Properties

Label 196.8.e.f.177.4
Level $196$
Weight $8$
Character 196.177
Analytic conductor $61.227$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,8,Mod(165,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.165"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-27,0,-249] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.2274649949\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{5}\cdot 7^{6} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.4
Root \(-8.10827 + 14.0439i\) of defining polynomial
Character \(\chi\) \(=\) 196.177
Dual form 196.8.e.f.165.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.22936 + 15.9857i) q^{3} +(88.1161 - 152.621i) q^{5} +(923.138 - 1598.92i) q^{9} +(1357.32 + 2350.94i) q^{11} -13223.2 q^{13} +3253.02 q^{15} +(-11131.2 - 19279.8i) q^{17} +(-4462.71 + 7729.64i) q^{19} +(11763.5 - 20375.0i) q^{23} +(23533.6 + 40761.4i) q^{25} +74449.1 q^{27} -186244. q^{29} +(67236.0 + 116456. i) q^{31} +(-25054.4 + 43395.4i) q^{33} +(-99319.8 + 172027. i) q^{37} +(-122041. - 211382. i) q^{39} -263027. q^{41} +235255. q^{43} +(-162687. - 281781. i) q^{45} +(-390528. + 676414. i) q^{47} +(205468. - 355881. i) q^{51} +(549100. + 951068. i) q^{53} +478406. q^{55} -164752. q^{57} +(-422267. - 731387. i) q^{59} +(-455474. + 788904. i) q^{61} +(-1.16517e6 + 2.01814e6i) q^{65} +(-2.30285e6 - 3.98865e6i) q^{67} +434279. q^{69} -5.88754e6 q^{71} +(-1.39756e6 - 2.42065e6i) q^{73} +(-434401. + 752404. i) q^{75} +(469333. - 812909. i) q^{79} +(-1.33178e6 - 2.30672e6i) q^{81} +4.16545e6 q^{83} -3.92336e6 q^{85} +(-1.71891e6 - 2.97724e6i) q^{87} +(-4.85226e6 + 8.40436e6i) q^{89} +(-1.24109e6 + 2.14963e6i) q^{93} +(786473. + 1.36221e6i) q^{95} -3.19719e6 q^{97} +5.01197e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 27 q^{3} - 249 q^{5} - 5702 q^{9} + 6399 q^{11} + 26988 q^{13} + 19294 q^{15} - 3609 q^{17} + 12403 q^{19} - 13959 q^{23} - 162364 q^{25} - 161550 q^{27} + 26148 q^{29} + 20181 q^{31} - 264239 q^{33}+ \cdots - 119277812 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.22936 + 15.9857i 0.197355 + 0.341828i 0.947670 0.319252i \(-0.103432\pi\)
−0.750315 + 0.661080i \(0.770098\pi\)
\(4\) 0 0
\(5\) 88.1161 152.621i 0.315254 0.546035i −0.664238 0.747521i \(-0.731244\pi\)
0.979491 + 0.201486i \(0.0645771\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 923.138 1598.92i 0.422102 0.731103i
\(10\) 0 0
\(11\) 1357.32 + 2350.94i 0.307473 + 0.532559i 0.977809 0.209499i \(-0.0671832\pi\)
−0.670336 + 0.742058i \(0.733850\pi\)
\(12\) 0 0
\(13\) −13223.2 −1.66930 −0.834649 0.550783i \(-0.814329\pi\)
−0.834649 + 0.550783i \(0.814329\pi\)
\(14\) 0 0
\(15\) 3253.02 0.248867
\(16\) 0 0
\(17\) −11131.2 19279.8i −0.549505 0.951771i −0.998308 0.0581402i \(-0.981483\pi\)
0.448803 0.893631i \(-0.351850\pi\)
\(18\) 0 0
\(19\) −4462.71 + 7729.64i −0.149266 + 0.258536i −0.930956 0.365130i \(-0.881024\pi\)
0.781690 + 0.623667i \(0.214358\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 11763.5 20375.0i 0.201600 0.349181i −0.747444 0.664324i \(-0.768719\pi\)
0.949044 + 0.315144i \(0.102053\pi\)
\(24\) 0 0
\(25\) 23533.6 + 40761.4i 0.301230 + 0.521746i
\(26\) 0 0
\(27\) 74449.1 0.727924
\(28\) 0 0
\(29\) −186244. −1.41804 −0.709020 0.705189i \(-0.750862\pi\)
−0.709020 + 0.705189i \(0.750862\pi\)
\(30\) 0 0
\(31\) 67236.0 + 116456.i 0.405355 + 0.702096i 0.994363 0.106032i \(-0.0338145\pi\)
−0.589008 + 0.808127i \(0.700481\pi\)
\(32\) 0 0
\(33\) −25054.4 + 43395.4i −0.121362 + 0.210206i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −99319.8 + 172027.i −0.322351 + 0.558329i −0.980973 0.194145i \(-0.937807\pi\)
0.658621 + 0.752475i \(0.271140\pi\)
\(38\) 0 0
\(39\) −122041. 211382.i −0.329443 0.570613i
\(40\) 0 0
\(41\) −263027. −0.596015 −0.298007 0.954564i \(-0.596322\pi\)
−0.298007 + 0.954564i \(0.596322\pi\)
\(42\) 0 0
\(43\) 235255. 0.451231 0.225615 0.974216i \(-0.427561\pi\)
0.225615 + 0.974216i \(0.427561\pi\)
\(44\) 0 0
\(45\) −162687. 281781.i −0.266139 0.460966i
\(46\) 0 0
\(47\) −390528. + 676414.i −0.548668 + 0.950320i 0.449698 + 0.893180i \(0.351531\pi\)
−0.998366 + 0.0571400i \(0.981802\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 205468. 355881.i 0.216895 0.375673i
\(52\) 0 0
\(53\) 549100. + 951068.i 0.506624 + 0.877498i 0.999971 + 0.00766543i \(0.00244001\pi\)
−0.493347 + 0.869833i \(0.664227\pi\)
\(54\) 0 0
\(55\) 478406. 0.387728
\(56\) 0 0
\(57\) −164752. −0.117833
\(58\) 0 0
\(59\) −422267. 731387.i −0.267673 0.463623i 0.700587 0.713567i \(-0.252921\pi\)
−0.968260 + 0.249943i \(0.919588\pi\)
\(60\) 0 0
\(61\) −455474. + 788904.i −0.256927 + 0.445010i −0.965417 0.260710i \(-0.916043\pi\)
0.708490 + 0.705721i \(0.249377\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.16517e6 + 2.01814e6i −0.526252 + 0.911495i
\(66\) 0 0
\(67\) −2.30285e6 3.98865e6i −0.935414 1.62018i −0.773894 0.633315i \(-0.781694\pi\)
−0.161520 0.986869i \(-0.551640\pi\)
\(68\) 0 0
\(69\) 434279. 0.159146
\(70\) 0 0
\(71\) −5.88754e6 −1.95223 −0.976113 0.217265i \(-0.930286\pi\)
−0.976113 + 0.217265i \(0.930286\pi\)
\(72\) 0 0
\(73\) −1.39756e6 2.42065e6i −0.420476 0.728286i 0.575510 0.817795i \(-0.304804\pi\)
−0.995986 + 0.0895085i \(0.971470\pi\)
\(74\) 0 0
\(75\) −434401. + 752404.i −0.118898 + 0.205938i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 469333. 812909.i 0.107099 0.185501i −0.807495 0.589875i \(-0.799177\pi\)
0.914594 + 0.404373i \(0.132510\pi\)
\(80\) 0 0
\(81\) −1.33178e6 2.30672e6i −0.278443 0.482278i
\(82\) 0 0
\(83\) 4.16545e6 0.799630 0.399815 0.916596i \(-0.369074\pi\)
0.399815 + 0.916596i \(0.369074\pi\)
\(84\) 0 0
\(85\) −3.92336e6 −0.692934
\(86\) 0 0
\(87\) −1.71891e6 2.97724e6i −0.279857 0.484726i
\(88\) 0 0
\(89\) −4.85226e6 + 8.40436e6i −0.729590 + 1.26369i 0.227467 + 0.973786i \(0.426956\pi\)
−0.957057 + 0.289901i \(0.906378\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.24109e6 + 2.14963e6i −0.159997 + 0.277124i
\(94\) 0 0
\(95\) 786473. + 1.36221e6i 0.0941133 + 0.163009i
\(96\) 0 0
\(97\) −3.19719e6 −0.355686 −0.177843 0.984059i \(-0.556912\pi\)
−0.177843 + 0.984059i \(0.556912\pi\)
\(98\) 0 0
\(99\) 5.01197e6 0.519141
\(100\) 0 0
\(101\) −5.17419e6 8.96196e6i −0.499709 0.865522i 0.500291 0.865858i \(-0.333227\pi\)
−1.00000 0.000335479i \(0.999893\pi\)
\(102\) 0 0
\(103\) −8.88935e6 + 1.53968e7i −0.801567 + 1.38835i 0.117018 + 0.993130i \(0.462667\pi\)
−0.918585 + 0.395225i \(0.870667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.18742e6 + 1.59131e7i −0.725020 + 1.25577i 0.233945 + 0.972250i \(0.424836\pi\)
−0.958966 + 0.283522i \(0.908497\pi\)
\(108\) 0 0
\(109\) −2.95020e6 5.10989e6i −0.218202 0.377937i 0.736056 0.676920i \(-0.236686\pi\)
−0.954258 + 0.298983i \(0.903352\pi\)
\(110\) 0 0
\(111\) −3.66663e6 −0.254470
\(112\) 0 0
\(113\) −2.25373e7 −1.46935 −0.734677 0.678417i \(-0.762666\pi\)
−0.734677 + 0.678417i \(0.762666\pi\)
\(114\) 0 0
\(115\) −2.07311e6 3.59073e6i −0.127110 0.220161i
\(116\) 0 0
\(117\) −1.22068e7 + 2.11428e7i −0.704614 + 1.22043i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.05896e6 1.04944e7i 0.310920 0.538530i
\(122\) 0 0
\(123\) −2.42757e6 4.20468e6i −0.117626 0.203735i
\(124\) 0 0
\(125\) 2.20629e7 1.01036
\(126\) 0 0
\(127\) −3.43100e7 −1.48630 −0.743152 0.669122i \(-0.766670\pi\)
−0.743152 + 0.669122i \(0.766670\pi\)
\(128\) 0 0
\(129\) 2.17125e6 + 3.76072e6i 0.0890525 + 0.154243i
\(130\) 0 0
\(131\) 1.02849e7 1.78139e7i 0.399713 0.692324i −0.593977 0.804482i \(-0.702443\pi\)
0.993690 + 0.112158i \(0.0357764\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.56016e6 1.13625e7i 0.229481 0.397472i
\(136\) 0 0
\(137\) −1.36313e7 2.36101e7i −0.452913 0.784469i 0.545652 0.838012i \(-0.316282\pi\)
−0.998566 + 0.0535428i \(0.982949\pi\)
\(138\) 0 0
\(139\) 3.94701e6 0.124657 0.0623285 0.998056i \(-0.480147\pi\)
0.0623285 + 0.998056i \(0.480147\pi\)
\(140\) 0 0
\(141\) −1.44173e7 −0.433128
\(142\) 0 0
\(143\) −1.79480e7 3.10869e7i −0.513264 0.889000i
\(144\) 0 0
\(145\) −1.64111e7 + 2.84248e7i −0.447042 + 0.774300i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.13115e7 + 5.42331e7i −0.775446 + 1.34311i 0.159097 + 0.987263i \(0.449142\pi\)
−0.934543 + 0.355850i \(0.884192\pi\)
\(150\) 0 0
\(151\) 1.89202e7 + 3.27707e7i 0.447205 + 0.774581i 0.998203 0.0599252i \(-0.0190862\pi\)
−0.550998 + 0.834506i \(0.685753\pi\)
\(152\) 0 0
\(153\) −4.11026e7 −0.927789
\(154\) 0 0
\(155\) 2.36983e7 0.511159
\(156\) 0 0
\(157\) 462647. + 801328.i 0.00954115 + 0.0165258i 0.870757 0.491714i \(-0.163630\pi\)
−0.861215 + 0.508240i \(0.830296\pi\)
\(158\) 0 0
\(159\) −1.01357e7 + 1.75555e7i −0.199969 + 0.346357i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.05628e7 5.29364e7i 0.552761 0.957409i −0.445313 0.895375i \(-0.646908\pi\)
0.998074 0.0620347i \(-0.0197589\pi\)
\(164\) 0 0
\(165\) 4.41538e6 + 7.64767e6i 0.0765199 + 0.132536i
\(166\) 0 0
\(167\) 1.21239e6 0.0201434 0.0100717 0.999949i \(-0.496794\pi\)
0.0100717 + 0.999949i \(0.496794\pi\)
\(168\) 0 0
\(169\) 1.12104e8 1.78655
\(170\) 0 0
\(171\) 8.23939e6 + 1.42710e7i 0.126011 + 0.218258i
\(172\) 0 0
\(173\) 4.93351e7 8.54510e7i 0.724428 1.25475i −0.234781 0.972048i \(-0.575437\pi\)
0.959209 0.282697i \(-0.0912293\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.79450e6 1.35005e7i 0.105653 0.182996i
\(178\) 0 0
\(179\) −2.40837e7 4.17142e7i −0.313861 0.543623i 0.665334 0.746546i \(-0.268289\pi\)
−0.979195 + 0.202923i \(0.934956\pi\)
\(180\) 0 0
\(181\) 6.53009e7 0.818548 0.409274 0.912411i \(-0.365782\pi\)
0.409274 + 0.912411i \(0.365782\pi\)
\(182\) 0 0
\(183\) −1.68149e7 −0.202823
\(184\) 0 0
\(185\) 1.75033e7 + 3.03167e7i 0.203245 + 0.352031i
\(186\) 0 0
\(187\) 3.02172e7 5.23378e7i 0.337916 0.585288i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.33404e6 + 2.31063e6i −0.0138533 + 0.0239946i −0.872869 0.487955i \(-0.837743\pi\)
0.859016 + 0.511949i \(0.171076\pi\)
\(192\) 0 0
\(193\) 1.70478e7 + 2.95277e7i 0.170694 + 0.295651i 0.938663 0.344837i \(-0.112066\pi\)
−0.767969 + 0.640487i \(0.778732\pi\)
\(194\) 0 0
\(195\) −4.30152e7 −0.415433
\(196\) 0 0
\(197\) 2.65031e7 0.246982 0.123491 0.992346i \(-0.460591\pi\)
0.123491 + 0.992346i \(0.460591\pi\)
\(198\) 0 0
\(199\) 1.06544e8 + 1.84539e8i 0.958388 + 1.65998i 0.726417 + 0.687254i \(0.241184\pi\)
0.231971 + 0.972723i \(0.425483\pi\)
\(200\) 0 0
\(201\) 4.25077e7 7.36254e7i 0.369216 0.639502i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.31769e7 + 4.01436e7i −0.187896 + 0.325445i
\(206\) 0 0
\(207\) −2.17187e7 3.76179e7i −0.170191 0.294780i
\(208\) 0 0
\(209\) −2.42293e7 −0.183581
\(210\) 0 0
\(211\) 3.67400e7 0.269247 0.134624 0.990897i \(-0.457017\pi\)
0.134624 + 0.990897i \(0.457017\pi\)
\(212\) 0 0
\(213\) −5.43383e7 9.41166e7i −0.385281 0.667326i
\(214\) 0 0
\(215\) 2.07297e7 3.59049e7i 0.142252 0.246388i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.57972e7 4.46821e7i 0.165966 0.287461i
\(220\) 0 0
\(221\) 1.47190e8 + 2.54941e8i 0.917287 + 1.58879i
\(222\) 0 0
\(223\) −3.23173e7 −0.195150 −0.0975749 0.995228i \(-0.531109\pi\)
−0.0975749 + 0.995228i \(0.531109\pi\)
\(224\) 0 0
\(225\) 8.68991e7 0.508600
\(226\) 0 0
\(227\) 6.22771e7 + 1.07867e8i 0.353376 + 0.612066i 0.986839 0.161708i \(-0.0517001\pi\)
−0.633462 + 0.773774i \(0.718367\pi\)
\(228\) 0 0
\(229\) 8.82568e7 1.52865e8i 0.485651 0.841171i −0.514214 0.857662i \(-0.671916\pi\)
0.999864 + 0.0164909i \(0.00524944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.57549e8 2.72882e8i 0.815960 1.41328i −0.0926758 0.995696i \(-0.529542\pi\)
0.908636 0.417589i \(-0.137125\pi\)
\(234\) 0 0
\(235\) 6.88235e7 + 1.19206e8i 0.345939 + 0.599184i
\(236\) 0 0
\(237\) 1.73266e7 0.0845461
\(238\) 0 0
\(239\) 2.34353e8 1.11040 0.555198 0.831718i \(-0.312642\pi\)
0.555198 + 0.831718i \(0.312642\pi\)
\(240\) 0 0
\(241\) −5.54267e6 9.60019e6i −0.0255070 0.0441794i 0.852990 0.521927i \(-0.174787\pi\)
−0.878497 + 0.477748i \(0.841453\pi\)
\(242\) 0 0
\(243\) 1.05993e8 1.83586e8i 0.473866 0.820760i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.90111e7 1.02210e8i 0.249169 0.431574i
\(248\) 0 0
\(249\) 3.84445e7 + 6.65878e7i 0.157811 + 0.273336i
\(250\) 0 0
\(251\) −4.57338e8 −1.82549 −0.912744 0.408531i \(-0.866041\pi\)
−0.912744 + 0.408531i \(0.866041\pi\)
\(252\) 0 0
\(253\) 6.38673e7 0.247946
\(254\) 0 0
\(255\) −3.62101e7 6.27177e7i −0.136754 0.236864i
\(256\) 0 0
\(257\) −2.06665e8 + 3.57954e8i −0.759453 + 1.31541i 0.183677 + 0.982987i \(0.441200\pi\)
−0.943130 + 0.332424i \(0.892133\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.71929e8 + 2.97789e8i −0.598558 + 1.03673i
\(262\) 0 0
\(263\) −1.35557e8 2.34792e8i −0.459492 0.795864i 0.539442 0.842023i \(-0.318635\pi\)
−0.998934 + 0.0461589i \(0.985302\pi\)
\(264\) 0 0
\(265\) 1.93538e8 0.638860
\(266\) 0 0
\(267\) −1.79133e8 −0.575952
\(268\) 0 0
\(269\) 2.29263e8 + 3.97095e8i 0.718126 + 1.24383i 0.961741 + 0.273959i \(0.0883332\pi\)
−0.243615 + 0.969872i \(0.578333\pi\)
\(270\) 0 0
\(271\) 2.70728e8 4.68915e8i 0.826306 1.43120i −0.0746117 0.997213i \(-0.523772\pi\)
0.900917 0.433991i \(-0.142895\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.38852e7 + 1.10652e8i −0.185240 + 0.320846i
\(276\) 0 0
\(277\) −6.53840e7 1.13248e8i −0.184839 0.320150i 0.758684 0.651459i \(-0.225843\pi\)
−0.943522 + 0.331310i \(0.892510\pi\)
\(278\) 0 0
\(279\) 2.48272e8 0.684405
\(280\) 0 0
\(281\) 1.71135e8 0.460114 0.230057 0.973177i \(-0.426109\pi\)
0.230057 + 0.973177i \(0.426109\pi\)
\(282\) 0 0
\(283\) −5.47927e7 9.49037e7i −0.143704 0.248903i 0.785184 0.619262i \(-0.212568\pi\)
−0.928889 + 0.370359i \(0.879235\pi\)
\(284\) 0 0
\(285\) −1.45173e7 + 2.51447e7i −0.0371474 + 0.0643412i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4.26390e7 + 7.38528e7i −0.103912 + 0.179980i
\(290\) 0 0
\(291\) −2.95080e7 5.11094e7i −0.0701964 0.121584i
\(292\) 0 0
\(293\) 7.45719e8 1.73196 0.865981 0.500077i \(-0.166695\pi\)
0.865981 + 0.500077i \(0.166695\pi\)
\(294\) 0 0
\(295\) −1.48834e8 −0.337540
\(296\) 0 0
\(297\) 1.01051e8 + 1.75026e8i 0.223817 + 0.387663i
\(298\) 0 0
\(299\) −1.55551e8 + 2.69422e8i −0.336530 + 0.582887i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 9.55089e7 1.65426e8i 0.197240 0.341630i
\(304\) 0 0
\(305\) 8.02692e7 + 1.39030e8i 0.161994 + 0.280582i
\(306\) 0 0
\(307\) −3.32575e8 −0.656002 −0.328001 0.944677i \(-0.606375\pi\)
−0.328001 + 0.944677i \(0.606375\pi\)
\(308\) 0 0
\(309\) −3.28172e8 −0.632772
\(310\) 0 0
\(311\) −4.04524e8 7.00656e8i −0.762575 1.32082i −0.941519 0.336960i \(-0.890601\pi\)
0.178944 0.983859i \(-0.442732\pi\)
\(312\) 0 0
\(313\) −3.26018e8 + 5.64680e8i −0.600948 + 1.04087i 0.391730 + 0.920080i \(0.371877\pi\)
−0.992678 + 0.120792i \(0.961457\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.16084e8 2.01063e8i 0.204675 0.354508i −0.745354 0.666669i \(-0.767720\pi\)
0.950029 + 0.312161i \(0.101053\pi\)
\(318\) 0 0
\(319\) −2.52792e8 4.37848e8i −0.436009 0.755190i
\(320\) 0 0
\(321\) −3.39176e8 −0.572344
\(322\) 0 0
\(323\) 1.98702e8 0.328090
\(324\) 0 0
\(325\) −3.11189e8 5.38995e8i −0.502843 0.870950i
\(326\) 0 0
\(327\) 5.44569e7 9.43221e7i 0.0861263 0.149175i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.98968e8 + 6.91033e8i −0.604700 + 1.04737i 0.387399 + 0.921912i \(0.373374\pi\)
−0.992099 + 0.125459i \(0.959960\pi\)
\(332\) 0 0
\(333\) 1.83372e8 + 3.17609e8i 0.272131 + 0.471344i
\(334\) 0 0
\(335\) −8.11672e8 −1.17957
\(336\) 0 0
\(337\) −4.79255e8 −0.682122 −0.341061 0.940041i \(-0.610786\pi\)
−0.341061 + 0.940041i \(0.610786\pi\)
\(338\) 0 0
\(339\) −2.08004e8 3.60274e8i −0.289984 0.502267i
\(340\) 0 0
\(341\) −1.82521e8 + 3.16136e8i −0.249272 + 0.431751i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.82669e7 6.62803e7i 0.0501715 0.0868996i
\(346\) 0 0
\(347\) −6.57809e8 1.13936e9i −0.845175 1.46389i −0.885469 0.464698i \(-0.846163\pi\)
0.0402946 0.999188i \(-0.487170\pi\)
\(348\) 0 0
\(349\) 2.67516e8 0.336869 0.168434 0.985713i \(-0.446129\pi\)
0.168434 + 0.985713i \(0.446129\pi\)
\(350\) 0 0
\(351\) −9.84453e8 −1.21512
\(352\) 0 0
\(353\) −3.21078e8 5.56124e8i −0.388507 0.672915i 0.603742 0.797180i \(-0.293676\pi\)
−0.992249 + 0.124266i \(0.960343\pi\)
\(354\) 0 0
\(355\) −5.18787e8 + 8.98566e8i −0.615446 + 1.06598i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.14068e8 5.43981e8i 0.358255 0.620517i −0.629414 0.777070i \(-0.716705\pi\)
0.987669 + 0.156553i \(0.0500383\pi\)
\(360\) 0 0
\(361\) 4.07104e8 + 7.05125e8i 0.455439 + 0.788844i
\(362\) 0 0
\(363\) 2.23681e8 0.245446
\(364\) 0 0
\(365\) −4.92591e8 −0.530227
\(366\) 0 0
\(367\) 7.84137e8 + 1.35816e9i 0.828058 + 1.43424i 0.899560 + 0.436798i \(0.143887\pi\)
−0.0715019 + 0.997440i \(0.522779\pi\)
\(368\) 0 0
\(369\) −2.42810e8 + 4.20560e8i −0.251579 + 0.435748i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.05018e8 + 1.04792e9i −0.603653 + 1.04556i 0.388610 + 0.921402i \(0.372955\pi\)
−0.992263 + 0.124155i \(0.960378\pi\)
\(374\) 0 0
\(375\) 2.03626e8 + 3.52691e8i 0.199400 + 0.345371i
\(376\) 0 0
\(377\) 2.46273e9 2.36713
\(378\) 0 0
\(379\) −1.19750e9 −1.12990 −0.564949 0.825126i \(-0.691104\pi\)
−0.564949 + 0.825126i \(0.691104\pi\)
\(380\) 0 0
\(381\) −3.16659e8 5.48470e8i −0.293329 0.508061i
\(382\) 0 0
\(383\) −1.20905e8 + 2.09413e8i −0.109963 + 0.190462i −0.915755 0.401737i \(-0.868407\pi\)
0.805792 + 0.592199i \(0.201740\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.17173e8 3.76154e8i 0.190466 0.329896i
\(388\) 0 0
\(389\) −1.97619e8 3.42287e8i −0.170218 0.294827i 0.768278 0.640116i \(-0.221114\pi\)
−0.938496 + 0.345290i \(0.887781\pi\)
\(390\) 0 0
\(391\) −5.23769e8 −0.443120
\(392\) 0 0
\(393\) 3.79690e8 0.315541
\(394\) 0 0
\(395\) −8.27116e7 1.43261e8i −0.0675269 0.116960i
\(396\) 0 0
\(397\) −9.37843e8 + 1.62439e9i −0.752252 + 1.30294i 0.194477 + 0.980907i \(0.437699\pi\)
−0.946729 + 0.322032i \(0.895634\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.31917e8 + 1.61413e9i −0.721725 + 1.25006i 0.238583 + 0.971122i \(0.423317\pi\)
−0.960308 + 0.278942i \(0.910016\pi\)
\(402\) 0 0
\(403\) −8.89072e8 1.53992e9i −0.676658 1.17201i
\(404\) 0 0
\(405\) −4.69406e8 −0.351121
\(406\) 0 0
\(407\) −5.39234e8 −0.396458
\(408\) 0 0
\(409\) −7.54934e8 1.30758e9i −0.545604 0.945014i −0.998569 0.0534853i \(-0.982967\pi\)
0.452965 0.891528i \(-0.350366\pi\)
\(410\) 0 0
\(411\) 2.51616e8 4.35812e8i 0.178769 0.309637i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.67043e8 6.35738e8i 0.252086 0.436626i
\(416\) 0 0
\(417\) 3.64284e7 + 6.30958e7i 0.0246016 + 0.0426112i
\(418\) 0 0
\(419\) −1.60700e9 −1.06725 −0.533625 0.845721i \(-0.679171\pi\)
−0.533625 + 0.845721i \(0.679171\pi\)
\(420\) 0 0
\(421\) 2.88949e9 1.88727 0.943636 0.330985i \(-0.107381\pi\)
0.943636 + 0.330985i \(0.107381\pi\)
\(422\) 0 0
\(423\) 7.21022e8 + 1.24885e9i 0.463188 + 0.802265i
\(424\) 0 0
\(425\) 5.23916e8 9.07449e8i 0.331055 0.573404i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.31298e8 5.73825e8i 0.202590 0.350896i
\(430\) 0 0
\(431\) 8.83704e8 + 1.53062e9i 0.531663 + 0.920867i 0.999317 + 0.0369554i \(0.0117660\pi\)
−0.467654 + 0.883912i \(0.654901\pi\)
\(432\) 0 0
\(433\) −4.77962e8 −0.282935 −0.141467 0.989943i \(-0.545182\pi\)
−0.141467 + 0.989943i \(0.545182\pi\)
\(434\) 0 0
\(435\) −6.05854e8 −0.352903
\(436\) 0 0
\(437\) 1.04994e8 + 1.81855e8i 0.0601840 + 0.104242i
\(438\) 0 0
\(439\) 5.84043e8 1.01159e9i 0.329472 0.570663i −0.652935 0.757414i \(-0.726463\pi\)
0.982407 + 0.186751i \(0.0597958\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.46483e8 1.46615e9i 0.462600 0.801246i −0.536490 0.843907i \(-0.680250\pi\)
0.999090 + 0.0426605i \(0.0135834\pi\)
\(444\) 0 0
\(445\) 8.55123e8 + 1.48112e9i 0.460012 + 0.796763i
\(446\) 0 0
\(447\) −1.15594e9 −0.612152
\(448\) 0 0
\(449\) −8.50779e8 −0.443562 −0.221781 0.975096i \(-0.571187\pi\)
−0.221781 + 0.975096i \(0.571187\pi\)
\(450\) 0 0
\(451\) −3.57011e8 6.18362e8i −0.183259 0.317413i
\(452\) 0 0
\(453\) −3.49243e8 + 6.04906e8i −0.176516 + 0.305734i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.22058e7 1.59705e8i 0.0451910 0.0782730i −0.842545 0.538626i \(-0.818944\pi\)
0.887736 + 0.460353i \(0.152277\pi\)
\(458\) 0 0
\(459\) −8.28710e8 1.43537e9i −0.399998 0.692817i
\(460\) 0 0
\(461\) 2.86503e9 1.36199 0.680997 0.732286i \(-0.261546\pi\)
0.680997 + 0.732286i \(0.261546\pi\)
\(462\) 0 0
\(463\) 7.30600e8 0.342095 0.171047 0.985263i \(-0.445285\pi\)
0.171047 + 0.985263i \(0.445285\pi\)
\(464\) 0 0
\(465\) 2.18720e8 + 3.78834e8i 0.100879 + 0.174728i
\(466\) 0 0
\(467\) 1.51899e9 2.63096e9i 0.690153 1.19538i −0.281635 0.959522i \(-0.590877\pi\)
0.971788 0.235858i \(-0.0757899\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8.53987e6 + 1.47915e7i −0.00376598 + 0.00652287i
\(472\) 0 0
\(473\) 3.19315e8 + 5.53071e8i 0.138741 + 0.240307i
\(474\) 0 0
\(475\) −4.20095e8 −0.179854
\(476\) 0 0
\(477\) 2.02758e9 0.855388
\(478\) 0 0
\(479\) −5.30387e8 9.18658e8i −0.220505 0.381926i 0.734456 0.678656i \(-0.237437\pi\)
−0.954961 + 0.296730i \(0.904104\pi\)
\(480\) 0 0
\(481\) 1.31332e9 2.27474e9i 0.538100 0.932017i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.81724e8 + 4.87960e8i −0.112131 + 0.194217i
\(486\) 0 0
\(487\) −9.70344e8 1.68069e9i −0.380693 0.659379i 0.610469 0.792040i \(-0.290981\pi\)
−0.991161 + 0.132661i \(0.957648\pi\)
\(488\) 0 0
\(489\) 1.12830e9 0.436359
\(490\) 0 0
\(491\) 1.92020e9 0.732086 0.366043 0.930598i \(-0.380712\pi\)
0.366043 + 0.930598i \(0.380712\pi\)
\(492\) 0 0
\(493\) 2.07312e9 + 3.59075e9i 0.779220 + 1.34965i
\(494\) 0 0
\(495\) 4.41635e8 7.64934e8i 0.163661 0.283469i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.24206e8 + 3.88337e8i −0.0807785 + 0.139912i −0.903585 0.428410i \(-0.859074\pi\)
0.822806 + 0.568322i \(0.192407\pi\)
\(500\) 0 0
\(501\) 1.11896e7 + 1.93809e7i 0.00397540 + 0.00688559i
\(502\) 0 0
\(503\) 5.32401e8 0.186531 0.0932654 0.995641i \(-0.470269\pi\)
0.0932654 + 0.995641i \(0.470269\pi\)
\(504\) 0 0
\(505\) −1.82372e9 −0.630141
\(506\) 0 0
\(507\) 1.03464e9 + 1.79206e9i 0.352585 + 0.610694i
\(508\) 0 0
\(509\) −4.70740e8 + 8.15346e8i −0.158223 + 0.274050i −0.934228 0.356677i \(-0.883910\pi\)
0.776005 + 0.630727i \(0.217243\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.32245e8 + 5.75465e8i −0.108654 + 0.188195i
\(514\) 0 0
\(515\) 1.56659e9 + 2.71341e9i 0.505394 + 0.875367i
\(516\) 0 0
\(517\) −2.12028e9 −0.674802
\(518\) 0 0
\(519\) 1.82133e9 0.571877
\(520\) 0 0
\(521\) 2.99067e8 + 5.17999e8i 0.0926481 + 0.160471i 0.908625 0.417614i \(-0.137134\pi\)
−0.815977 + 0.578085i \(0.803800\pi\)
\(522\) 0 0
\(523\) 2.21813e9 3.84191e9i 0.678001 1.17433i −0.297580 0.954697i \(-0.596180\pi\)
0.975582 0.219636i \(-0.0704871\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.49684e9 2.59260e9i 0.445489 0.771610i
\(528\) 0 0
\(529\) 1.42565e9 + 2.46930e9i 0.418715 + 0.725236i
\(530\) 0 0
\(531\) −1.55924e9 −0.451942
\(532\) 0 0
\(533\) 3.47805e9 0.994926
\(534\) 0 0
\(535\) 1.61912e9 + 2.80439e9i 0.457131 + 0.791773i
\(536\) 0 0
\(537\) 4.44554e8 7.69990e8i 0.123884 0.214573i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.81228e9 3.13896e9i 0.492078 0.852305i −0.507880 0.861428i \(-0.669571\pi\)
0.999958 + 0.00912313i \(0.00290402\pi\)
\(542\) 0 0
\(543\) 6.02686e8 + 1.04388e9i 0.161544 + 0.279803i
\(544\) 0 0
\(545\) −1.03984e9 −0.275156
\(546\) 0 0
\(547\) 3.39025e9 0.885677 0.442839 0.896601i \(-0.353971\pi\)
0.442839 + 0.896601i \(0.353971\pi\)
\(548\) 0 0
\(549\) 8.40931e8 + 1.45653e9i 0.216899 + 0.375680i
\(550\) 0 0
\(551\) 8.31151e8 1.43960e9i 0.211665 0.366615i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.23089e8 + 5.59607e8i −0.0802226 + 0.138950i
\(556\) 0 0
\(557\) −3.08886e8 5.35006e8i −0.0757364 0.131179i 0.825670 0.564154i \(-0.190797\pi\)
−0.901406 + 0.432974i \(0.857464\pi\)
\(558\) 0 0
\(559\) −3.11081e9 −0.753238
\(560\) 0 0
\(561\) 1.11554e9 0.266757
\(562\) 0 0
\(563\) −1.96047e9 3.39563e9i −0.462999 0.801938i 0.536109 0.844149i \(-0.319893\pi\)
−0.999109 + 0.0422101i \(0.986560\pi\)
\(564\) 0 0
\(565\) −1.98589e9 + 3.43967e9i −0.463219 + 0.802319i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.12972e8 + 5.42083e8i −0.0712216 + 0.123359i −0.899437 0.437051i \(-0.856023\pi\)
0.828215 + 0.560410i \(0.189356\pi\)
\(570\) 0 0
\(571\) 6.65326e8 + 1.15238e9i 0.149558 + 0.259041i 0.931064 0.364856i \(-0.118882\pi\)
−0.781506 + 0.623897i \(0.785548\pi\)
\(572\) 0 0
\(573\) −4.92494e7 −0.0109360
\(574\) 0 0
\(575\) 1.10735e9 0.242912
\(576\) 0 0
\(577\) −1.03775e9 1.79744e9i −0.224895 0.389529i 0.731393 0.681956i \(-0.238870\pi\)
−0.956288 + 0.292427i \(0.905537\pi\)
\(578\) 0 0
\(579\) −3.14681e8 + 5.45044e8i −0.0673745 + 0.116696i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.49061e9 + 2.58180e9i −0.311546 + 0.539614i
\(584\) 0 0
\(585\) 2.15123e9 + 3.72604e9i 0.444264 + 0.769489i
\(586\) 0 0
\(587\) 1.08864e9 0.222152 0.111076 0.993812i \(-0.464570\pi\)
0.111076 + 0.993812i \(0.464570\pi\)
\(588\) 0 0
\(589\) −1.20022e9 −0.242023
\(590\) 0 0
\(591\) 2.44607e8 + 4.23672e8i 0.0487430 + 0.0844254i
\(592\) 0 0
\(593\) −3.22909e8 + 5.59295e8i −0.0635900 + 0.110141i −0.896068 0.443917i \(-0.853588\pi\)
0.832478 + 0.554059i \(0.186922\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.96666e9 + 3.40635e9i −0.378285 + 0.655208i
\(598\) 0 0
\(599\) −3.94789e9 6.83794e9i −0.750535 1.29996i −0.947564 0.319567i \(-0.896463\pi\)
0.197029 0.980398i \(-0.436871\pi\)
\(600\) 0 0
\(601\) 5.19643e9 0.976437 0.488219 0.872721i \(-0.337647\pi\)
0.488219 + 0.872721i \(0.337647\pi\)
\(602\) 0 0
\(603\) −8.50339e9 −1.57936
\(604\) 0 0
\(605\) −1.06778e9 1.84946e9i −0.196038 0.339547i
\(606\) 0 0
\(607\) 1.52131e9 2.63499e9i 0.276094 0.478209i −0.694316 0.719670i \(-0.744293\pi\)
0.970411 + 0.241461i \(0.0776265\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.16401e9 8.94433e9i 0.915890 1.58637i
\(612\) 0 0
\(613\) 1.76390e9 + 3.05516e9i 0.309287 + 0.535701i 0.978207 0.207634i \(-0.0665762\pi\)
−0.668919 + 0.743335i \(0.733243\pi\)
\(614\) 0 0
\(615\) −8.55632e8 −0.148328
\(616\) 0 0
\(617\) −1.68479e9 −0.288768 −0.144384 0.989522i \(-0.546120\pi\)
−0.144384 + 0.989522i \(0.546120\pi\)
\(618\) 0 0
\(619\) 3.22124e9 + 5.57935e9i 0.545891 + 0.945511i 0.998550 + 0.0538276i \(0.0171421\pi\)
−0.452659 + 0.891684i \(0.649525\pi\)
\(620\) 0 0
\(621\) 8.75783e8 1.51690e9i 0.146749 0.254177i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.05531e8 1.82786e8i 0.0172903 0.0299476i
\(626\) 0 0
\(627\) −2.23621e8 3.87322e8i −0.0362306 0.0627532i
\(628\) 0 0
\(629\) 4.42220e9 0.708535
\(630\) 0 0
\(631\) −9.82780e9 −1.55723 −0.778617 0.627500i \(-0.784078\pi\)
−0.778617 + 0.627500i \(0.784078\pi\)
\(632\) 0 0
\(633\) 3.39087e8 + 5.87316e8i 0.0531372 + 0.0920362i
\(634\) 0 0
\(635\) −3.02326e9 + 5.23645e9i −0.468563 + 0.811575i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.43501e9 + 9.41372e9i −0.824039 + 1.42728i
\(640\) 0 0
\(641\) −5.29277e9 9.16734e9i −0.793743 1.37480i −0.923634 0.383275i \(-0.874796\pi\)
0.129892 0.991528i \(-0.458537\pi\)
\(642\) 0 0
\(643\) 2.05978e9 0.305551 0.152775 0.988261i \(-0.451179\pi\)
0.152775 + 0.988261i \(0.451179\pi\)
\(644\) 0 0
\(645\) 7.65288e8 0.112296
\(646\) 0 0
\(647\) −4.88958e9 8.46900e9i −0.709752 1.22933i −0.964949 0.262437i \(-0.915474\pi\)
0.255197 0.966889i \(-0.417860\pi\)
\(648\) 0 0
\(649\) 1.14630e9 1.98545e9i 0.164605 0.285103i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.79886e9 3.11571e9i 0.252814 0.437886i −0.711486 0.702701i \(-0.751977\pi\)
0.964299 + 0.264814i \(0.0853107\pi\)
\(654\) 0 0
\(655\) −1.81252e9 3.13938e9i −0.252022 0.436515i
\(656\) 0 0
\(657\) −5.16058e9 −0.709936
\(658\) 0 0
\(659\) 1.04261e10 1.41913 0.709567 0.704638i \(-0.248891\pi\)
0.709567 + 0.704638i \(0.248891\pi\)
\(660\) 0 0
\(661\) −2.58339e9 4.47456e9i −0.347924 0.602622i 0.637957 0.770072i \(-0.279780\pi\)
−0.985881 + 0.167450i \(0.946447\pi\)
\(662\) 0 0
\(663\) −2.71694e9 + 4.70588e9i −0.362062 + 0.627109i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.19088e9 + 3.79471e9i −0.285876 + 0.495152i
\(668\) 0 0
\(669\) −2.98268e8 5.16616e8i −0.0385137 0.0667077i
\(670\) 0 0
\(671\) −2.47289e9 −0.315992
\(672\) 0 0
\(673\) −4.78512e9 −0.605118 −0.302559 0.953131i \(-0.597841\pi\)
−0.302559 + 0.953131i \(0.597841\pi\)
\(674\) 0 0
\(675\) 1.75206e9 + 3.03465e9i 0.219273 + 0.379792i
\(676\) 0 0
\(677\) −3.41978e9 + 5.92323e9i −0.423582 + 0.733666i −0.996287 0.0860956i \(-0.972561\pi\)
0.572704 + 0.819762i \(0.305894\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.14955e9 + 1.99109e9i −0.139481 + 0.241588i
\(682\) 0 0
\(683\) 7.98324e7 + 1.38274e8i 0.00958753 + 0.0166061i 0.870779 0.491674i \(-0.163615\pi\)
−0.861192 + 0.508280i \(0.830281\pi\)
\(684\) 0 0
\(685\) −4.80454e9 −0.571130
\(686\) 0 0
\(687\) 3.25821e9 0.383381
\(688\) 0 0
\(689\) −7.26083e9 1.25761e10i −0.845706 1.46481i
\(690\) 0 0
\(691\) −7.02899e9 + 1.21746e10i −0.810437 + 1.40372i 0.102121 + 0.994772i \(0.467437\pi\)
−0.912558 + 0.408947i \(0.865896\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.47795e8 6.02399e8i 0.0392985 0.0680671i
\(696\) 0 0
\(697\) 2.92781e9 + 5.07112e9i 0.327513 + 0.567269i
\(698\) 0 0
\(699\) 5.81629e9 0.644134
\(700\) 0 0
\(701\) −1.44650e9 −0.158600 −0.0793002 0.996851i \(-0.525269\pi\)
−0.0793002 + 0.996851i \(0.525269\pi\)
\(702\) 0 0
\(703\) −8.86471e8 1.53541e9i −0.0962323 0.166679i
\(704\) 0 0
\(705\) −1.27039e9 + 2.20039e9i −0.136545 + 0.236503i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.20057e9 + 7.27561e9i −0.442636 + 0.766668i −0.997884 0.0650166i \(-0.979290\pi\)
0.555248 + 0.831685i \(0.312623\pi\)
\(710\) 0 0
\(711\) −8.66519e8 1.50085e9i −0.0904137 0.156601i
\(712\) 0 0
\(713\) 3.16372e9 0.326878
\(714\) 0 0
\(715\) −6.32604e9 −0.647234
\(716\) 0 0
\(717\) 2.16293e9 + 3.74630e9i 0.219142 + 0.379565i
\(718\) 0 0
\(719\) −7.19176e9 + 1.24565e10i −0.721579 + 1.24981i 0.238787 + 0.971072i \(0.423250\pi\)
−0.960367 + 0.278740i \(0.910083\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.02311e8 1.77207e8i 0.0100679 0.0174380i
\(724\) 0 0
\(725\) −4.38299e9 7.59155e9i −0.427157 0.739857i
\(726\) 0 0
\(727\) 9.99667e9 0.964906 0.482453 0.875922i \(-0.339746\pi\)
0.482453 + 0.875922i \(0.339746\pi\)
\(728\) 0 0
\(729\) −1.91223e9 −0.182807
\(730\) 0 0
\(731\) −2.61867e9 4.53567e9i −0.247954 0.429468i
\(732\) 0 0
\(733\) 7.02053e9 1.21599e10i 0.658425 1.14043i −0.322599 0.946536i \(-0.604556\pi\)
0.981023 0.193889i \(-0.0621103\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.25140e9 1.08277e10i 0.575229 0.996327i
\(738\) 0 0
\(739\) 2.69376e9 + 4.66574e9i 0.245530 + 0.425270i 0.962280 0.272060i \(-0.0877048\pi\)
−0.716751 + 0.697330i \(0.754371\pi\)
\(740\) 0 0
\(741\) 2.17854e9 0.196699
\(742\) 0 0
\(743\) −1.07384e10 −0.960458 −0.480229 0.877143i \(-0.659447\pi\)
−0.480229 + 0.877143i \(0.659447\pi\)
\(744\) 0 0
\(745\) 5.51809e9 + 9.55761e9i 0.488925 + 0.846842i
\(746\) 0 0
\(747\) 3.84529e9 6.66023e9i 0.337526 0.584611i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.22337e9 + 7.31509e9i −0.363847 + 0.630202i −0.988590 0.150628i \(-0.951870\pi\)
0.624743 + 0.780830i \(0.285204\pi\)
\(752\) 0 0
\(753\) −4.22094e9 7.31087e9i −0.360269 0.624003i
\(754\) 0 0
\(755\) 6.66869e9 0.563932
\(756\) 0 0
\(757\) −2.05285e10 −1.71998 −0.859988 0.510314i \(-0.829529\pi\)
−0.859988 + 0.510314i \(0.829529\pi\)
\(758\) 0 0
\(759\) 5.89455e8 + 1.02097e9i 0.0489333 + 0.0847549i
\(760\) 0 0
\(761\) −6.29140e9 + 1.08970e10i −0.517489 + 0.896317i 0.482305 + 0.876004i \(0.339800\pi\)
−0.999794 + 0.0203138i \(0.993533\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.62180e9 + 6.27314e9i −0.292489 + 0.506606i
\(766\) 0 0
\(767\) 5.58370e9 + 9.67125e9i 0.446826 + 0.773925i
\(768\) 0 0
\(769\) −1.73875e10 −1.37878 −0.689391 0.724390i \(-0.742122\pi\)
−0.689391 + 0.724390i \(0.742122\pi\)
\(770\) 0 0
\(771\) −7.62954e9 −0.599526
\(772\) 0 0
\(773\) −6.00100e8 1.03940e9i −0.0467300 0.0809387i 0.841714 0.539923i \(-0.181547\pi\)
−0.888444 + 0.458984i \(0.848213\pi\)
\(774\) 0 0
\(775\) −3.16461e9 + 5.48127e9i −0.244210 + 0.422985i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.17381e9 2.03311e9i 0.0889648 0.154092i
\(780\) 0 0
\(781\) −7.99127e9 1.38413e10i −0.600257 1.03968i
\(782\) 0 0
\(783\) −1.38657e10 −1.03223
\(784\) 0 0
\(785\) 1.63066e8 0.0120315
\(786\) 0 0
\(787\) −1.06710e10 1.84827e10i −0.780359 1.35162i −0.931733 0.363144i \(-0.881703\pi\)
0.151374 0.988477i \(-0.451630\pi\)
\(788\) 0 0
\(789\) 2.50222e9 4.33397e9i 0.181366 0.314135i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.02281e9 1.04318e10i 0.428887 0.742854i
\(794\) 0 0
\(795\) 1.78623e9 + 3.09384e9i 0.126082 + 0.218380i
\(796\) 0 0
\(797\) 2.52753e9 0.176845 0.0884225 0.996083i \(-0.471817\pi\)
0.0884225 + 0.996083i \(0.471817\pi\)
\(798\) 0 0
\(799\) 1.73882e10 1.20598
\(800\) 0 0
\(801\) 8.95860e9 + 1.55168e10i 0.615923 + 1.06681i
\(802\) 0 0
\(803\) 3.79388e9 6.57119e9i 0.258570 0.447857i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.23190e9 + 7.32986e9i −0.283451 + 0.490951i
\(808\) 0 0
\(809\) 4.28924e8 + 7.42918e8i 0.0284813 + 0.0493311i 0.879915 0.475132i \(-0.157600\pi\)
−0.851433 + 0.524463i \(0.824266\pi\)
\(810\) 0 0
\(811\) 7.71014e9 0.507562 0.253781 0.967262i \(-0.418326\pi\)
0.253781 + 0.967262i \(0.418326\pi\)
\(812\) 0 0
\(813\) 9.99459e9 0.652301
\(814\) 0 0
\(815\) −5.38615e9 9.32909e9i −0.348520 0.603654i
\(816\) 0 0
\(817\) −1.04987e9 + 1.81843e9i −0.0673534 + 0.116660i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.96146e9 1.37896e10i 0.502101 0.869665i −0.497896 0.867237i \(-0.665894\pi\)
0.999997 0.00242818i \(-0.000772915\pi\)
\(822\) 0 0
\(823\) 1.25789e10 + 2.17873e10i 0.786579 + 1.36240i 0.928051 + 0.372453i \(0.121483\pi\)
−0.141472 + 0.989942i \(0.545183\pi\)
\(824\) 0 0
\(825\) −2.35848e9 −0.146232
\(826\) 0 0
\(827\) 1.68241e10 1.03434 0.517168 0.855884i \(-0.326986\pi\)
0.517168 + 0.855884i \(0.326986\pi\)
\(828\) 0 0
\(829\) 4.45917e9 + 7.72350e9i 0.271840 + 0.470840i 0.969333 0.245751i \(-0.0790346\pi\)
−0.697493 + 0.716591i \(0.745701\pi\)
\(830\) 0 0
\(831\) 1.20691e9 2.09042e9i 0.0729575 0.126366i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.06831e8 1.85036e8i 0.00635029 0.0109990i
\(836\) 0 0
\(837\) 5.00566e9 + 8.67005e9i 0.295068 + 0.511073i
\(838\) 0 0
\(839\) 1.16315e10 0.679936 0.339968 0.940437i \(-0.389584\pi\)
0.339968 + 0.940437i \(0.389584\pi\)
\(840\) 0 0
\(841\) 1.74368e10 1.01084
\(842\) 0 0
\(843\) 1.57946e9 + 2.73571e9i 0.0908056 + 0.157280i
\(844\) 0 0
\(845\) 9.87813e9 1.71094e10i 0.563217 0.975521i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.01140e9 1.75180e9i 0.0567214 0.0982444i
\(850\) 0 0
\(851\) 2.33670e9 + 4.04728e9i 0.129972 + 0.225118i
\(852\) 0 0
\(853\) −1.23761e10 −0.682748 −0.341374 0.939928i \(-0.610892\pi\)
−0.341374 + 0.939928i \(0.610892\pi\)
\(854\) 0 0
\(855\) 2.90409e9 0.158902
\(856\) 0 0
\(857\) −4.27039e9 7.39653e9i −0.231758 0.401416i 0.726568 0.687095i \(-0.241114\pi\)
−0.958326 + 0.285679i \(0.907781\pi\)
\(858\) 0 0
\(859\) 2.68950e9 4.65836e9i 0.144776 0.250759i −0.784513 0.620112i \(-0.787087\pi\)
0.929289 + 0.369353i \(0.120421\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.91171e8 5.04323e8i 0.0154209 0.0267098i −0.858212 0.513295i \(-0.828425\pi\)
0.873633 + 0.486586i \(0.161758\pi\)
\(864\) 0 0
\(865\) −8.69444e9 1.50592e10i −0.456757 0.791126i
\(866\) 0 0
\(867\) −1.57412e9 −0.0820297
\(868\) 0 0
\(869\) 2.54814e9 0.131721
\(870\) 0 0
\(871\) 3.04510e10 + 5.27426e10i 1.56148 + 2.70457i
\(872\) 0 0
\(873\) −2.95145e9 + 5.11206e9i −0.150136 + 0.260043i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.35669e9 + 1.62063e10i −0.468407 + 0.811306i −0.999348 0.0361035i \(-0.988505\pi\)
0.530941 + 0.847409i \(0.321839\pi\)
\(878\) 0 0
\(879\) 6.88251e9 + 1.19209e10i 0.341811 + 0.592034i
\(880\) 0 0
\(881\) −1.01779e8 −0.00501469 −0.00250734 0.999997i \(-0.500798\pi\)
−0.00250734 + 0.999997i \(0.500798\pi\)
\(882\) 0 0
\(883\) 2.40782e10 1.17696 0.588480 0.808512i \(-0.299726\pi\)
0.588480 + 0.808512i \(0.299726\pi\)
\(884\) 0 0
\(885\) −1.37364e9 2.37922e9i −0.0666150 0.115381i
\(886\) 0 0
\(887\) 1.46914e10 2.54463e10i 0.706856 1.22431i −0.259161 0.965834i \(-0.583446\pi\)
0.966017 0.258477i \(-0.0832207\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.61531e9 6.26190e9i 0.171228 0.296575i
\(892\) 0 0
\(893\) −3.48562e9 6.03728e9i −0.163795 0.283701i
\(894\) 0 0
\(895\) −8.48864e9 −0.395783
\(896\) 0 0
\(897\) −5.74254e9 −0.265663
\(898\) 0 0
\(899\) −1.25223e10 2.16892e10i −0.574810 0.995599i
\(900\) 0 0
\(901\) 1.22243e10 2.11731e10i 0.556785 0.964379i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.75406e9 9.96632e9i 0.258050 0.446956i
\(906\) 0 0
\(907\) −1.23474e10 2.13864e10i −0.549479 0.951725i −0.998310 0.0581085i \(-0.981493\pi\)
0.448832 0.893616i \(-0.351840\pi\)
\(908\) 0 0
\(909\) −1.91060e10 −0.843714
\(910\) 0 0
\(911\) 6.77617e9 0.296941 0.148470 0.988917i \(-0.452565\pi\)
0.148470 + 0.988917i \(0.452565\pi\)
\(912\) 0 0
\(913\) 5.65384e9 + 9.79274e9i 0.245865 + 0.425850i
\(914\) 0 0
\(915\) −1.48167e9 + 2.56632e9i −0.0639406 + 0.110748i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.14974e9 + 1.06517e10i −0.261368 + 0.452702i −0.966606 0.256268i \(-0.917507\pi\)
0.705238 + 0.708971i \(0.250840\pi\)
\(920\) 0 0
\(921\) −3.06945e9 5.31645e9i −0.129465 0.224240i
\(922\) 0 0
\(923\) 7.78520e10 3.25884
\(924\) 0 0
\(925\) −9.34941e9 −0.388408
\(926\) 0 0
\(927\) 1.64122e10 + 2.84267e10i 0.676686 + 1.17206i
\(928\) 0 0
\(929\) 2.23527e10 3.87160e10i 0.914691 1.58429i 0.107337 0.994223i \(-0.465767\pi\)
0.807353 0.590068i \(-0.200899\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 7.46699e9 1.29332e10i 0.300995 0.521339i
\(934\) 0 0
\(935\) −5.32525e9 9.22360e9i −0.213059 0.369028i
\(936\) 0 0
\(937\) −4.82318e10 −1.91534 −0.957668 0.287874i \(-0.907051\pi\)
−0.957668 + 0.287874i \(0.907051\pi\)
\(938\) 0 0
\(939\) −1.20358e10 −0.474399
\(940\) 0 0
\(941\) −8.39260e9 1.45364e10i −0.328347 0.568714i 0.653837 0.756635i \(-0.273158\pi\)
−0.982184 + 0.187922i \(0.939825\pi\)
\(942\) 0 0
\(943\) −3.09412e9 + 5.35918e9i −0.120156 + 0.208117i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.08057e10 1.87160e10i 0.413455 0.716125i −0.581810 0.813325i \(-0.697655\pi\)
0.995265 + 0.0972000i \(0.0309886\pi\)
\(948\) 0 0
\(949\) 1.84802e10 + 3.20087e10i 0.701900 + 1.21573i
\(950\) 0 0
\(951\) 4.28553e9 0.161574
\(952\) 0 0
\(953\) 2.72269e10 1.01900 0.509498 0.860472i \(-0.329831\pi\)
0.509498 + 0.860472i \(0.329831\pi\)
\(954\) 0 0
\(955\) 2.35101e8 + 4.07207e8i 0.00873459 + 0.0151287i
\(956\) 0 0
\(957\) 4.66621e9 8.08212e9i 0.172097 0.298080i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.71496e9 8.16655e9i 0.171374 0.296829i
\(962\) 0 0
\(963\) 1.69625e10 + 2.93799e10i 0.612066 + 1.06013i
\(964\) 0 0
\(965\) 6.00875e9 0.215248
\(966\) 0 0
\(967\) 2.88074e9 0.102450 0.0512250 0.998687i \(-0.483687\pi\)
0.0512250 + 0.998687i \(0.483687\pi\)
\(968\) 0 0
\(969\) 1.83389e9 + 3.17639e9i 0.0647500 + 0.112150i
\(970\) 0 0
\(971\) −1.33908e10 + 2.31936e10i −0.469396 + 0.813019i −0.999388 0.0349845i \(-0.988862\pi\)
0.529991 + 0.848003i \(0.322195\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.74415e9 9.94916e9i 0.198477 0.343772i
\(976\) 0 0
\(977\) 1.03023e10 + 1.78441e10i 0.353430 + 0.612159i 0.986848 0.161651i \(-0.0516819\pi\)
−0.633418 + 0.773810i \(0.718349\pi\)
\(978\) 0 0
\(979\) −2.63442e10 −0.897317
\(980\) 0 0
\(981\) −1.08938e10 −0.368414
\(982\) 0 0
\(983\) −7.94195e9 1.37559e10i −0.266679 0.461902i 0.701323 0.712844i \(-0.252593\pi\)
−0.968002 + 0.250941i \(0.919260\pi\)
\(984\) 0 0
\(985\) 2.33535e9 4.04495e9i 0.0778620 0.134861i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.76742e9 4.79332e9i 0.0909680 0.157561i
\(990\) 0 0
\(991\) 1.79584e10 + 3.11048e10i 0.586150 + 1.01524i 0.994731 + 0.102519i \(0.0326903\pi\)
−0.408581 + 0.912722i \(0.633976\pi\)
\(992\) 0 0
\(993\) −1.47289e10 −0.477361
\(994\) 0 0
\(995\) 3.75528e10 1.20854
\(996\) 0 0
\(997\) 4.39087e9 + 7.60521e9i 0.140319 + 0.243040i 0.927617 0.373533i \(-0.121854\pi\)
−0.787297 + 0.616573i \(0.788520\pi\)
\(998\) 0 0
\(999\) −7.39427e9 + 1.28072e10i −0.234648 + 0.406421i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.8.e.f.177.4 10
7.2 even 3 196.8.a.e.1.2 5
7.3 odd 6 28.8.e.a.25.2 yes 10
7.4 even 3 inner 196.8.e.f.165.4 10
7.5 odd 6 196.8.a.d.1.4 5
7.6 odd 2 28.8.e.a.9.2 10
21.17 even 6 252.8.k.c.109.4 10
21.20 even 2 252.8.k.c.37.4 10
28.3 even 6 112.8.i.d.81.4 10
28.27 even 2 112.8.i.d.65.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.2 10 7.6 odd 2
28.8.e.a.25.2 yes 10 7.3 odd 6
112.8.i.d.65.4 10 28.27 even 2
112.8.i.d.81.4 10 28.3 even 6
196.8.a.d.1.4 5 7.5 odd 6
196.8.a.e.1.2 5 7.2 even 3
196.8.e.f.165.4 10 7.4 even 3 inner
196.8.e.f.177.4 10 1.1 even 1 trivial
252.8.k.c.37.4 10 21.20 even 2
252.8.k.c.109.4 10 21.17 even 6