Properties

Label 196.9.h.b.117.4
Level $196$
Weight $9$
Character 196.117
Analytic conductor $79.846$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 720x^{10} + 409912x^{8} + 71803008x^{6} + 9498639424x^{4} + 342190245888x^{2} + 9948826238976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{7}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 117.4
Root \(-3.09370 + 5.35844i\) of defining polynomial
Character \(\chi\) \(=\) 196.117
Dual form 196.9.h.b.129.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(29.0850 - 16.7923i) q^{3} +(288.955 + 166.829i) q^{5} +(-2716.54 + 4705.19i) q^{9} +(12063.8 + 20895.1i) q^{11} +43091.3i q^{13} +11205.7 q^{15} +(48496.3 - 27999.4i) q^{17} +(-180200. - 104039. i) q^{19} +(79871.0 - 138341. i) q^{23} +(-139649. - 241879. i) q^{25} +402815. i q^{27} -326089. q^{29} +(-1.13023e6 + 652539. i) q^{31} +(701752. + 405157. i) q^{33} +(-797445. + 1.38122e6i) q^{37} +(723601. + 1.25331e6i) q^{39} -4.17224e6i q^{41} +1.46924e6 q^{43} +(-1.56992e6 + 906393. i) q^{45} +(-3.56128e6 - 2.05610e6i) q^{47} +(940345. - 1.62873e6i) q^{51} +(-3.28498e6 - 5.68976e6i) q^{53} +8.05034e6i q^{55} -6.98818e6 q^{57} +(1.10715e7 - 6.39213e6i) q^{59} +(1.43674e6 + 829504. i) q^{61} +(-7.18886e6 + 1.24515e7i) q^{65} +(5.43833e6 + 9.41946e6i) q^{67} -5.36486e6i q^{69} -2.55338e7 q^{71} +(-1.55391e7 + 8.97149e6i) q^{73} +(-8.12339e6 - 4.69004e6i) q^{75} +(-2.66151e7 + 4.60987e7i) q^{79} +(-1.10590e7 - 1.91548e7i) q^{81} -2.08752e6i q^{83} +1.86844e7 q^{85} +(-9.48430e6 + 5.47576e6i) q^{87} +(8.56303e7 + 4.94387e7i) q^{89} +(-2.19152e7 + 3.79583e7i) q^{93} +(-3.47132e7 - 6.01251e7i) q^{95} +2.44104e7i q^{97} -1.31087e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18234 q^{9} - 24492 q^{11} - 306816 q^{15} + 11604 q^{23} + 678714 q^{25} + 2528664 q^{29} - 3184332 q^{37} - 5634240 q^{39} - 15566760 q^{43} - 6877824 q^{51} + 8340660 q^{53} - 35901696 q^{57}+ \cdots - 1191795624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 29.0850 16.7923i 0.359075 0.207312i −0.309600 0.950867i \(-0.600195\pi\)
0.668675 + 0.743555i \(0.266862\pi\)
\(4\) 0 0
\(5\) 288.955 + 166.829i 0.462329 + 0.266926i 0.713023 0.701141i \(-0.247326\pi\)
−0.250694 + 0.968066i \(0.580659\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2716.54 + 4705.19i −0.414044 + 0.717145i
\(10\) 0 0
\(11\) 12063.8 + 20895.1i 0.823973 + 1.42716i 0.902701 + 0.430268i \(0.141581\pi\)
−0.0787280 + 0.996896i \(0.525086\pi\)
\(12\) 0 0
\(13\) 43091.3i 1.50875i 0.656445 + 0.754374i \(0.272059\pi\)
−0.656445 + 0.754374i \(0.727941\pi\)
\(14\) 0 0
\(15\) 11205.7 0.221347
\(16\) 0 0
\(17\) 48496.3 27999.4i 0.580648 0.335237i −0.180743 0.983530i \(-0.557850\pi\)
0.761391 + 0.648293i \(0.224517\pi\)
\(18\) 0 0
\(19\) −180200. 104039.i −1.38274 0.798326i −0.390258 0.920705i \(-0.627614\pi\)
−0.992483 + 0.122379i \(0.960948\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 79871.0 138341.i 0.285416 0.494354i −0.687294 0.726379i \(-0.741202\pi\)
0.972710 + 0.232025i \(0.0745350\pi\)
\(24\) 0 0
\(25\) −139649. 241879.i −0.357501 0.619211i
\(26\) 0 0
\(27\) 402815.i 0.757968i
\(28\) 0 0
\(29\) −326089. −0.461045 −0.230523 0.973067i \(-0.574044\pi\)
−0.230523 + 0.973067i \(0.574044\pi\)
\(30\) 0 0
\(31\) −1.13023e6 + 652539.i −1.22383 + 0.706577i −0.965732 0.259542i \(-0.916428\pi\)
−0.258096 + 0.966119i \(0.583095\pi\)
\(32\) 0 0
\(33\) 701752. + 405157.i 0.591736 + 0.341639i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −797445. + 1.38122e6i −0.425495 + 0.736978i −0.996466 0.0839914i \(-0.973233\pi\)
0.570972 + 0.820970i \(0.306567\pi\)
\(38\) 0 0
\(39\) 723601. + 1.25331e6i 0.312781 + 0.541753i
\(40\) 0 0
\(41\) 4.17224e6i 1.47650i −0.674526 0.738251i \(-0.735652\pi\)
0.674526 0.738251i \(-0.264348\pi\)
\(42\) 0 0
\(43\) 1.46924e6 0.429754 0.214877 0.976641i \(-0.431065\pi\)
0.214877 + 0.976641i \(0.431065\pi\)
\(44\) 0 0
\(45\) −1.56992e6 + 906393.i −0.382849 + 0.221038i
\(46\) 0 0
\(47\) −3.56128e6 2.05610e6i −0.729817 0.421360i 0.0885380 0.996073i \(-0.471781\pi\)
−0.818355 + 0.574713i \(0.805114\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 940345. 1.62873e6i 0.138997 0.240751i
\(52\) 0 0
\(53\) −3.28498e6 5.68976e6i −0.416322 0.721091i 0.579244 0.815154i \(-0.303348\pi\)
−0.995566 + 0.0940630i \(0.970014\pi\)
\(54\) 0 0
\(55\) 8.05034e6i 0.879758i
\(56\) 0 0
\(57\) −6.98818e6 −0.662010
\(58\) 0 0
\(59\) 1.10715e7 6.39213e6i 0.913688 0.527518i 0.0320721 0.999486i \(-0.489789\pi\)
0.881616 + 0.471968i \(0.156456\pi\)
\(60\) 0 0
\(61\) 1.43674e6 + 829504.i 0.103767 + 0.0599100i 0.550985 0.834515i \(-0.314252\pi\)
−0.447218 + 0.894425i \(0.647585\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.18886e6 + 1.24515e7i −0.402723 + 0.697537i
\(66\) 0 0
\(67\) 5.43833e6 + 9.41946e6i 0.269877 + 0.467441i 0.968830 0.247727i \(-0.0796835\pi\)
−0.698953 + 0.715168i \(0.746350\pi\)
\(68\) 0 0
\(69\) 5.36486e6i 0.236680i
\(70\) 0 0
\(71\) −2.55338e7 −1.00480 −0.502402 0.864634i \(-0.667550\pi\)
−0.502402 + 0.864634i \(0.667550\pi\)
\(72\) 0 0
\(73\) −1.55391e7 + 8.97149e6i −0.547185 + 0.315917i −0.747986 0.663715i \(-0.768979\pi\)
0.200801 + 0.979632i \(0.435645\pi\)
\(74\) 0 0
\(75\) −8.12339e6 4.69004e6i −0.256739 0.148229i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.66151e7 + 4.60987e7i −0.683313 + 1.18353i 0.290650 + 0.956829i \(0.406128\pi\)
−0.973964 + 0.226704i \(0.927205\pi\)
\(80\) 0 0
\(81\) −1.10590e7 1.91548e7i −0.256908 0.444977i
\(82\) 0 0
\(83\) 2.08752e6i 0.0439864i −0.999758 0.0219932i \(-0.992999\pi\)
0.999758 0.0219932i \(-0.00700122\pi\)
\(84\) 0 0
\(85\) 1.86844e7 0.357934
\(86\) 0 0
\(87\) −9.48430e6 + 5.47576e6i −0.165550 + 0.0955801i
\(88\) 0 0
\(89\) 8.56303e7 + 4.94387e7i 1.36479 + 0.787964i 0.990258 0.139248i \(-0.0444684\pi\)
0.374537 + 0.927212i \(0.377802\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.19152e7 + 3.79583e7i −0.292964 + 0.507428i
\(94\) 0 0
\(95\) −3.47132e7 6.01251e7i −0.426187 0.738178i
\(96\) 0 0
\(97\) 2.44104e7i 0.275733i 0.990451 + 0.137867i \(0.0440245\pi\)
−0.990451 + 0.137867i \(0.955976\pi\)
\(98\) 0 0
\(99\) −1.31087e8 −1.36464
\(100\) 0 0
\(101\) 7.17174e7 4.14061e7i 0.689190 0.397904i −0.114118 0.993467i \(-0.536404\pi\)
0.803309 + 0.595563i \(0.203071\pi\)
\(102\) 0 0
\(103\) −7.55715e7 4.36312e7i −0.671443 0.387658i 0.125180 0.992134i \(-0.460049\pi\)
−0.796623 + 0.604476i \(0.793382\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.07324e8 + 1.85891e8i −0.818769 + 1.41815i 0.0878202 + 0.996136i \(0.472010\pi\)
−0.906589 + 0.422014i \(0.861323\pi\)
\(108\) 0 0
\(109\) 4.22065e7 + 7.31038e7i 0.299002 + 0.517886i 0.975908 0.218183i \(-0.0700131\pi\)
−0.676906 + 0.736069i \(0.736680\pi\)
\(110\) 0 0
\(111\) 5.35636e7i 0.352840i
\(112\) 0 0
\(113\) −2.83510e8 −1.73882 −0.869411 0.494090i \(-0.835501\pi\)
−0.869411 + 0.494090i \(0.835501\pi\)
\(114\) 0 0
\(115\) 4.61583e7 2.66495e7i 0.263912 0.152370i
\(116\) 0 0
\(117\) −2.02753e8 1.17059e8i −1.08199 0.624687i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.83891e8 + 3.18508e8i −0.857864 + 1.48586i
\(122\) 0 0
\(123\) −7.00613e7 1.21350e8i −0.306096 0.530174i
\(124\) 0 0
\(125\) 2.23525e8i 0.915556i
\(126\) 0 0
\(127\) −6.18914e7 −0.237911 −0.118956 0.992900i \(-0.537955\pi\)
−0.118956 + 0.992900i \(0.537955\pi\)
\(128\) 0 0
\(129\) 4.27330e7 2.46719e7i 0.154314 0.0890930i
\(130\) 0 0
\(131\) 3.72190e8 + 2.14884e8i 1.26380 + 0.729658i 0.973808 0.227370i \(-0.0730128\pi\)
0.289996 + 0.957028i \(0.406346\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.72011e7 + 1.16396e8i −0.202321 + 0.350430i
\(136\) 0 0
\(137\) −1.46094e8 2.53043e8i −0.414716 0.718309i 0.580682 0.814130i \(-0.302786\pi\)
−0.995399 + 0.0958207i \(0.969452\pi\)
\(138\) 0 0
\(139\) 9.34937e6i 0.0250451i −0.999922 0.0125226i \(-0.996014\pi\)
0.999922 0.0125226i \(-0.00398616\pi\)
\(140\) 0 0
\(141\) −1.38106e8 −0.349412
\(142\) 0 0
\(143\) −9.00398e8 + 5.19845e8i −2.15323 + 1.24317i
\(144\) 0 0
\(145\) −9.42251e7 5.44009e7i −0.213154 0.123065i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.06007e8 + 7.03224e8i −0.823736 + 1.42675i 0.0791449 + 0.996863i \(0.474781\pi\)
−0.902881 + 0.429890i \(0.858552\pi\)
\(150\) 0 0
\(151\) −5.38132e6 9.32072e6i −0.0103510 0.0179284i 0.860804 0.508937i \(-0.169962\pi\)
−0.871154 + 0.491009i \(0.836628\pi\)
\(152\) 0 0
\(153\) 3.04246e8i 0.555212i
\(154\) 0 0
\(155\) −4.35448e8 −0.754414
\(156\) 0 0
\(157\) 3.97061e8 2.29243e8i 0.653520 0.377310i −0.136283 0.990670i \(-0.543516\pi\)
0.789804 + 0.613360i \(0.210182\pi\)
\(158\) 0 0
\(159\) −1.91088e8 1.10325e8i −0.298981 0.172617i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.28605e8 + 5.69161e8i −0.465505 + 0.806278i −0.999224 0.0393835i \(-0.987461\pi\)
0.533719 + 0.845662i \(0.320794\pi\)
\(164\) 0 0
\(165\) 1.35183e8 + 2.34144e8i 0.182384 + 0.315899i
\(166\) 0 0
\(167\) 4.94686e8i 0.636010i −0.948089 0.318005i \(-0.896987\pi\)
0.948089 0.318005i \(-0.103013\pi\)
\(168\) 0 0
\(169\) −1.04113e9 −1.27632
\(170\) 0 0
\(171\) 9.79043e8 5.65251e8i 1.14503 0.661084i
\(172\) 0 0
\(173\) −6.87736e8 3.97065e8i −0.767781 0.443279i 0.0643014 0.997931i \(-0.479518\pi\)
−0.832082 + 0.554652i \(0.812851\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.14676e8 3.71831e8i 0.218721 0.378837i
\(178\) 0 0
\(179\) −9.27018e7 1.60564e8i −0.0902976 0.156400i 0.817339 0.576157i \(-0.195448\pi\)
−0.907636 + 0.419757i \(0.862115\pi\)
\(180\) 0 0
\(181\) 1.44977e9i 1.35078i 0.737462 + 0.675389i \(0.236024\pi\)
−0.737462 + 0.675389i \(0.763976\pi\)
\(182\) 0 0
\(183\) 5.57170e7 0.0496802
\(184\) 0 0
\(185\) −4.60852e8 + 2.66073e8i −0.393437 + 0.227151i
\(186\) 0 0
\(187\) 1.17010e9 + 6.75557e8i 0.956878 + 0.552454i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.69822e7 9.86960e7i 0.0428159 0.0741594i −0.843823 0.536621i \(-0.819700\pi\)
0.886639 + 0.462462i \(0.153034\pi\)
\(192\) 0 0
\(193\) −4.63518e8 8.02837e8i −0.334070 0.578626i 0.649236 0.760587i \(-0.275089\pi\)
−0.983306 + 0.181961i \(0.941756\pi\)
\(194\) 0 0
\(195\) 4.82869e8i 0.333957i
\(196\) 0 0
\(197\) 2.50846e9 1.66549 0.832747 0.553654i \(-0.186767\pi\)
0.832747 + 0.553654i \(0.186767\pi\)
\(198\) 0 0
\(199\) 1.13458e9 6.55049e8i 0.723472 0.417697i −0.0925571 0.995707i \(-0.529504\pi\)
0.816029 + 0.578010i \(0.196171\pi\)
\(200\) 0 0
\(201\) 3.16348e8 + 1.82644e8i 0.193812 + 0.111898i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.96049e8 1.20559e9i 0.394116 0.682629i
\(206\) 0 0
\(207\) 4.33946e8 + 7.51616e8i 0.236349 + 0.409369i
\(208\) 0 0
\(209\) 5.02040e9i 2.63120i
\(210\) 0 0
\(211\) −9.73665e8 −0.491224 −0.245612 0.969368i \(-0.578989\pi\)
−0.245612 + 0.969368i \(0.578989\pi\)
\(212\) 0 0
\(213\) −7.42651e8 + 4.28770e8i −0.360800 + 0.208308i
\(214\) 0 0
\(215\) 4.24546e8 + 2.45112e8i 0.198687 + 0.114712i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.01303e8 + 5.21872e8i −0.130987 + 0.226876i
\(220\) 0 0
\(221\) 1.20653e9 + 2.08977e9i 0.505789 + 0.876052i
\(222\) 0 0
\(223\) 1.64534e9i 0.665329i 0.943045 + 0.332665i \(0.107948\pi\)
−0.943045 + 0.332665i \(0.892052\pi\)
\(224\) 0 0
\(225\) 1.51745e9 0.592085
\(226\) 0 0
\(227\) −5.18290e8 + 2.99235e8i −0.195195 + 0.112696i −0.594412 0.804160i \(-0.702615\pi\)
0.399217 + 0.916856i \(0.369282\pi\)
\(228\) 0 0
\(229\) 4.62374e8 + 2.66951e8i 0.168132 + 0.0970712i 0.581705 0.813400i \(-0.302386\pi\)
−0.413573 + 0.910471i \(0.635719\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.20796e9 2.09225e9i 0.409854 0.709888i −0.585019 0.811019i \(-0.698913\pi\)
0.994873 + 0.101132i \(0.0322464\pi\)
\(234\) 0 0
\(235\) −6.86033e8 1.18824e9i −0.224944 0.389614i
\(236\) 0 0
\(237\) 1.78771e9i 0.566636i
\(238\) 0 0
\(239\) 1.20541e9 0.369440 0.184720 0.982791i \(-0.440862\pi\)
0.184720 + 0.982791i \(0.440862\pi\)
\(240\) 0 0
\(241\) −2.39853e9 + 1.38479e9i −0.711013 + 0.410504i −0.811436 0.584441i \(-0.801314\pi\)
0.100423 + 0.994945i \(0.467980\pi\)
\(242\) 0 0
\(243\) −2.93210e9 1.69285e9i −0.840918 0.485504i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.48316e9 7.76507e9i 1.20447 2.08621i
\(248\) 0 0
\(249\) −3.50542e7 6.07157e7i −0.00911890 0.0157944i
\(250\) 0 0
\(251\) 5.72275e9i 1.44182i 0.693031 + 0.720908i \(0.256275\pi\)
−0.693031 + 0.720908i \(0.743725\pi\)
\(252\) 0 0
\(253\) 3.85419e9 0.940700
\(254\) 0 0
\(255\) 5.43436e8 3.13753e8i 0.128525 0.0742039i
\(256\) 0 0
\(257\) 2.02347e8 + 1.16825e8i 0.0463835 + 0.0267796i 0.523012 0.852325i \(-0.324808\pi\)
−0.476629 + 0.879105i \(0.658141\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 8.85833e8 1.53431e9i 0.190893 0.330636i
\(262\) 0 0
\(263\) −1.52500e8 2.64137e8i −0.0318747 0.0552086i 0.849648 0.527350i \(-0.176814\pi\)
−0.881523 + 0.472142i \(0.843481\pi\)
\(264\) 0 0
\(265\) 2.19211e9i 0.444508i
\(266\) 0 0
\(267\) 3.32075e9 0.653417
\(268\) 0 0
\(269\) 5.30888e9 3.06509e9i 1.01390 0.585374i 0.101567 0.994829i \(-0.467614\pi\)
0.912331 + 0.409455i \(0.134281\pi\)
\(270\) 0 0
\(271\) −2.97369e9 1.71686e9i −0.551339 0.318316i 0.198323 0.980137i \(-0.436451\pi\)
−0.749662 + 0.661821i \(0.769784\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.36939e9 5.83596e9i 0.589143 1.02043i
\(276\) 0 0
\(277\) 3.65202e9 + 6.32549e9i 0.620318 + 1.07442i 0.989426 + 0.145036i \(0.0463297\pi\)
−0.369109 + 0.929386i \(0.620337\pi\)
\(278\) 0 0
\(279\) 7.09059e9i 1.17022i
\(280\) 0 0
\(281\) 4.46382e9 0.715947 0.357974 0.933732i \(-0.383468\pi\)
0.357974 + 0.933732i \(0.383468\pi\)
\(282\) 0 0
\(283\) −4.34990e9 + 2.51142e9i −0.678163 + 0.391537i −0.799162 0.601115i \(-0.794723\pi\)
0.121000 + 0.992653i \(0.461390\pi\)
\(284\) 0 0
\(285\) −2.01927e9 1.16583e9i −0.306066 0.176707i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.91995e9 + 3.32545e9i −0.275232 + 0.476715i
\(290\) 0 0
\(291\) 4.09906e8 + 7.09979e8i 0.0571627 + 0.0990087i
\(292\) 0 0
\(293\) 4.99782e9i 0.678125i 0.940764 + 0.339063i \(0.110110\pi\)
−0.940764 + 0.339063i \(0.889890\pi\)
\(294\) 0 0
\(295\) 4.26556e9 0.563232
\(296\) 0 0
\(297\) −8.41687e9 + 4.85948e9i −1.08174 + 0.624546i
\(298\) 0 0
\(299\) 5.96128e9 + 3.44175e9i 0.745856 + 0.430620i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.39060e9 2.40859e9i 0.164980 0.285755i
\(304\) 0 0
\(305\) 2.76770e8 + 4.79379e8i 0.0319830 + 0.0553962i
\(306\) 0 0
\(307\) 1.40127e10i 1.57750i −0.614714 0.788750i \(-0.710729\pi\)
0.614714 0.788750i \(-0.289271\pi\)
\(308\) 0 0
\(309\) −2.93067e9 −0.321464
\(310\) 0 0
\(311\) 7.96537e9 4.59881e9i 0.851461 0.491591i −0.00968271 0.999953i \(-0.503082\pi\)
0.861143 + 0.508362i \(0.169749\pi\)
\(312\) 0 0
\(313\) 1.42010e10 + 8.19895e9i 1.47959 + 0.854242i 0.999733 0.0231053i \(-0.00735529\pi\)
0.479857 + 0.877347i \(0.340689\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.75687e9 8.23915e9i 0.471069 0.815916i −0.528383 0.849006i \(-0.677202\pi\)
0.999452 + 0.0330904i \(0.0105349\pi\)
\(318\) 0 0
\(319\) −3.93386e9 6.81365e9i −0.379889 0.657987i
\(320\) 0 0
\(321\) 7.20885e9i 0.678962i
\(322\) 0 0
\(323\) −1.16521e10 −1.07052
\(324\) 0 0
\(325\) 1.04229e10 6.01766e9i 0.934232 0.539379i
\(326\) 0 0
\(327\) 2.45516e9 + 1.41748e9i 0.214728 + 0.123973i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.45808e9 + 4.25751e9i −0.204778 + 0.354686i −0.950062 0.312061i \(-0.898981\pi\)
0.745284 + 0.666747i \(0.232314\pi\)
\(332\) 0 0
\(333\) −4.33258e9 7.50426e9i −0.352347 0.610282i
\(334\) 0 0
\(335\) 3.62907e9i 0.288149i
\(336\) 0 0
\(337\) 2.07250e10 1.60685 0.803425 0.595406i \(-0.203009\pi\)
0.803425 + 0.595406i \(0.203009\pi\)
\(338\) 0 0
\(339\) −8.24591e9 + 4.76078e9i −0.624366 + 0.360478i
\(340\) 0 0
\(341\) −2.72697e10 1.57442e10i −2.01680 1.16440i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 8.95011e8 1.55020e9i 0.0631760 0.109424i
\(346\) 0 0
\(347\) 1.34176e9 + 2.32400e9i 0.0925459 + 0.160294i 0.908582 0.417707i \(-0.137166\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(348\) 0 0
\(349\) 1.30154e10i 0.877312i 0.898655 + 0.438656i \(0.144545\pi\)
−0.898655 + 0.438656i \(0.855455\pi\)
\(350\) 0 0
\(351\) −1.73578e10 −1.14358
\(352\) 0 0
\(353\) 1.46630e10 8.46571e9i 0.944333 0.545211i 0.0530172 0.998594i \(-0.483116\pi\)
0.891316 + 0.453383i \(0.149783\pi\)
\(354\) 0 0
\(355\) −7.37812e9 4.25976e9i −0.464550 0.268208i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.37086e10 + 2.37440e10i −0.825307 + 1.42947i 0.0763783 + 0.997079i \(0.475664\pi\)
−0.901685 + 0.432394i \(0.857669\pi\)
\(360\) 0 0
\(361\) 1.31563e10 + 2.27874e10i 0.774650 + 1.34173i
\(362\) 0 0
\(363\) 1.23518e10i 0.711382i
\(364\) 0 0
\(365\) −5.98680e9 −0.337305
\(366\) 0 0
\(367\) −8.30961e9 + 4.79756e9i −0.458054 + 0.264457i −0.711226 0.702964i \(-0.751860\pi\)
0.253172 + 0.967421i \(0.418526\pi\)
\(368\) 0 0
\(369\) 1.96312e10 + 1.13341e10i 1.05887 + 0.611336i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.94764e9 + 1.54978e10i −0.462246 + 0.800634i −0.999073 0.0430589i \(-0.986290\pi\)
0.536826 + 0.843693i \(0.319623\pi\)
\(374\) 0 0
\(375\) −3.75348e9 6.50122e9i −0.189806 0.328753i
\(376\) 0 0
\(377\) 1.40516e10i 0.695601i
\(378\) 0 0
\(379\) −2.75716e10 −1.33630 −0.668152 0.744025i \(-0.732914\pi\)
−0.668152 + 0.744025i \(0.732914\pi\)
\(380\) 0 0
\(381\) −1.80011e9 + 1.03930e9i −0.0854279 + 0.0493218i
\(382\) 0 0
\(383\) −2.79841e9 1.61566e9i −0.130052 0.0750855i 0.433563 0.901123i \(-0.357256\pi\)
−0.563614 + 0.826038i \(0.690590\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.99126e9 + 6.91306e9i −0.177937 + 0.308196i
\(388\) 0 0
\(389\) −3.21609e9 5.57042e9i −0.140452 0.243271i 0.787215 0.616679i \(-0.211522\pi\)
−0.927667 + 0.373408i \(0.878189\pi\)
\(390\) 0 0
\(391\) 8.94535e9i 0.382728i
\(392\) 0 0
\(393\) 1.44336e10 0.605067
\(394\) 0 0
\(395\) −1.53812e10 + 8.88032e9i −0.631831 + 0.364788i
\(396\) 0 0
\(397\) 2.22744e10 + 1.28601e10i 0.896694 + 0.517707i 0.876126 0.482082i \(-0.160119\pi\)
0.0205680 + 0.999788i \(0.493453\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.62503e10 + 2.81463e10i −0.628469 + 1.08854i 0.359390 + 0.933187i \(0.382985\pi\)
−0.987859 + 0.155353i \(0.950349\pi\)
\(402\) 0 0
\(403\) −2.81188e10 4.87031e10i −1.06605 1.84645i
\(404\) 0 0
\(405\) 7.37985e9i 0.274301i
\(406\) 0 0
\(407\) −3.84809e10 −1.40238
\(408\) 0 0
\(409\) −2.22688e10 + 1.28569e10i −0.795798 + 0.459454i −0.842000 0.539478i \(-0.818622\pi\)
0.0462015 + 0.998932i \(0.485288\pi\)
\(410\) 0 0
\(411\) −8.49832e9 4.90651e9i −0.297828 0.171951i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.48258e8 6.03201e8i 0.0117411 0.0203362i
\(416\) 0 0
\(417\) −1.56997e8 2.71927e8i −0.00519215 0.00899307i
\(418\) 0 0
\(419\) 1.24082e10i 0.402581i −0.979532 0.201291i \(-0.935486\pi\)
0.979532 0.201291i \(-0.0645136\pi\)
\(420\) 0 0
\(421\) −2.05827e10 −0.655201 −0.327600 0.944816i \(-0.606240\pi\)
−0.327600 + 0.944816i \(0.606240\pi\)
\(422\) 0 0
\(423\) 1.93487e10 1.11710e10i 0.604352 0.348923i
\(424\) 0 0
\(425\) −1.35449e10 7.82017e9i −0.415165 0.239696i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.74587e10 + 3.02394e10i −0.515447 + 0.892780i
\(430\) 0 0
\(431\) 2.11740e9 + 3.66744e9i 0.0613611 + 0.106280i 0.895074 0.445918i \(-0.147123\pi\)
−0.833713 + 0.552198i \(0.813789\pi\)
\(432\) 0 0
\(433\) 4.21039e10i 1.19776i −0.800838 0.598882i \(-0.795612\pi\)
0.800838 0.598882i \(-0.204388\pi\)
\(434\) 0 0
\(435\) −3.65405e9 −0.102051
\(436\) 0 0
\(437\) −2.87856e10 + 1.66193e10i −0.789312 + 0.455710i
\(438\) 0 0
\(439\) −3.53153e10 2.03893e10i −0.950835 0.548965i −0.0574951 0.998346i \(-0.518311\pi\)
−0.893340 + 0.449381i \(0.851645\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.94488e8 3.36863e8i 0.00504984 0.00874658i −0.863489 0.504367i \(-0.831726\pi\)
0.868539 + 0.495620i \(0.165059\pi\)
\(444\) 0 0
\(445\) 1.64956e10 + 2.85711e10i 0.420656 + 0.728597i
\(446\) 0 0
\(447\) 2.72711e10i 0.683081i
\(448\) 0 0
\(449\) 2.69794e10 0.663814 0.331907 0.943312i \(-0.392308\pi\)
0.331907 + 0.943312i \(0.392308\pi\)
\(450\) 0 0
\(451\) 8.71794e10 5.03330e10i 2.10721 1.21660i
\(452\) 0 0
\(453\) −3.13032e8 1.80729e8i −0.00743354 0.00429176i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.17232e10 + 5.49462e10i −0.727298 + 1.25972i 0.230724 + 0.973019i \(0.425891\pi\)
−0.958021 + 0.286697i \(0.907443\pi\)
\(458\) 0 0
\(459\) 1.12786e10 + 1.95351e10i 0.254099 + 0.440113i
\(460\) 0 0
\(461\) 5.53281e10i 1.22502i 0.790464 + 0.612508i \(0.209839\pi\)
−0.790464 + 0.612508i \(0.790161\pi\)
\(462\) 0 0
\(463\) −6.29238e10 −1.36928 −0.684638 0.728883i \(-0.740040\pi\)
−0.684638 + 0.728883i \(0.740040\pi\)
\(464\) 0 0
\(465\) −1.26650e10 + 7.31216e9i −0.270891 + 0.156399i
\(466\) 0 0
\(467\) 8.04918e10 + 4.64719e10i 1.69233 + 0.977065i 0.952634 + 0.304119i \(0.0983619\pi\)
0.739692 + 0.672946i \(0.234971\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.69903e9 1.33351e10i 0.156442 0.270965i
\(472\) 0 0
\(473\) 1.77246e10 + 3.07000e10i 0.354106 + 0.613329i
\(474\) 0 0
\(475\) 5.81156e10i 1.14161i
\(476\) 0 0
\(477\) 3.56951e10 0.689502
\(478\) 0 0
\(479\) −2.53604e10 + 1.46419e10i −0.481742 + 0.278134i −0.721142 0.692787i \(-0.756383\pi\)
0.239400 + 0.970921i \(0.423049\pi\)
\(480\) 0 0
\(481\) −5.95184e10 3.43630e10i −1.11191 0.641964i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.07236e9 + 7.05353e9i −0.0736002 + 0.127479i
\(486\) 0 0
\(487\) −4.93709e10 8.55129e10i −0.877718 1.52025i −0.853839 0.520537i \(-0.825732\pi\)
−0.0238790 0.999715i \(-0.507602\pi\)
\(488\) 0 0
\(489\) 2.20721e10i 0.386019i
\(490\) 0 0
\(491\) −1.84236e10 −0.316992 −0.158496 0.987360i \(-0.550665\pi\)
−0.158496 + 0.987360i \(0.550665\pi\)
\(492\) 0 0
\(493\) −1.58141e10 + 9.13027e9i −0.267705 + 0.154560i
\(494\) 0 0
\(495\) −3.78783e10 2.18691e10i −0.630914 0.364258i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.64036e10 8.03734e10i 0.748427 1.29631i −0.200149 0.979765i \(-0.564143\pi\)
0.948576 0.316548i \(-0.102524\pi\)
\(500\) 0 0
\(501\) −8.30690e9 1.43880e10i −0.131852 0.228375i
\(502\) 0 0
\(503\) 1.06679e11i 1.66651i −0.552886 0.833257i \(-0.686473\pi\)
0.552886 0.833257i \(-0.313527\pi\)
\(504\) 0 0
\(505\) 2.76308e10 0.424843
\(506\) 0 0
\(507\) −3.02814e10 + 1.74830e10i −0.458293 + 0.264596i
\(508\) 0 0
\(509\) 7.70815e10 + 4.45031e10i 1.14836 + 0.663008i 0.948488 0.316813i \(-0.102613\pi\)
0.199875 + 0.979821i \(0.435946\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.19084e10 7.25874e10i 0.605106 1.04807i
\(514\) 0 0
\(515\) −1.45579e10 2.52150e10i −0.206952 0.358451i
\(516\) 0 0
\(517\) 9.92176e10i 1.38876i
\(518\) 0 0
\(519\) −2.66704e10 −0.367588
\(520\) 0 0
\(521\) 9.39145e10 5.42215e10i 1.27462 0.735904i 0.298768 0.954326i \(-0.403424\pi\)
0.975854 + 0.218422i \(0.0700910\pi\)
\(522\) 0 0
\(523\) 3.02486e10 + 1.74640e10i 0.404295 + 0.233420i 0.688335 0.725393i \(-0.258342\pi\)
−0.284041 + 0.958812i \(0.591675\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.65414e10 + 6.32915e10i −0.473742 + 0.820546i
\(528\) 0 0
\(529\) 2.63967e10 + 4.57205e10i 0.337076 + 0.583832i
\(530\) 0 0
\(531\) 6.94579e10i 0.873662i
\(532\) 0 0
\(533\) 1.79787e11 2.22767
\(534\) 0 0
\(535\) −6.20237e10 + 3.58094e10i −0.757081 + 0.437101i
\(536\) 0 0
\(537\) −5.39247e9 3.11334e9i −0.0648471 0.0374395i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.23798e10 7.34040e10i 0.494732 0.856901i −0.505250 0.862973i \(-0.668600\pi\)
0.999982 + 0.00607251i \(0.00193295\pi\)
\(542\) 0 0
\(543\) 2.43449e10 + 4.21665e10i 0.280032 + 0.485030i
\(544\) 0 0
\(545\) 2.81650e10i 0.319245i
\(546\) 0 0
\(547\) −1.64069e10 −0.183264 −0.0916320 0.995793i \(-0.529208\pi\)
−0.0916320 + 0.995793i \(0.529208\pi\)
\(548\) 0 0
\(549\) −7.80594e9 + 4.50676e9i −0.0859282 + 0.0496107i
\(550\) 0 0
\(551\) 5.87612e10 + 3.39258e10i 0.637506 + 0.368065i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −8.93594e9 + 1.54775e10i −0.0941821 + 0.163128i
\(556\) 0 0
\(557\) 8.08990e10 + 1.40121e11i 0.840471 + 1.45574i 0.889497 + 0.456941i \(0.151055\pi\)
−0.0490265 + 0.998797i \(0.515612\pi\)
\(558\) 0 0
\(559\) 6.33116e10i 0.648390i
\(560\) 0 0
\(561\) 4.53765e10 0.458121
\(562\) 0 0
\(563\) −3.64217e10 + 2.10281e10i −0.362515 + 0.209298i −0.670184 0.742195i \(-0.733785\pi\)
0.307668 + 0.951494i \(0.400451\pi\)
\(564\) 0 0
\(565\) −8.19218e10 4.72976e10i −0.803907 0.464136i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.41355e10 1.28406e11i 0.707256 1.22500i −0.258615 0.965981i \(-0.583266\pi\)
0.965871 0.259023i \(-0.0834007\pi\)
\(570\) 0 0
\(571\) 4.01866e9 + 6.96052e9i 0.0378039 + 0.0654782i 0.884308 0.466903i \(-0.154630\pi\)
−0.846504 + 0.532382i \(0.821297\pi\)
\(572\) 0 0
\(573\) 3.82744e9i 0.0355050i
\(574\) 0 0
\(575\) −4.46156e10 −0.408146
\(576\) 0 0
\(577\) 1.29943e11 7.50226e10i 1.17233 0.676845i 0.218102 0.975926i \(-0.430014\pi\)
0.954228 + 0.299081i \(0.0966802\pi\)
\(578\) 0 0
\(579\) −2.69629e10 1.55670e10i −0.239912 0.138513i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7.92587e10 1.37280e11i 0.686077 1.18832i
\(584\) 0 0
\(585\) −3.90577e10 6.76499e10i −0.333490 0.577622i
\(586\) 0 0
\(587\) 1.31985e11i 1.11166i −0.831296 0.555830i \(-0.812401\pi\)
0.831296 0.555830i \(-0.187599\pi\)
\(588\) 0 0
\(589\) 2.71557e11 2.25632
\(590\) 0 0
\(591\) 7.29588e10 4.21228e10i 0.598036 0.345276i
\(592\) 0 0
\(593\) −1.53587e11 8.86738e10i −1.24204 0.717094i −0.272534 0.962146i \(-0.587862\pi\)
−0.969510 + 0.245052i \(0.921195\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.19995e10 3.81042e10i 0.173187 0.299969i
\(598\) 0 0
\(599\) −4.47106e10 7.74410e10i −0.347299 0.601539i 0.638470 0.769647i \(-0.279568\pi\)
−0.985769 + 0.168108i \(0.946234\pi\)
\(600\) 0 0
\(601\) 6.85319e10i 0.525285i 0.964893 + 0.262642i \(0.0845939\pi\)
−0.964893 + 0.262642i \(0.915406\pi\)
\(602\) 0 0
\(603\) −5.90938e10 −0.446964
\(604\) 0 0
\(605\) −1.06273e11 + 6.13565e10i −0.793230 + 0.457972i
\(606\) 0 0
\(607\) 3.17573e9 + 1.83351e9i 0.0233932 + 0.0135061i 0.511651 0.859193i \(-0.329034\pi\)
−0.488258 + 0.872699i \(0.662367\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.86002e10 1.53460e11i 0.635726 1.10111i
\(612\) 0 0
\(613\) 3.24622e10 + 5.62261e10i 0.229898 + 0.398196i 0.957778 0.287510i \(-0.0928273\pi\)
−0.727879 + 0.685705i \(0.759494\pi\)
\(614\) 0 0
\(615\) 4.67529e10i 0.326820i
\(616\) 0 0
\(617\) −9.79839e10 −0.676105 −0.338052 0.941127i \(-0.609768\pi\)
−0.338052 + 0.941127i \(0.609768\pi\)
\(618\) 0 0
\(619\) −1.01257e11 + 5.84609e10i −0.689705 + 0.398202i −0.803502 0.595303i \(-0.797032\pi\)
0.113796 + 0.993504i \(0.463699\pi\)
\(620\) 0 0
\(621\) 5.57257e10 + 3.21733e10i 0.374705 + 0.216336i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.72601e10 + 2.98954e10i −0.113116 + 0.195923i
\(626\) 0 0
\(627\) −8.43039e10 1.46019e11i −0.545479 0.944796i
\(628\) 0 0
\(629\) 8.93119e10i 0.570567i
\(630\) 0 0
\(631\) 1.32605e11 0.836457 0.418229 0.908342i \(-0.362651\pi\)
0.418229 + 0.908342i \(0.362651\pi\)
\(632\) 0 0
\(633\) −2.83191e10 + 1.63500e10i −0.176386 + 0.101837i
\(634\) 0 0
\(635\) −1.78838e10 1.03252e10i −0.109993 0.0635046i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.93635e10 1.20141e11i 0.416033 0.720590i
\(640\) 0 0
\(641\) 9.12550e10 + 1.58058e11i 0.540536 + 0.936236i 0.998873 + 0.0474575i \(0.0151119\pi\)
−0.458337 + 0.888778i \(0.651555\pi\)
\(642\) 0 0
\(643\) 4.16413e10i 0.243602i 0.992555 + 0.121801i \(0.0388669\pi\)
−0.992555 + 0.121801i \(0.961133\pi\)
\(644\) 0 0
\(645\) 1.64639e10 0.0951248
\(646\) 0 0
\(647\) −1.03407e11 + 5.97022e10i −0.590111 + 0.340701i −0.765142 0.643862i \(-0.777331\pi\)
0.175030 + 0.984563i \(0.443998\pi\)
\(648\) 0 0
\(649\) 2.67128e11 + 1.54227e11i 1.50571 + 0.869322i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.58120e11 + 2.73872e11i −0.869629 + 1.50624i −0.00725371 + 0.999974i \(0.502309\pi\)
−0.862376 + 0.506269i \(0.831024\pi\)
\(654\) 0 0
\(655\) 7.16976e10 + 1.24184e11i 0.389529 + 0.674683i
\(656\) 0 0
\(657\) 9.74857e10i 0.523214i
\(658\) 0 0
\(659\) −3.31924e10 −0.175994 −0.0879969 0.996121i \(-0.528047\pi\)
−0.0879969 + 0.996121i \(0.528047\pi\)
\(660\) 0 0
\(661\) −1.45318e11 + 8.38995e10i −0.761227 + 0.439495i −0.829736 0.558156i \(-0.811509\pi\)
0.0685089 + 0.997651i \(0.478176\pi\)
\(662\) 0 0
\(663\) 7.01840e10 + 4.05207e10i 0.363232 + 0.209712i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.60450e10 + 4.51113e10i −0.131590 + 0.227920i
\(668\) 0 0
\(669\) 2.76290e10 + 4.78548e10i 0.137931 + 0.238903i
\(670\) 0 0
\(671\) 4.00279e10i 0.197457i
\(672\) 0 0
\(673\) 9.56218e10 0.466119 0.233059 0.972462i \(-0.425126\pi\)
0.233059 + 0.972462i \(0.425126\pi\)
\(674\) 0 0
\(675\) 9.74326e10 5.62528e10i 0.469342 0.270975i
\(676\) 0 0
\(677\) −6.69694e10 3.86648e10i −0.318803 0.184061i 0.332056 0.943260i \(-0.392258\pi\)
−0.650859 + 0.759199i \(0.725591\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.00496e10 + 1.74065e10i −0.0467264 + 0.0809325i
\(682\) 0 0
\(683\) 2.07611e10 + 3.59593e10i 0.0954042 + 0.165245i 0.909777 0.415097i \(-0.136252\pi\)
−0.814373 + 0.580342i \(0.802919\pi\)
\(684\) 0 0
\(685\) 9.74908e10i 0.442793i
\(686\) 0 0
\(687\) 1.79309e10 0.0804960
\(688\) 0 0
\(689\) 2.45179e11 1.41554e11i 1.08794 0.628125i
\(690\) 0 0
\(691\) −2.01717e11 1.16461e11i −0.884769 0.510822i −0.0125412 0.999921i \(-0.503992\pi\)
−0.872228 + 0.489100i \(0.837325\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.55974e9 2.70155e9i 0.00668519 0.0115791i
\(696\) 0 0
\(697\) −1.16820e11 2.02338e11i −0.494979 0.857328i
\(698\) 0 0
\(699\) 8.11375e10i 0.339870i
\(700\) 0 0
\(701\) −1.07467e11 −0.445044 −0.222522 0.974928i \(-0.571429\pi\)
−0.222522 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 2.87400e11 1.65930e11i 1.17670 0.679367i
\(704\) 0 0
\(705\) −3.99066e10 2.30401e10i −0.161543 0.0932670i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.70870e10 6.42366e10i 0.146770 0.254213i −0.783262 0.621692i \(-0.786446\pi\)
0.930032 + 0.367479i \(0.119779\pi\)
\(710\) 0 0
\(711\) −1.44602e11 2.50458e11i −0.565843 0.980069i
\(712\) 0 0
\(713\) 2.08476e11i 0.806673i
\(714\) 0 0
\(715\) −3.46900e11 −1.32733
\(716\) 0 0
\(717\) 3.50594e10 2.02416e10i 0.132656 0.0765892i
\(718\) 0 0
\(719\) −1.62257e11 9.36794e10i −0.607140 0.350533i 0.164705 0.986343i \(-0.447333\pi\)
−0.771845 + 0.635810i \(0.780666\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.65076e10 + 8.05536e10i −0.170205 + 0.294803i
\(724\) 0 0
\(725\) 4.55379e10 + 7.88740e10i 0.164824 + 0.285484i
\(726\) 0 0
\(727\) 3.65939e11i 1.31000i 0.755629 + 0.655000i \(0.227331\pi\)
−0.755629 + 0.655000i \(0.772669\pi\)
\(728\) 0 0
\(729\) 3.14098e10 0.111213
\(730\) 0 0
\(731\) 7.12529e10 4.11379e10i 0.249536 0.144070i
\(732\) 0 0
\(733\) 2.60911e11 + 1.50637e11i 0.903807 + 0.521813i 0.878434 0.477865i \(-0.158589\pi\)
0.0253739 + 0.999678i \(0.491922\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.31214e11 + 2.27269e11i −0.444743 + 0.770318i
\(738\) 0 0
\(739\) −1.32861e11 2.30121e11i −0.445470 0.771577i 0.552615 0.833437i \(-0.313630\pi\)
−0.998085 + 0.0618599i \(0.980297\pi\)
\(740\) 0 0
\(741\) 3.01130e11i 0.998806i
\(742\) 0 0
\(743\) −4.14572e11 −1.36033 −0.680166 0.733058i \(-0.738092\pi\)
−0.680166 + 0.733058i \(0.738092\pi\)
\(744\) 0 0
\(745\) −2.34636e11 + 1.35467e11i −0.761674 + 0.439753i
\(746\) 0 0
\(747\) 9.82218e9 + 5.67084e9i 0.0315446 + 0.0182123i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.22326e11 + 3.85079e11i −0.698924 + 1.21057i 0.269916 + 0.962884i \(0.413004\pi\)
−0.968840 + 0.247688i \(0.920329\pi\)
\(752\) 0 0
\(753\) 9.60979e10 + 1.66446e11i 0.298905 + 0.517719i
\(754\) 0 0
\(755\) 3.59103e9i 0.0110518i
\(756\) 0 0
\(757\) −2.60251e11 −0.792517 −0.396258 0.918139i \(-0.629692\pi\)
−0.396258 + 0.918139i \(0.629692\pi\)
\(758\) 0 0
\(759\) 1.12099e11 6.47205e10i 0.337781 0.195018i
\(760\) 0 0
\(761\) 4.05348e10 + 2.34028e10i 0.120862 + 0.0697797i 0.559212 0.829025i \(-0.311104\pi\)
−0.438350 + 0.898804i \(0.644437\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.07568e10 + 8.79134e10i −0.148200 + 0.256690i
\(766\) 0 0
\(767\) 2.75445e11 + 4.77085e11i 0.795891 + 1.37852i
\(768\) 0 0
\(769\) 3.82049e11i 1.09248i −0.837628 0.546240i \(-0.816058\pi\)
0.837628 0.546240i \(-0.183942\pi\)
\(770\) 0 0
\(771\) 7.84702e9 0.0222069
\(772\) 0 0
\(773\) −3.11909e10 + 1.80080e10i −0.0873593 + 0.0504369i −0.543043 0.839705i \(-0.682728\pi\)
0.455684 + 0.890142i \(0.349395\pi\)
\(774\) 0 0
\(775\) 3.15671e11 + 1.82253e11i 0.875040 + 0.505205i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.34074e11 + 7.51839e11i −1.17873 + 2.04162i
\(780\) 0 0
\(781\) −3.08034e11 5.33531e11i −0.827932 1.43402i
\(782\) 0 0
\(783\) 1.31353e11i 0.349458i
\(784\) 0 0
\(785\) 1.52977e11 0.402855
\(786\) 0 0
\(787\) −2.83447e11 + 1.63648e11i −0.738879 + 0.426592i −0.821661 0.569976i \(-0.806953\pi\)
0.0827828 + 0.996568i \(0.473619\pi\)
\(788\) 0 0
\(789\) −8.87092e9 5.12163e9i −0.0228908 0.0132160i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.57444e10 + 6.19112e10i −0.0903890 + 0.156558i
\(794\) 0 0
\(795\) −3.68106e10 6.37577e10i −0.0921518 0.159612i
\(796\) 0 0
\(797\) 6.29152e11i 1.55927i 0.626232 + 0.779636i \(0.284596\pi\)
−0.626232 + 0.779636i \(0.715404\pi\)
\(798\) 0 0
\(799\) −2.30278e11 −0.565023
\(800\) 0 0
\(801\) −4.65236e11 + 2.68604e11i −1.13017 + 0.652503i
\(802\) 0 0
\(803\) −3.74920e11 2.16460e11i −0.901731 0.520615i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.02939e11 1.78296e11i 0.242710 0.420386i
\(808\) 0 0
\(809\) 1.37743e11 + 2.38579e11i 0.321571 + 0.556977i 0.980812 0.194954i \(-0.0624558\pi\)
−0.659241 + 0.751931i \(0.729122\pi\)
\(810\) 0 0
\(811\) 3.31344e11i 0.765942i −0.923760 0.382971i \(-0.874901\pi\)
0.923760 0.382971i \(-0.125099\pi\)
\(812\) 0 0
\(813\) −1.15320e11 −0.263962
\(814\) 0 0
\(815\) −1.89905e11 + 1.09642e11i −0.430433 + 0.248510i
\(816\) 0 0
\(817\) −2.64758e11 1.52858e11i −0.594238 0.343084i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.26039e10 + 9.11126e10i −0.115783 + 0.200542i −0.918093 0.396366i \(-0.870271\pi\)
0.802309 + 0.596908i \(0.203604\pi\)
\(822\) 0 0
\(823\) −1.32796e11 2.30010e11i −0.289459 0.501357i 0.684222 0.729274i \(-0.260142\pi\)
−0.973681 + 0.227917i \(0.926809\pi\)
\(824\) 0 0
\(825\) 2.26319e11i 0.488546i
\(826\) 0 0
\(827\) 2.81754e11 0.602349 0.301175 0.953569i \(-0.402621\pi\)
0.301175 + 0.953569i \(0.402621\pi\)
\(828\) 0 0
\(829\) 1.39457e11 8.05154e10i 0.295272 0.170475i −0.345045 0.938586i \(-0.612136\pi\)
0.640317 + 0.768111i \(0.278803\pi\)
\(830\) 0 0
\(831\) 2.12438e11 + 1.22651e11i 0.445481 + 0.257198i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.25278e10 1.42942e11i 0.169767 0.294046i
\(836\) 0 0
\(837\) −2.62853e11 4.55274e11i −0.535563 0.927623i
\(838\) 0 0
\(839\) 1.23152e11i 0.248539i −0.992248 0.124270i \(-0.960341\pi\)
0.992248 0.124270i \(-0.0396588\pi\)
\(840\) 0 0
\(841\) −3.93913e11 −0.787437
\(842\) 0 0
\(843\) 1.29830e11 7.49575e10i 0.257078 0.148424i
\(844\) 0 0
\(845\) −3.00841e11 1.73690e11i −0.590078 0.340682i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −8.43448e10 + 1.46089e11i −0.162341 + 0.281182i
\(850\) 0 0
\(851\) 1.27386e11 + 2.20638e11i 0.242886 + 0.420690i
\(852\) 0 0
\(853\) 9.07583e11i 1.71431i 0.515056 + 0.857156i \(0.327771\pi\)
−0.515056 + 0.857156i \(0.672229\pi\)
\(854\) 0 0
\(855\) 3.77200e11 0.705841
\(856\) 0 0
\(857\) 6.57594e11 3.79662e11i 1.21909 0.703840i 0.254364 0.967109i \(-0.418134\pi\)
0.964722 + 0.263269i \(0.0848006\pi\)
\(858\) 0 0
\(859\) 1.38342e11 + 7.98719e10i 0.254087 + 0.146697i 0.621634 0.783308i \(-0.286469\pi\)
−0.367547 + 0.930005i \(0.619802\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.48166e11 + 4.29837e11i −0.447404 + 0.774926i −0.998216 0.0597030i \(-0.980985\pi\)
0.550812 + 0.834629i \(0.314318\pi\)
\(864\) 0 0
\(865\) −1.32483e11 2.29468e11i −0.236645 0.409881i
\(866\) 0 0
\(867\) 1.28961e11i 0.228235i
\(868\) 0 0
\(869\) −1.28432e12 −2.25213
\(870\) 0 0
\(871\) −4.05897e11 + 2.34345e11i −0.705251 + 0.407177i
\(872\) 0 0
\(873\) −1.14856e11 6.63120e10i −0.197740 0.114165i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.87067e11 4.97215e11i 0.485272 0.840515i −0.514585 0.857439i \(-0.672054\pi\)
0.999857 + 0.0169241i \(0.00538738\pi\)
\(878\) 0 0
\(879\) 8.39246e10 + 1.45362e11i 0.140583 + 0.243497i
\(880\) 0 0
\(881\) 1.34834e11i 0.223819i −0.993718 0.111909i \(-0.964303\pi\)
0.993718 0.111909i \(-0.0356967\pi\)
\(882\) 0 0
\(883\) 2.79034e11 0.459002 0.229501 0.973308i \(-0.426291\pi\)
0.229501 + 0.973308i \(0.426291\pi\)
\(884\) 0 0
\(885\) 1.24064e11 7.16283e10i 0.202242 0.116765i
\(886\) 0 0
\(887\) 2.45349e11 + 1.41652e11i 0.396360 + 0.228838i 0.684912 0.728626i \(-0.259841\pi\)
−0.288552 + 0.957464i \(0.593174\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.66828e11 4.62160e11i 0.423370 0.733299i
\(892\) 0 0
\(893\) 4.27829e11 + 7.41021e11i 0.672766 + 1.16526i
\(894\) 0 0
\(895\) 6.18612e10i 0.0964109i
\(896\) 0 0
\(897\) 2.31179e11 0.357091
\(898\) 0 0
\(899\) 3.68555e11 2.12785e11i 0.564240 0.325764i
\(900\) 0 0
\(901\) −3.18619e11 1.83955e11i −0.483474 0.279134i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.41863e11 + 4.18918e11i −0.360557 + 0.624504i
\(906\) 0 0
\(907\) 2.48996e11 + 4.31274e11i 0.367929 + 0.637272i 0.989242 0.146291i \(-0.0467336\pi\)
−0.621313 + 0.783563i \(0.713400\pi\)
\(908\) 0 0
\(909\) 4.49925e11i 0.658999i
\(910\) 0 0
\(911\) 7.98004e11 1.15859 0.579297 0.815117i \(-0.303327\pi\)
0.579297 + 0.815117i \(0.303327\pi\)
\(912\) 0 0
\(913\) 4.36190e10 2.51834e10i 0.0627758 0.0362436i
\(914\) 0 0
\(915\) 1.60997e10 + 9.29518e9i 0.0229686 + 0.0132609i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.56291e11 2.70704e11i 0.219115 0.379518i −0.735423 0.677609i \(-0.763016\pi\)
0.954538 + 0.298091i \(0.0963497\pi\)
\(920\) 0 0
\(921\) −2.35305e11 4.07561e11i −0.327034 0.566440i
\(922\) 0 0
\(923\) 1.10028e12i 1.51600i
\(924\) 0 0
\(925\) 4.45450e11 0.608460
\(926\) 0 0
\(927\) 4.10586e11 2.37052e11i 0.556013 0.321014i
\(928\) 0 0
\(929\) 1.00462e12 + 5.80018e11i 1.34878 + 0.778716i 0.988076 0.153966i \(-0.0492048\pi\)
0.360699 + 0.932682i \(0.382538\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.54449e11 2.67513e11i 0.203825 0.353036i
\(934\) 0 0
\(935\) 2.25404e11 + 3.90412e11i 0.294928 + 0.510830i
\(936\) 0 0
\(937\) 9.95746e11i 1.29179i −0.763428 0.645893i \(-0.776485\pi\)
0.763428 0.645893i \(-0.223515\pi\)
\(938\) 0 0
\(939\) 5.50715e11 0.708377
\(940\) 0 0
\(941\) −4.92448e11 + 2.84315e11i −0.628061 + 0.362611i −0.780001 0.625779i \(-0.784781\pi\)
0.151940 + 0.988390i \(0.451448\pi\)
\(942\) 0 0
\(943\) −5.77190e11 3.33241e11i −0.729915 0.421417i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.65811e11 9.80013e11i 0.703512 1.21852i −0.263714 0.964601i \(-0.584948\pi\)
0.967226 0.253917i \(-0.0817191\pi\)
\(948\) 0 0
\(949\) −3.86593e11 6.69599e11i −0.476639 0.825563i
\(950\) 0 0
\(951\) 3.19515e11i 0.390633i
\(952\) 0 0
\(953\) 1.59922e11 0.193882 0.0969411 0.995290i \(-0.469094\pi\)
0.0969411 + 0.995290i \(0.469094\pi\)
\(954\) 0 0
\(955\) 3.29306e10 1.90125e10i 0.0395901 0.0228573i
\(956\) 0 0
\(957\) −2.28833e11 1.32117e11i −0.272817 0.157511i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.25169e11 7.36414e11i 0.498503 0.863433i
\(962\) 0 0
\(963\) −5.83100e11 1.00996e12i −0.678012 1.17435i
\(964\) 0 0
\(965\) 3.09312e11i 0.356687i
\(966\) 0 0
\(967\) 1.40368e12 1.60532 0.802660 0.596436i \(-0.203417\pi\)
0.802660 + 0.596436i \(0.203417\pi\)
\(968\) 0 0
\(969\) −3.38901e11 + 1.95665e11i −0.384395 + 0.221931i
\(970\) 0 0
\(971\) 1.36401e12 + 7.87511e11i 1.53441 + 0.885890i 0.999151 + 0.0411996i \(0.0131180\pi\)
0.535255 + 0.844690i \(0.320215\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.02100e11 3.50048e11i 0.223639 0.387355i
\(976\) 0 0
\(977\) 3.15641e11 + 5.46706e11i 0.346429 + 0.600033i 0.985612 0.169021i \(-0.0540607\pi\)
−0.639183 + 0.769055i \(0.720727\pi\)
\(978\) 0 0
\(979\) 2.38567e12i 2.59705i
\(980\) 0 0
\(981\) −4.58623e11 −0.495199
\(982\) 0 0
\(983\) −1.28656e12 + 7.42796e11i −1.37790 + 0.795528i −0.991906 0.126975i \(-0.959473\pi\)
−0.385990 + 0.922503i \(0.626140\pi\)
\(984\) 0 0
\(985\) 7.24834e11 + 4.18483e11i 0.770005 + 0.444563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.17350e11 2.03256e11i 0.122658 0.212451i
\(990\) 0 0
\(991\) 6.13950e11 + 1.06339e12i 0.636558 + 1.10255i 0.986183 + 0.165662i \(0.0529760\pi\)
−0.349624 + 0.936890i \(0.613691\pi\)
\(992\) 0 0
\(993\) 1.65107e11i 0.169812i
\(994\) 0 0
\(995\) 4.37123e11 0.445976
\(996\) 0 0
\(997\) 1.50902e12 8.71236e11i 1.52727 0.881770i 0.527795 0.849372i \(-0.323019\pi\)
0.999475 0.0323977i \(-0.0103143\pi\)
\(998\) 0 0
\(999\) −5.56375e11 3.21223e11i −0.558606 0.322511i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.b.117.4 12
7.2 even 3 28.9.b.a.13.4 yes 6
7.3 odd 6 inner 196.9.h.b.129.4 12
7.4 even 3 inner 196.9.h.b.129.3 12
7.5 odd 6 28.9.b.a.13.3 6
7.6 odd 2 inner 196.9.h.b.117.3 12
21.2 odd 6 252.9.d.b.181.4 6
21.5 even 6 252.9.d.b.181.3 6
28.19 even 6 112.9.c.d.97.4 6
28.23 odd 6 112.9.c.d.97.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.9.b.a.13.3 6 7.5 odd 6
28.9.b.a.13.4 yes 6 7.2 even 3
112.9.c.d.97.3 6 28.23 odd 6
112.9.c.d.97.4 6 28.19 even 6
196.9.h.b.117.3 12 7.6 odd 2 inner
196.9.h.b.117.4 12 1.1 even 1 trivial
196.9.h.b.129.3 12 7.4 even 3 inner
196.9.h.b.129.4 12 7.3 odd 6 inner
252.9.d.b.181.3 6 21.5 even 6
252.9.d.b.181.4 6 21.2 odd 6