Properties

Label 1920.4.a.p
Level $1920$
Weight $4$
Character orbit 1920.a
Self dual yes
Analytic conductor $113.284$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,4,Mod(1,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1920.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,5,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.283667211\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 5 q^{5} + 10 q^{7} + 9 q^{9} - 22 q^{11} + 26 q^{13} + 15 q^{15} + 14 q^{17} - 34 q^{19} + 30 q^{21} - 190 q^{23} + 25 q^{25} + 27 q^{27} - 162 q^{29} - 268 q^{31} - 66 q^{33} + 50 q^{35}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 5.00000 0 10.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.4.a.p yes 1
4.b odd 2 1 1920.4.a.e yes 1
8.b even 2 1 1920.4.a.d 1
8.d odd 2 1 1920.4.a.i yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.4.a.d 1 8.b even 2 1
1920.4.a.e yes 1 4.b odd 2 1
1920.4.a.i yes 1 8.d odd 2 1
1920.4.a.p yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1920))\):

\( T_{7} - 10 \) Copy content Toggle raw display
\( T_{11} + 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 10 \) Copy content Toggle raw display
$11$ \( T + 22 \) Copy content Toggle raw display
$13$ \( T - 26 \) Copy content Toggle raw display
$17$ \( T - 14 \) Copy content Toggle raw display
$19$ \( T + 34 \) Copy content Toggle raw display
$23$ \( T + 190 \) Copy content Toggle raw display
$29$ \( T + 162 \) Copy content Toggle raw display
$31$ \( T + 268 \) Copy content Toggle raw display
$37$ \( T + 362 \) Copy content Toggle raw display
$41$ \( T + 170 \) Copy content Toggle raw display
$43$ \( T - 16 \) Copy content Toggle raw display
$47$ \( T - 434 \) Copy content Toggle raw display
$53$ \( T - 594 \) Copy content Toggle raw display
$59$ \( T + 170 \) Copy content Toggle raw display
$61$ \( T - 130 \) Copy content Toggle raw display
$67$ \( T + 1024 \) Copy content Toggle raw display
$71$ \( T - 280 \) Copy content Toggle raw display
$73$ \( T - 282 \) Copy content Toggle raw display
$79$ \( T + 160 \) Copy content Toggle raw display
$83$ \( T + 732 \) Copy content Toggle raw display
$89$ \( T + 746 \) Copy content Toggle raw display
$97$ \( T + 534 \) Copy content Toggle raw display
show more
show less