.158304 + 0.987390i \(0.449397\pi\)
\(702\) 0 0
\(703\) 2.41481e10 1.39419e10i 0.0988693 0.0570822i
\(704\) 0 0
\(705\) −7.76824e10 4.48499e10i −0.314460 0.181554i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.34054e10 + 1.44462e11i −0.330072 + 0.571702i −0.982526 0.186127i \(-0.940406\pi\)
0.652453 + 0.757829i \(0.273740\pi\)
\(710\) 0 0
\(711\) −6.36096e9 1.10175e10i −0.0248911 0.0431127i
\(712\) 0 0
\(713\) 4.22259e11i 1.63388i
\(714\) 0 0
\(715\) −4.63213e9 −0.0177238
\(716\) 0 0
\(717\) 1.87906e11 1.08487e11i 0.710989 0.410490i
\(718\) 0 0
\(719\) 3.84062e11 + 2.21738e11i 1.43710 + 0.829708i 0.997647 0.0685600i \(-0.0218405\pi\)
0.439449 + 0.898268i \(0.355174\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.28309e11 + 2.22237e11i −0.469573 + 0.813324i
\(724\) 0 0
\(725\) −1.06372e10 1.84242e10i −0.0385014 0.0666863i
\(726\) 0 0
\(727\) 1.75400e11i 0.627902i 0.949439 + 0.313951i \(0.101653\pi\)
−0.949439 + 0.313951i \(0.898347\pi\)
\(728\) 0 0
\(729\) −2.98929e11 −1.05842
\(730\) 0 0
\(731\) 1.71270e11 9.88826e10i 0.599806 0.346298i
\(732\) 0 0
\(733\) 4.03417e10 + 2.32913e10i 0.139746 + 0.0806823i 0.568243 0.822861i \(-0.307623\pi\)
−0.428497 + 0.903543i \(0.640957\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.28397e11 + 5.68801e11i −1.11309 + 1.92793i
\(738\) 0 0
\(739\) −1.77446e11 3.07346e11i −0.594962 1.03051i −0.993552 0.113376i \(-0.963834\pi\)
0.398590 0.917129i \(-0.369500\pi\)
\(740\) 0 0
\(741\) 2.41032e8i 0.000799470i
\(742\) 0 0
\(743\) −1.71203e11 −0.561767 −0.280884 0.959742i \(-0.590628\pi\)
−0.280884 + 0.959742i \(0.590628\pi\)
\(744\) 0 0
\(745\) −7.20243e10 + 4.15833e10i −0.233805 + 0.134988i
\(746\) 0 0
\(747\) −2.45293e10 1.41620e10i −0.0787776 0.0454823i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.68250e10 1.33065e11i 0.241514 0.418315i −0.719632 0.694356i \(-0.755689\pi\)
0.961146 + 0.276041i \(0.0890226\pi\)
\(752\) 0 0
\(753\) −1.12155e11 1.94259e11i −0.348851 0.604228i
\(754\) 0 0
\(755\) 1.29363e11i 0.398128i
\(756\) 0 0
\(757\) −7.15192e10 −0.217791 −0.108895 0.994053i \(-0.534731\pi\)
−0.108895 + 0.994053i \(0.534731\pi\)
\(758\) 0 0
\(759\) 4.74176e11 2.73765e11i 1.42880 0.824920i
\(760\) 0 0
\(761\) −2.84305e10 1.64144e10i −0.0847707 0.0489424i 0.457015 0.889459i \(-0.348918\pi\)
−0.541786 + 0.840516i \(0.682252\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.36207e10 4.09122e10i 0.0689678 0.119456i
\(766\) 0 0
\(767\) 1.74747e9 + 3.02670e9i 0.00504926 + 0.00874557i
\(768\) 0 0
\(769\) 3.53063e11i 1.00960i 0.863238 + 0.504798i \(0.168433\pi\)
−0.863238 + 0.504798i \(0.831567\pi\)
\(770\) 0 0
\(771\) −2.96855e11 −0.840093
\(772\) 0 0
\(773\) −4.97675e11 + 2.87333e11i −1.39389 + 0.804762i −0.993743 0.111689i \(-0.964374\pi\)
−0.400146 + 0.916452i \(0.631040\pi\)
\(774\) 0 0
\(775\) −1.02254e11 5.90366e10i −0.283449 0.163649i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.96254e9 6.86332e9i 0.0107603 0.0186373i
\(780\) 0 0
\(781\) 6.94983e10 + 1.20375e11i 0.186797 + 0.323542i
\(782\) 0 0
\(783\) 1.45976e11i 0.388359i
\(784\) 0 0
\(785\) −5.23085e11 −1.37751
\(786\) 0 0
\(787\) −3.50120e11 + 2.02142e11i −0.912680 + 0.526936i −0.881292 0.472571i \(-0.843326\pi\)
−0.0313876 + 0.999507i \(0.509993\pi\)
\(788\) 0 0
\(789\) −1.31090e11 7.56849e10i −0.338269 0.195300i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.76330e8 1.17144e9i 0.00171027 0.00296228i
\(794\) 0 0
\(795\) 5.25774e10 + 9.10667e10i 0.131623 + 0.227977i
\(796\) 0 0
\(797\) 1.43229e11i 0.354975i 0.984123 + 0.177488i \(0.0567969\pi\)
−0.984123 + 0.177488i \(0.943203\pi\)
\(798\) 0 0
\(799\) 2.58256e11 0.633671
\(800\) 0 0
\(801\) 4.49504e9 2.59521e9i 0.0109195 0.00630439i
\(802\) 0 0
\(803\) −8.80873e11 5.08572e11i −2.11861 1.22318i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.18292e11 + 2.04888e11i −0.278908 + 0.483083i
\(808\) 0 0
\(809\) 1.64053e10 + 2.84147e10i 0.0382991 + 0.0663360i 0.884540 0.466465i \(-0.154473\pi\)
−0.846240 + 0.532801i \(0.821139\pi\)
\(810\) 0 0
\(811\) 6.27249e11i 1.44996i 0.688769 + 0.724981i \(0.258151\pi\)
−0.688769 + 0.724981i \(0.741849\pi\)
\(812\) 0 0
\(813\) −2.75395e10 −0.0630367
\(814\) 0 0
\(815\) −3.84243e11 + 2.21843e11i −0.870914 + 0.502823i
\(816\) 0 0
\(817\) −1.24106e10 7.16526e9i −0.0278551 0.0160821i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.42590e11 + 5.93384e11i −0.754054 + 1.30606i 0.191789 + 0.981436i \(0.438571\pi\)
−0.945843 + 0.324623i \(0.894762\pi\)
\(822\) 0 0
\(823\) 2.20407e11 + 3.81756e11i 0.480425 + 0.832121i 0.999748 0.0224571i \(-0.00714891\pi\)
−0.519322 + 0.854578i \(0.673816\pi\)
\(824\) 0 0
\(825\) 1.53102e11i 0.330495i
\(826\) 0 0
\(827\) −3.10595e11 −0.664007 −0.332004 0.943278i \(-0.607725\pi\)
−0.332004 + 0.943278i \(0.607725\pi\)
\(828\) 0 0
\(829\) −6.95885e11 + 4.01770e11i −1.47340 + 0.850666i −0.999552 0.0299427i \(-0.990468\pi\)
−0.473845 + 0.880608i \(0.657134\pi\)
\(830\) 0 0
\(831\) 4.66457e10 + 2.69309e10i 0.0978154 + 0.0564738i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.87027e11 + 3.23940e11i −0.384731 + 0.666374i
\(836\) 0 0
\(837\) −4.05082e11 7.01623e11i −0.825356 1.42956i
\(838\) 0 0
\(839\) 2.60770e11i 0.526271i 0.964759 + 0.263136i \(0.0847567\pi\)
−0.964759 + 0.263136i \(0.915243\pi\)
\(840\) 0 0
\(841\) −4.29272e11 −0.858121
\(842\) 0 0
\(843\) 5.47868e11 3.16312e11i 1.08484 0.626332i
\(844\) 0 0
\(845\) 4.84516e11 + 2.79735e11i 0.950345 + 0.548682i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.38091e11 2.39180e11i 0.265787 0.460356i
\(850\) 0 0
\(851\) 3.55809e11 + 6.16279e11i 0.678420 + 1.17506i
\(852\) 0 0
\(853\) 2.90865e11i 0.549409i −0.961529 0.274704i \(-0.911420\pi\)
0.961529 0.274704i \(-0.0885800\pi\)
\(854\) 0 0
\(855\) −3.42322e9 −0.00640575
\(856\) 0 0
\(857\) 5.96952e10 3.44650e10i 0.110666 0.0638933i −0.443645 0.896203i \(-0.646315\pi\)
0.554312 + 0.832309i \(0.312982\pi\)
\(858\) 0 0
\(859\) 2.30322e11 + 1.32976e11i 0.423022 + 0.244232i 0.696369 0.717684i \(-0.254798\pi\)
−0.273347 + 0.961915i \(0.588131\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.41523e11 + 4.18331e11i −0.435427 + 0.754182i −0.997330 0.0730207i \(-0.976736\pi\)
0.561903 + 0.827203i \(0.310069\pi\)
\(864\) 0 0
\(865\) −2.07421e11 3.59263e11i −0.370500 0.641724i
\(866\) 0 0
\(867\) 1.31941e12i 2.33509i
\(868\) 0 0
\(869\) 6.99367e11 1.22638
\(870\) 0 0
\(871\) −6.39030e9 + 3.68944e9i −0.0111032 + 0.00641044i
\(872\) 0 0
\(873\) 3.14683e9 + 1.81682e9i 0.00541771 + 0.00312792i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.38694e11 + 2.40226e11i −0.234456 + 0.406089i −0.959114 0.283019i \(-0.908664\pi\)
0.724659 + 0.689108i \(0.241997\pi\)
\(878\) 0 0
\(879\) −3.19000e11 5.52524e11i −0.534361 0.925541i
\(880\) 0 0
\(881\) 2.40890e11i 0.399866i 0.979810 + 0.199933i \(0.0640725\pi\)
−0.979810 + 0.199933i \(0.935928\pi\)
\(882\) 0 0
\(883\) 7.97420e11 1.31173 0.655865 0.754879i \(-0.272304\pi\)
0.655865 + 0.754879i \(0.272304\pi\)
\(884\) 0 0
\(885\) −5.89392e11 + 3.40286e11i −0.960796 + 0.554716i
\(886\) 0 0
\(887\) 1.78784e10 + 1.03221e10i 0.0288825 + 0.0166753i 0.514372 0.857567i \(-0.328025\pi\)
−0.485489 + 0.874243i \(0.661358\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.89388e11 8.47645e11i 0.776502 1.34494i
\(892\) 0 0
\(893\) −9.35693e9 1.62067e10i −0.0147139 0.0254852i
\(894\) 0 0
\(895\) 2.11180e11i 0.329124i
\(896\) 0 0
\(897\) 6.15134e9 0.00950167
\(898\) 0 0
\(899\) 3.41134e11 1.96954e11i 0.522259 0.301526i
\(900\) 0 0
\(901\) −2.62191e11 1.51376e11i −0.397850 0.229699i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.29065e11 7.43162e11i 0.639630 1.10787i
\(906\) 0 0
\(907\) −4.03438e11 6.98775e11i −0.596139 1.03254i −0.993385 0.114831i \(-0.963367\pi\)
0.397246 0.917712i \(-0.369966\pi\)
\(908\) 0 0
\(909\) 7.06100e10i 0.103421i
\(910\) 0 0
\(911\) −4.47775e11 −0.650109 −0.325054 0.945695i \(-0.605383\pi\)
−0.325054 + 0.945695i \(0.605383\pi\)
\(912\) 0 0
\(913\) 1.34846e12 7.78533e11i 1.94068 1.12045i
\(914\) 0 0
\(915\) 2.28115e11 + 1.31702e11i 0.325439 + 0.187892i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.80924e11 4.86575e11i 0.393846 0.682162i −0.599107 0.800669i \(-0.704478\pi\)
0.992953 + 0.118507i \(0.0378108\pi\)
\(920\) 0 0
\(921\) 1.36240e11 + 2.35975e11i 0.189350 + 0.327964i
\(922\) 0 0
\(923\) 1.56158e9i 0.00215158i
\(924\) 0 0
\(925\) 1.98984e11 0.271802
\(926\) 0 0
\(927\) −4.80941e10 + 2.77671e10i −0.0651287 + 0.0376021i
\(928\) 0 0
\(929\) 4.59844e11 + 2.65491e11i 0.617374 + 0.356441i 0.775846 0.630923i \(-0.217323\pi\)
−0.158472 + 0.987363i \(0.550657\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.23358e11 5.60072e11i 0.426733 0.739124i
\(934\) 0 0
\(935\) 1.29851e12 + 2.24908e12i 1.69902 + 2.94278i
\(936\) 0 0
\(937\) 1.19762e12i 1.55368i −0.629699 0.776839i \(-0.716822\pi\)
0.629699 0.776839i \(-0.283178\pi\)
\(938\) 0 0
\(939\) 8.75698e11 1.12640
\(940\) 0 0
\(941\) 1.18102e12 6.81860e11i 1.50625 0.869635i 0.506278 0.862370i \(-0.331021\pi\)
0.999974 0.00726500i \(-0.00231254\pi\)
\(942\) 0 0
\(943\) 1.75157e11 + 1.01127e11i 0.221504 + 0.127885i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.47927e11 + 7.75832e11i −0.556938 + 0.964645i 0.440812 + 0.897600i \(0.354691\pi\)
−0.997750 + 0.0670457i \(0.978643\pi\)
\(948\) 0 0
\(949\) −5.71365e9 9.89633e9i −0.00704448 0.0122014i
\(950\) 0 0
\(951\) 1.34228e12i 1.64105i
\(952\) 0 0
\(953\) −1.10721e12 −1.34232 −0.671161 0.741311i \(-0.734204\pi\)
−0.671161 + 0.741311i \(0.734204\pi\)
\(954\) 0 0
\(955\) 3.97568e11 2.29536e11i 0.477967 0.275955i
\(956\) 0 0
\(957\) 4.42338e11 + 2.55384e11i 0.527359 + 0.304471i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 6.66646e11 1.15467e12i 0.781631 1.35383i
\(962\) 0 0
\(963\) −3.39387e10 5.87835e10i −0.0394629 0.0683518i
\(964\) 0 0
\(965\) 1.01475e12i 1.17017i
\(966\) 0 0
\(967\) 4.92082e11 0.562771 0.281385 0.959595i \(-0.409206\pi\)
0.281385 + 0.959595i \(0.409206\pi\)
\(968\) 0 0
\(969\) −1.17031e11 + 6.75676e10i −0.132741 + 0.0766379i
\(970\) 0 0
\(971\) −4.27322e11 2.46714e11i −0.480704 0.277535i 0.240006 0.970771i \(-0.422851\pi\)
−0.720710 + 0.693237i \(0.756184\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.60026e8 1.48961e9i 0.000951685 0.00164837i
\(976\) 0 0
\(977\) 5.67571e11 + 9.83062e11i 0.622934 + 1.07895i 0.988937 + 0.148339i \(0.0473928\pi\)
−0.366003 + 0.930614i \(0.619274\pi\)
\(978\) 0 0
\(979\) 2.85335e11i 0.310616i
\(980\) 0 0
\(981\) 1.19172e11 0.128676
\(982\) 0 0
\(983\) −1.02512e12 + 5.91855e11i −1.09790 + 0.633872i −0.935668 0.352881i \(-0.885202\pi\)
−0.162230 + 0.986753i \(0.551869\pi\)
\(984\) 0 0
\(985\) −8.75849e11 5.05671e11i −0.930431 0.537185i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.82863e11 3.16728e11i 0.191135 0.331056i
\(990\) 0 0
\(991\) −4.89231e11 8.47373e11i −0.507247 0.878577i −0.999965 0.00838831i \(-0.997330\pi\)
0.492718 0.870189i \(-0.336003\pi\)
\(992\) 0 0
\(993\) 3.23962e11i 0.333194i
\(994\) 0 0
\(995\) 1.50487e12 1.53534
\(996\) 0 0
\(997\) −2.64794e11 + 1.52879e11i −0.267995 + 0.154727i −0.627976 0.778233i \(-0.716116\pi\)
0.359981 + 0.932960i \(0.382783\pi\)
\(998\) 0 0
\(999\) 1.18242e12 + 6.82670e11i 1.18716 + 0.685408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.b.117.5 12
7.2 even 3 28.9.b.a.13.5 yes 6
7.3 odd 6 inner 196.9.h.b.129.5 12
7.4 even 3 inner 196.9.h.b.129.2 12
7.5 odd 6 28.9.b.a.13.2 6
7.6 odd 2 inner 196.9.h.b.117.2 12
21.2 odd 6 252.9.d.b.181.5 6
21.5 even 6 252.9.d.b.181.2 6
28.19 even 6 112.9.c.d.97.5 6
28.23 odd 6 112.9.c.d.97.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.9.b.a.13.2 6 7.5 odd 6
28.9.b.a.13.5 yes 6 7.2 even 3
112.9.c.d.97.2 6 28.23 odd 6
112.9.c.d.97.5 6 28.19 even 6
196.9.h.b.117.2 12 7.6 odd 2 inner
196.9.h.b.117.5 12 1.1 even 1 trivial
196.9.h.b.129.2 12 7.4 even 3 inner
196.9.h.b.129.5 12 7.3 odd 6 inner
252.9.d.b.181.2 6 21.5 even 6
252.9.d.b.181.5 6 21.2 odd 6