Properties

Label 1950.4.bc
Level $1950$
Weight $4$
Character orbit 1950.bc
Rep. character $\chi_{1950}(751,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $268$
Sturm bound $1680$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.bc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1680\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1950, [\chi])\).

Total New Old
Modular forms 2568 268 2300
Cusp forms 2472 268 2204
Eisenstein series 96 0 96

Trace form

\( 268 q + 6 q^{3} + 536 q^{4} - 18 q^{7} - 1206 q^{9} + 204 q^{11} + 48 q^{12} - 94 q^{13} + 96 q^{14} - 2144 q^{16} + 32 q^{17} - 324 q^{19} + 144 q^{22} + 4 q^{23} - 88 q^{26} - 108 q^{27} - 72 q^{28} + 296 q^{29}+ \cdots + 4752 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1950, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1950, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1950, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)