Defining parameters
| Level: | \( N \) | \(=\) | \( 1936 = 2^{4} \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1936.bk (of order \(55\) and degree \(40\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 121 \) |
| Character field: | \(\Q(\zeta_{55})\) | ||
| Sturm bound: | \(528\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1936, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10800 | 2680 | 8120 |
| Cusp forms | 10320 | 2600 | 7720 |
| Eisenstein series | 480 | 80 | 400 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1936, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 2}\)