Properties

Label 196.10.i
Level $196$
Weight $10$
Character orbit 196.i
Rep. character $\chi_{196}(29,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $252$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.i (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(196, [\chi])\).

Total New Old
Modular forms 1530 252 1278
Cusp forms 1494 252 1242
Eisenstein series 36 0 36

Trace form

\( 252 q - 162 q^{3} - 1818 q^{5} + 6328 q^{7} - 191072 q^{9} + 38094 q^{11} + 126682 q^{13} + 24486 q^{15} - 46840 q^{17} + 1188968 q^{19} + 1812538 q^{21} + 5166686 q^{23} - 17448382 q^{25} + 2648166 q^{27}+ \cdots - 3879021944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(196, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(196, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(196, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)