Properties

Label 1936.2.bk
Level $1936$
Weight $2$
Character orbit 1936.bk
Rep. character $\chi_{1936}(49,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $2600$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.bk (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1936, [\chi])\).

Total New Old
Modular forms 10800 2680 8120
Cusp forms 10320 2600 7720
Eisenstein series 480 80 400

Trace form

\( 2600 q + 30 q^{3} - 41 q^{5} + 43 q^{7} - 656 q^{9} + 42 q^{11} - 41 q^{13} + 14 q^{15} - 37 q^{17} + 35 q^{19} - 9 q^{21} + 6 q^{23} + 28 q^{25} - 30 q^{27} - 49 q^{29} + 41 q^{31} - 16 q^{33} + 57 q^{35}+ \cdots - 134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1936, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 2}\)