Properties

Label 196.10.f
Level $196$
Weight $10$
Character orbit 196.f
Rep. character $\chi_{196}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $352$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(196, [\chi])\).

Total New Old
Modular forms 520 368 152
Cusp forms 488 352 136
Eisenstein series 32 16 16

Trace form

\( 352 q - 33 q^{2} - 169 q^{4} + 6 q^{5} + 32394 q^{8} - 1102246 q^{9} + 26724 q^{10} - 82992 q^{12} - 14445 q^{16} + 6 q^{17} - 1625393 q^{18} - 1523132 q^{22} - 5971236 q^{24} + 62881278 q^{25} + 4366092 q^{26}+ \cdots + 769588536 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(196, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(196, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(196, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)