Properties

Label 1920.2.m.t.959.4
Level $1920$
Weight $2$
Character 1920.959
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(959,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.959"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,4,0,-4,0,0,0,0,0,8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 959.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1920.959
Dual form 1920.2.m.t.959.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 + 0.618034i) q^{3} +(1.00000 + 2.00000i) q^{5} -3.23607 q^{7} +(2.23607 + 2.00000i) q^{9} -4.00000i q^{11} +6.47214 q^{13} +(0.381966 + 3.85410i) q^{15} +6.47214 q^{17} +2.47214 q^{19} +(-5.23607 - 2.00000i) q^{21} -1.23607i q^{23} +(-3.00000 + 4.00000i) q^{25} +(2.38197 + 4.61803i) q^{27} -4.47214 q^{29} +2.47214i q^{31} +(2.47214 - 6.47214i) q^{33} +(-3.23607 - 6.47214i) q^{35} -1.52786 q^{37} +(10.4721 + 4.00000i) q^{39} -4.00000i q^{41} -9.23607i q^{43} +(-1.76393 + 6.47214i) q^{45} +9.23607i q^{47} +3.47214 q^{49} +(10.4721 + 4.00000i) q^{51} +8.94427i q^{53} +(8.00000 - 4.00000i) q^{55} +(4.00000 + 1.52786i) q^{57} +8.94427i q^{59} +4.94427i q^{61} +(-7.23607 - 6.47214i) q^{63} +(6.47214 + 12.9443i) q^{65} +11.7082i q^{67} +(0.763932 - 2.00000i) q^{69} -4.94427i q^{73} +(-7.32624 + 4.61803i) q^{75} +12.9443i q^{77} -10.4721i q^{79} +(1.00000 + 8.94427i) q^{81} +8.18034 q^{83} +(6.47214 + 12.9443i) q^{85} +(-7.23607 - 2.76393i) q^{87} +8.00000i q^{89} -20.9443 q^{91} +(-1.52786 + 4.00000i) q^{93} +(2.47214 + 4.94427i) q^{95} -12.9443i q^{97} +(8.00000 - 8.94427i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{5} - 4 q^{7} + 8 q^{13} + 6 q^{15} + 8 q^{17} - 8 q^{19} - 12 q^{21} - 12 q^{25} + 14 q^{27} - 8 q^{33} - 4 q^{35} - 24 q^{37} + 24 q^{39} - 16 q^{45} - 4 q^{49} + 24 q^{51} + 32 q^{55}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 + 0.618034i 0.934172 + 0.356822i
\(4\) 0 0
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) 0 0
\(9\) 2.23607 + 2.00000i 0.745356 + 0.666667i
\(10\) 0 0
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) 6.47214 1.79505 0.897524 0.440966i \(-0.145364\pi\)
0.897524 + 0.440966i \(0.145364\pi\)
\(14\) 0 0
\(15\) 0.381966 + 3.85410i 0.0986232 + 0.995125i
\(16\) 0 0
\(17\) 6.47214 1.56972 0.784862 0.619671i \(-0.212734\pi\)
0.784862 + 0.619671i \(0.212734\pi\)
\(18\) 0 0
\(19\) 2.47214 0.567147 0.283573 0.958951i \(-0.408480\pi\)
0.283573 + 0.958951i \(0.408480\pi\)
\(20\) 0 0
\(21\) −5.23607 2.00000i −1.14260 0.436436i
\(22\) 0 0
\(23\) 1.23607i 0.257738i −0.991662 0.128869i \(-0.958865\pi\)
0.991662 0.128869i \(-0.0411347\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 2.38197 + 4.61803i 0.458410 + 0.888741i
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) 2.47214i 0.444009i 0.975046 + 0.222004i \(0.0712599\pi\)
−0.975046 + 0.222004i \(0.928740\pi\)
\(32\) 0 0
\(33\) 2.47214 6.47214i 0.430344 1.12665i
\(34\) 0 0
\(35\) −3.23607 6.47214i −0.546995 1.09399i
\(36\) 0 0
\(37\) −1.52786 −0.251179 −0.125590 0.992082i \(-0.540082\pi\)
−0.125590 + 0.992082i \(0.540082\pi\)
\(38\) 0 0
\(39\) 10.4721 + 4.00000i 1.67688 + 0.640513i
\(40\) 0 0
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) 9.23607i 1.40849i −0.709958 0.704244i \(-0.751286\pi\)
0.709958 0.704244i \(-0.248714\pi\)
\(44\) 0 0
\(45\) −1.76393 + 6.47214i −0.262951 + 0.964809i
\(46\) 0 0
\(47\) 9.23607i 1.34722i 0.739087 + 0.673609i \(0.235257\pi\)
−0.739087 + 0.673609i \(0.764743\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 10.4721 + 4.00000i 1.46639 + 0.560112i
\(52\) 0 0
\(53\) 8.94427i 1.22859i 0.789076 + 0.614295i \(0.210560\pi\)
−0.789076 + 0.614295i \(0.789440\pi\)
\(54\) 0 0
\(55\) 8.00000 4.00000i 1.07872 0.539360i
\(56\) 0 0
\(57\) 4.00000 + 1.52786i 0.529813 + 0.202371i
\(58\) 0 0
\(59\) 8.94427i 1.16445i 0.813029 + 0.582223i \(0.197817\pi\)
−0.813029 + 0.582223i \(0.802183\pi\)
\(60\) 0 0
\(61\) 4.94427i 0.633049i 0.948584 + 0.316525i \(0.102516\pi\)
−0.948584 + 0.316525i \(0.897484\pi\)
\(62\) 0 0
\(63\) −7.23607 6.47214i −0.911659 0.815412i
\(64\) 0 0
\(65\) 6.47214 + 12.9443i 0.802770 + 1.60554i
\(66\) 0 0
\(67\) 11.7082i 1.43038i 0.698928 + 0.715192i \(0.253661\pi\)
−0.698928 + 0.715192i \(0.746339\pi\)
\(68\) 0 0
\(69\) 0.763932 2.00000i 0.0919666 0.240772i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.94427i 0.578683i −0.957226 0.289342i \(-0.906564\pi\)
0.957226 0.289342i \(-0.0934364\pi\)
\(74\) 0 0
\(75\) −7.32624 + 4.61803i −0.845961 + 0.533245i
\(76\) 0 0
\(77\) 12.9443i 1.47514i
\(78\) 0 0
\(79\) 10.4721i 1.17821i −0.808057 0.589104i \(-0.799481\pi\)
0.808057 0.589104i \(-0.200519\pi\)
\(80\) 0 0
\(81\) 1.00000 + 8.94427i 0.111111 + 0.993808i
\(82\) 0 0
\(83\) 8.18034 0.897909 0.448954 0.893555i \(-0.351797\pi\)
0.448954 + 0.893555i \(0.351797\pi\)
\(84\) 0 0
\(85\) 6.47214 + 12.9443i 0.702002 + 1.40400i
\(86\) 0 0
\(87\) −7.23607 2.76393i −0.775788 0.296325i
\(88\) 0 0
\(89\) 8.00000i 0.847998i 0.905663 + 0.423999i \(0.139374\pi\)
−0.905663 + 0.423999i \(0.860626\pi\)
\(90\) 0 0
\(91\) −20.9443 −2.19556
\(92\) 0 0
\(93\) −1.52786 + 4.00000i −0.158432 + 0.414781i
\(94\) 0 0
\(95\) 2.47214 + 4.94427i 0.253636 + 0.507272i
\(96\) 0 0
\(97\) 12.9443i 1.31429i −0.753763 0.657146i \(-0.771764\pi\)
0.753763 0.657146i \(-0.228236\pi\)
\(98\) 0 0
\(99\) 8.00000 8.94427i 0.804030 0.898933i
\(100\) 0 0
\(101\) −3.52786 −0.351036 −0.175518 0.984476i \(-0.556160\pi\)
−0.175518 + 0.984476i \(0.556160\pi\)
\(102\) 0 0
\(103\) 1.70820 0.168314 0.0841572 0.996452i \(-0.473180\pi\)
0.0841572 + 0.996452i \(0.473180\pi\)
\(104\) 0 0
\(105\) −1.23607 12.4721i −0.120628 1.21716i
\(106\) 0 0
\(107\) −9.70820 −0.938527 −0.469264 0.883058i \(-0.655481\pi\)
−0.469264 + 0.883058i \(0.655481\pi\)
\(108\) 0 0
\(109\) 12.9443i 1.23984i −0.784666 0.619918i \(-0.787166\pi\)
0.784666 0.619918i \(-0.212834\pi\)
\(110\) 0 0
\(111\) −2.47214 0.944272i −0.234645 0.0896263i
\(112\) 0 0
\(113\) 14.4721 1.36142 0.680712 0.732551i \(-0.261671\pi\)
0.680712 + 0.732551i \(0.261671\pi\)
\(114\) 0 0
\(115\) 2.47214 1.23607i 0.230528 0.115264i
\(116\) 0 0
\(117\) 14.4721 + 12.9443i 1.33795 + 1.19670i
\(118\) 0 0
\(119\) −20.9443 −1.91996
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 2.47214 6.47214i 0.222905 0.583573i
\(124\) 0 0
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 11.2361 0.997040 0.498520 0.866878i \(-0.333877\pi\)
0.498520 + 0.866878i \(0.333877\pi\)
\(128\) 0 0
\(129\) 5.70820 14.9443i 0.502579 1.31577i
\(130\) 0 0
\(131\) 0.944272i 0.0825014i −0.999149 0.0412507i \(-0.986866\pi\)
0.999149 0.0412507i \(-0.0131342\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) −6.85410 + 9.38197i −0.589907 + 0.807471i
\(136\) 0 0
\(137\) −1.52786 −0.130534 −0.0652671 0.997868i \(-0.520790\pi\)
−0.0652671 + 0.997868i \(0.520790\pi\)
\(138\) 0 0
\(139\) −23.4164 −1.98615 −0.993077 0.117466i \(-0.962523\pi\)
−0.993077 + 0.117466i \(0.962523\pi\)
\(140\) 0 0
\(141\) −5.70820 + 14.9443i −0.480717 + 1.25853i
\(142\) 0 0
\(143\) 25.8885i 2.16491i
\(144\) 0 0
\(145\) −4.47214 8.94427i −0.371391 0.742781i
\(146\) 0 0
\(147\) 5.61803 + 2.14590i 0.463368 + 0.176991i
\(148\) 0 0
\(149\) −11.8885 −0.973947 −0.486974 0.873417i \(-0.661899\pi\)
−0.486974 + 0.873417i \(0.661899\pi\)
\(150\) 0 0
\(151\) 10.4721i 0.852210i −0.904674 0.426105i \(-0.859885\pi\)
0.904674 0.426105i \(-0.140115\pi\)
\(152\) 0 0
\(153\) 14.4721 + 12.9443i 1.17000 + 1.04648i
\(154\) 0 0
\(155\) −4.94427 + 2.47214i −0.397133 + 0.198567i
\(156\) 0 0
\(157\) −1.52786 −0.121937 −0.0609684 0.998140i \(-0.519419\pi\)
−0.0609684 + 0.998140i \(0.519419\pi\)
\(158\) 0 0
\(159\) −5.52786 + 14.4721i −0.438388 + 1.14772i
\(160\) 0 0
\(161\) 4.00000i 0.315244i
\(162\) 0 0
\(163\) 14.7639i 1.15640i −0.815895 0.578200i \(-0.803755\pi\)
0.815895 0.578200i \(-0.196245\pi\)
\(164\) 0 0
\(165\) 15.4164 1.52786i 1.20017 0.118944i
\(166\) 0 0
\(167\) 1.23607i 0.0956498i 0.998856 + 0.0478249i \(0.0152289\pi\)
−0.998856 + 0.0478249i \(0.984771\pi\)
\(168\) 0 0
\(169\) 28.8885 2.22220
\(170\) 0 0
\(171\) 5.52786 + 4.94427i 0.422726 + 0.378098i
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 9.70820 12.9443i 0.733871 0.978495i
\(176\) 0 0
\(177\) −5.52786 + 14.4721i −0.415500 + 1.08779i
\(178\) 0 0
\(179\) 0.944272i 0.0705782i −0.999377 0.0352891i \(-0.988765\pi\)
0.999377 0.0352891i \(-0.0112352\pi\)
\(180\) 0 0
\(181\) 0.944272i 0.0701872i −0.999384 0.0350936i \(-0.988827\pi\)
0.999384 0.0350936i \(-0.0111729\pi\)
\(182\) 0 0
\(183\) −3.05573 + 8.00000i −0.225886 + 0.591377i
\(184\) 0 0
\(185\) −1.52786 3.05573i −0.112331 0.224662i
\(186\) 0 0
\(187\) 25.8885i 1.89316i
\(188\) 0 0
\(189\) −7.70820 14.9443i −0.560689 1.08704i
\(190\) 0 0
\(191\) 4.94427 0.357755 0.178877 0.983871i \(-0.442753\pi\)
0.178877 + 0.983871i \(0.442753\pi\)
\(192\) 0 0
\(193\) 20.9443i 1.50760i 0.657103 + 0.753801i \(0.271782\pi\)
−0.657103 + 0.753801i \(0.728218\pi\)
\(194\) 0 0
\(195\) 2.47214 + 24.9443i 0.177033 + 1.78630i
\(196\) 0 0
\(197\) 8.94427i 0.637253i −0.947880 0.318626i \(-0.896778\pi\)
0.947880 0.318626i \(-0.103222\pi\)
\(198\) 0 0
\(199\) 13.5279i 0.958965i −0.877551 0.479482i \(-0.840824\pi\)
0.877551 0.479482i \(-0.159176\pi\)
\(200\) 0 0
\(201\) −7.23607 + 18.9443i −0.510393 + 1.33623i
\(202\) 0 0
\(203\) 14.4721 1.01574
\(204\) 0 0
\(205\) 8.00000 4.00000i 0.558744 0.279372i
\(206\) 0 0
\(207\) 2.47214 2.76393i 0.171825 0.192107i
\(208\) 0 0
\(209\) 9.88854i 0.684005i
\(210\) 0 0
\(211\) 7.41641 0.510567 0.255283 0.966866i \(-0.417831\pi\)
0.255283 + 0.966866i \(0.417831\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.4721 9.23607i 1.25979 0.629895i
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 0 0
\(219\) 3.05573 8.00000i 0.206487 0.540590i
\(220\) 0 0
\(221\) 41.8885 2.81773
\(222\) 0 0
\(223\) −21.1246 −1.41461 −0.707304 0.706909i \(-0.750089\pi\)
−0.707304 + 0.706909i \(0.750089\pi\)
\(224\) 0 0
\(225\) −14.7082 + 2.94427i −0.980547 + 0.196285i
\(226\) 0 0
\(227\) −12.7639 −0.847172 −0.423586 0.905856i \(-0.639229\pi\)
−0.423586 + 0.905856i \(0.639229\pi\)
\(228\) 0 0
\(229\) 24.9443i 1.64836i −0.566325 0.824182i \(-0.691635\pi\)
0.566325 0.824182i \(-0.308365\pi\)
\(230\) 0 0
\(231\) −8.00000 + 20.9443i −0.526361 + 1.37803i
\(232\) 0 0
\(233\) −9.52786 −0.624191 −0.312096 0.950051i \(-0.601031\pi\)
−0.312096 + 0.950051i \(0.601031\pi\)
\(234\) 0 0
\(235\) −18.4721 + 9.23607i −1.20499 + 0.602495i
\(236\) 0 0
\(237\) 6.47214 16.9443i 0.420410 1.10065i
\(238\) 0 0
\(239\) 11.0557 0.715136 0.357568 0.933887i \(-0.383606\pi\)
0.357568 + 0.933887i \(0.383606\pi\)
\(240\) 0 0
\(241\) −12.4721 −0.803401 −0.401700 0.915771i \(-0.631581\pi\)
−0.401700 + 0.915771i \(0.631581\pi\)
\(242\) 0 0
\(243\) −3.90983 + 15.0902i −0.250816 + 0.968035i
\(244\) 0 0
\(245\) 3.47214 + 6.94427i 0.221827 + 0.443653i
\(246\) 0 0
\(247\) 16.0000 1.01806
\(248\) 0 0
\(249\) 13.2361 + 5.05573i 0.838802 + 0.320394i
\(250\) 0 0
\(251\) 21.8885i 1.38159i 0.723049 + 0.690796i \(0.242740\pi\)
−0.723049 + 0.690796i \(0.757260\pi\)
\(252\) 0 0
\(253\) −4.94427 −0.310844
\(254\) 0 0
\(255\) 2.47214 + 24.9443i 0.154811 + 1.56207i
\(256\) 0 0
\(257\) 4.58359 0.285917 0.142958 0.989729i \(-0.454339\pi\)
0.142958 + 0.989729i \(0.454339\pi\)
\(258\) 0 0
\(259\) 4.94427 0.307222
\(260\) 0 0
\(261\) −10.0000 8.94427i −0.618984 0.553637i
\(262\) 0 0
\(263\) 14.1803i 0.874397i 0.899365 + 0.437199i \(0.144029\pi\)
−0.899365 + 0.437199i \(0.855971\pi\)
\(264\) 0 0
\(265\) −17.8885 + 8.94427i −1.09888 + 0.549442i
\(266\) 0 0
\(267\) −4.94427 + 12.9443i −0.302585 + 0.792177i
\(268\) 0 0
\(269\) −19.8885 −1.21263 −0.606313 0.795226i \(-0.707352\pi\)
−0.606313 + 0.795226i \(0.707352\pi\)
\(270\) 0 0
\(271\) 26.4721i 1.60807i −0.594583 0.804034i \(-0.702683\pi\)
0.594583 0.804034i \(-0.297317\pi\)
\(272\) 0 0
\(273\) −33.8885 12.9443i −2.05103 0.783423i
\(274\) 0 0
\(275\) 16.0000 + 12.0000i 0.964836 + 0.723627i
\(276\) 0 0
\(277\) −11.4164 −0.685945 −0.342973 0.939345i \(-0.611434\pi\)
−0.342973 + 0.939345i \(0.611434\pi\)
\(278\) 0 0
\(279\) −4.94427 + 5.52786i −0.296006 + 0.330945i
\(280\) 0 0
\(281\) 12.0000i 0.715860i −0.933748 0.357930i \(-0.883483\pi\)
0.933748 0.357930i \(-0.116517\pi\)
\(282\) 0 0
\(283\) 3.70820i 0.220430i 0.993908 + 0.110215i \(0.0351539\pi\)
−0.993908 + 0.110215i \(0.964846\pi\)
\(284\) 0 0
\(285\) 0.944272 + 9.52786i 0.0559338 + 0.564382i
\(286\) 0 0
\(287\) 12.9443i 0.764076i
\(288\) 0 0
\(289\) 24.8885 1.46403
\(290\) 0 0
\(291\) 8.00000 20.9443i 0.468968 1.22777i
\(292\) 0 0
\(293\) 13.8885i 0.811377i −0.914011 0.405689i \(-0.867032\pi\)
0.914011 0.405689i \(-0.132968\pi\)
\(294\) 0 0
\(295\) −17.8885 + 8.94427i −1.04151 + 0.520756i
\(296\) 0 0
\(297\) 18.4721 9.52786i 1.07186 0.552863i
\(298\) 0 0
\(299\) 8.00000i 0.462652i
\(300\) 0 0
\(301\) 29.8885i 1.72275i
\(302\) 0 0
\(303\) −5.70820 2.18034i −0.327928 0.125257i
\(304\) 0 0
\(305\) −9.88854 + 4.94427i −0.566216 + 0.283108i
\(306\) 0 0
\(307\) 1.81966i 0.103853i −0.998651 0.0519267i \(-0.983464\pi\)
0.998651 0.0519267i \(-0.0165362\pi\)
\(308\) 0 0
\(309\) 2.76393 + 1.05573i 0.157235 + 0.0600583i
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) 24.0000i 1.35656i −0.734803 0.678280i \(-0.762726\pi\)
0.734803 0.678280i \(-0.237274\pi\)
\(314\) 0 0
\(315\) 5.70820 20.9443i 0.321621 1.18008i
\(316\) 0 0
\(317\) 16.9443i 0.951685i −0.879530 0.475843i \(-0.842143\pi\)
0.879530 0.475843i \(-0.157857\pi\)
\(318\) 0 0
\(319\) 17.8885i 1.00157i
\(320\) 0 0
\(321\) −15.7082 6.00000i −0.876746 0.334887i
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) −19.4164 + 25.8885i −1.07703 + 1.43604i
\(326\) 0 0
\(327\) 8.00000 20.9443i 0.442401 1.15822i
\(328\) 0 0
\(329\) 29.8885i 1.64781i
\(330\) 0 0
\(331\) 2.47214 0.135881 0.0679404 0.997689i \(-0.478357\pi\)
0.0679404 + 0.997689i \(0.478357\pi\)
\(332\) 0 0
\(333\) −3.41641 3.05573i −0.187218 0.167453i
\(334\) 0 0
\(335\) −23.4164 + 11.7082i −1.27938 + 0.639688i
\(336\) 0 0
\(337\) 17.8885i 0.974451i 0.873276 + 0.487226i \(0.161991\pi\)
−0.873276 + 0.487226i \(0.838009\pi\)
\(338\) 0 0
\(339\) 23.4164 + 8.94427i 1.27180 + 0.485786i
\(340\) 0 0
\(341\) 9.88854 0.535495
\(342\) 0 0
\(343\) 11.4164 0.616428
\(344\) 0 0
\(345\) 4.76393 0.472136i 0.256481 0.0254189i
\(346\) 0 0
\(347\) −4.76393 −0.255741 −0.127871 0.991791i \(-0.540814\pi\)
−0.127871 + 0.991791i \(0.540814\pi\)
\(348\) 0 0
\(349\) 18.8328i 1.00810i −0.863675 0.504049i \(-0.831843\pi\)
0.863675 0.504049i \(-0.168157\pi\)
\(350\) 0 0
\(351\) 15.4164 + 29.8885i 0.822867 + 1.59533i
\(352\) 0 0
\(353\) −11.4164 −0.607634 −0.303817 0.952730i \(-0.598261\pi\)
−0.303817 + 0.952730i \(0.598261\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −33.8885 12.9443i −1.79357 0.685084i
\(358\) 0 0
\(359\) 30.8328 1.62729 0.813647 0.581359i \(-0.197479\pi\)
0.813647 + 0.581359i \(0.197479\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 0 0
\(363\) −8.09017 3.09017i −0.424624 0.162192i
\(364\) 0 0
\(365\) 9.88854 4.94427i 0.517590 0.258795i
\(366\) 0 0
\(367\) 14.6525 0.764853 0.382427 0.923986i \(-0.375089\pi\)
0.382427 + 0.923986i \(0.375089\pi\)
\(368\) 0 0
\(369\) 8.00000 8.94427i 0.416463 0.465620i
\(370\) 0 0
\(371\) 28.9443i 1.50271i
\(372\) 0 0
\(373\) 30.4721 1.57779 0.788894 0.614530i \(-0.210654\pi\)
0.788894 + 0.614530i \(0.210654\pi\)
\(374\) 0 0
\(375\) −16.5623 10.0344i −0.855274 0.518176i
\(376\) 0 0
\(377\) −28.9443 −1.49071
\(378\) 0 0
\(379\) −8.58359 −0.440910 −0.220455 0.975397i \(-0.570754\pi\)
−0.220455 + 0.975397i \(0.570754\pi\)
\(380\) 0 0
\(381\) 18.1803 + 6.94427i 0.931407 + 0.355766i
\(382\) 0 0
\(383\) 22.1803i 1.13336i −0.823937 0.566681i \(-0.808227\pi\)
0.823937 0.566681i \(-0.191773\pi\)
\(384\) 0 0
\(385\) −25.8885 + 12.9443i −1.31940 + 0.659701i
\(386\) 0 0
\(387\) 18.4721 20.6525i 0.938991 1.04982i
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 8.00000i 0.404577i
\(392\) 0 0
\(393\) 0.583592 1.52786i 0.0294383 0.0770705i
\(394\) 0 0
\(395\) 20.9443 10.4721i 1.05382 0.526910i
\(396\) 0 0
\(397\) −3.41641 −0.171465 −0.0857323 0.996318i \(-0.527323\pi\)
−0.0857323 + 0.996318i \(0.527323\pi\)
\(398\) 0 0
\(399\) −12.9443 4.94427i −0.648024 0.247523i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) −16.8885 + 10.9443i −0.839198 + 0.543825i
\(406\) 0 0
\(407\) 6.11146i 0.302934i
\(408\) 0 0
\(409\) −4.47214 −0.221133 −0.110566 0.993869i \(-0.535266\pi\)
−0.110566 + 0.993869i \(0.535266\pi\)
\(410\) 0 0
\(411\) −2.47214 0.944272i −0.121941 0.0465775i
\(412\) 0 0
\(413\) 28.9443i 1.42425i
\(414\) 0 0
\(415\) 8.18034 + 16.3607i 0.401557 + 0.803114i
\(416\) 0 0
\(417\) −37.8885 14.4721i −1.85541 0.708704i
\(418\) 0 0
\(419\) 4.00000i 0.195413i −0.995215 0.0977064i \(-0.968849\pi\)
0.995215 0.0977064i \(-0.0311506\pi\)
\(420\) 0 0
\(421\) 4.94427i 0.240969i −0.992715 0.120485i \(-0.961555\pi\)
0.992715 0.120485i \(-0.0384448\pi\)
\(422\) 0 0
\(423\) −18.4721 + 20.6525i −0.898146 + 1.00416i
\(424\) 0 0
\(425\) −19.4164 + 25.8885i −0.941834 + 1.25578i
\(426\) 0 0
\(427\) 16.0000i 0.774294i
\(428\) 0 0
\(429\) 16.0000 41.8885i 0.772487 2.02240i
\(430\) 0 0
\(431\) −35.7771 −1.72332 −0.861661 0.507485i \(-0.830575\pi\)
−0.861661 + 0.507485i \(0.830575\pi\)
\(432\) 0 0
\(433\) 3.05573i 0.146849i −0.997301 0.0734245i \(-0.976607\pi\)
0.997301 0.0734245i \(-0.0233928\pi\)
\(434\) 0 0
\(435\) −1.70820 17.2361i −0.0819021 0.826406i
\(436\) 0 0
\(437\) 3.05573i 0.146175i
\(438\) 0 0
\(439\) 7.41641i 0.353966i −0.984214 0.176983i \(-0.943366\pi\)
0.984214 0.176983i \(-0.0566337\pi\)
\(440\) 0 0
\(441\) 7.76393 + 6.94427i 0.369711 + 0.330680i
\(442\) 0 0
\(443\) −16.1803 −0.768751 −0.384376 0.923177i \(-0.625583\pi\)
−0.384376 + 0.923177i \(0.625583\pi\)
\(444\) 0 0
\(445\) −16.0000 + 8.00000i −0.758473 + 0.379236i
\(446\) 0 0
\(447\) −19.2361 7.34752i −0.909835 0.347526i
\(448\) 0 0
\(449\) 2.11146i 0.0996458i 0.998758 + 0.0498229i \(0.0158657\pi\)
−0.998758 + 0.0498229i \(0.984134\pi\)
\(450\) 0 0
\(451\) −16.0000 −0.753411
\(452\) 0 0
\(453\) 6.47214 16.9443i 0.304087 0.796111i
\(454\) 0 0
\(455\) −20.9443 41.8885i −0.981883 1.96377i
\(456\) 0 0
\(457\) 41.8885i 1.95946i 0.200314 + 0.979732i \(0.435804\pi\)
−0.200314 + 0.979732i \(0.564196\pi\)
\(458\) 0 0
\(459\) 15.4164 + 29.8885i 0.719576 + 1.39508i
\(460\) 0 0
\(461\) −20.4721 −0.953482 −0.476741 0.879044i \(-0.658182\pi\)
−0.476741 + 0.879044i \(0.658182\pi\)
\(462\) 0 0
\(463\) 22.2918 1.03599 0.517994 0.855384i \(-0.326679\pi\)
0.517994 + 0.855384i \(0.326679\pi\)
\(464\) 0 0
\(465\) −9.52786 + 0.944272i −0.441844 + 0.0437896i
\(466\) 0 0
\(467\) −19.2361 −0.890139 −0.445070 0.895496i \(-0.646821\pi\)
−0.445070 + 0.895496i \(0.646821\pi\)
\(468\) 0 0
\(469\) 37.8885i 1.74953i
\(470\) 0 0
\(471\) −2.47214 0.944272i −0.113910 0.0435098i
\(472\) 0 0
\(473\) −36.9443 −1.69870
\(474\) 0 0
\(475\) −7.41641 + 9.88854i −0.340288 + 0.453718i
\(476\) 0 0
\(477\) −17.8885 + 20.0000i −0.819060 + 0.915737i
\(478\) 0 0
\(479\) 14.8328 0.677729 0.338864 0.940835i \(-0.389957\pi\)
0.338864 + 0.940835i \(0.389957\pi\)
\(480\) 0 0
\(481\) −9.88854 −0.450879
\(482\) 0 0
\(483\) −2.47214 + 6.47214i −0.112486 + 0.294492i
\(484\) 0 0
\(485\) 25.8885 12.9443i 1.17554 0.587769i
\(486\) 0 0
\(487\) −6.65248 −0.301452 −0.150726 0.988576i \(-0.548161\pi\)
−0.150726 + 0.988576i \(0.548161\pi\)
\(488\) 0 0
\(489\) 9.12461 23.8885i 0.412629 1.08028i
\(490\) 0 0
\(491\) 0.944272i 0.0426144i −0.999773 0.0213072i \(-0.993217\pi\)
0.999773 0.0213072i \(-0.00678280\pi\)
\(492\) 0 0
\(493\) −28.9443 −1.30358
\(494\) 0 0
\(495\) 25.8885 + 7.05573i 1.16360 + 0.317131i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.3607 −1.26960 −0.634799 0.772677i \(-0.718917\pi\)
−0.634799 + 0.772677i \(0.718917\pi\)
\(500\) 0 0
\(501\) −0.763932 + 2.00000i −0.0341300 + 0.0893534i
\(502\) 0 0
\(503\) 37.0132i 1.65034i 0.564888 + 0.825168i \(0.308919\pi\)
−0.564888 + 0.825168i \(0.691081\pi\)
\(504\) 0 0
\(505\) −3.52786 7.05573i −0.156988 0.313976i
\(506\) 0 0
\(507\) 46.7426 + 17.8541i 2.07591 + 0.792929i
\(508\) 0 0
\(509\) −5.41641 −0.240078 −0.120039 0.992769i \(-0.538302\pi\)
−0.120039 + 0.992769i \(0.538302\pi\)
\(510\) 0 0
\(511\) 16.0000i 0.707798i
\(512\) 0 0
\(513\) 5.88854 + 11.4164i 0.259986 + 0.504047i
\(514\) 0 0
\(515\) 1.70820 + 3.41641i 0.0752725 + 0.150545i
\(516\) 0 0
\(517\) 36.9443 1.62481
\(518\) 0 0
\(519\) −2.47214 + 6.47214i −0.108515 + 0.284095i
\(520\) 0 0
\(521\) 8.00000i 0.350486i −0.984525 0.175243i \(-0.943929\pi\)
0.984525 0.175243i \(-0.0560712\pi\)
\(522\) 0 0
\(523\) 3.70820i 0.162148i −0.996708 0.0810742i \(-0.974165\pi\)
0.996708 0.0810742i \(-0.0258351\pi\)
\(524\) 0 0
\(525\) 23.7082 14.9443i 1.03471 0.652221i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 21.4721 0.933571
\(530\) 0 0
\(531\) −17.8885 + 20.0000i −0.776297 + 0.867926i
\(532\) 0 0
\(533\) 25.8885i 1.12136i
\(534\) 0 0
\(535\) −9.70820 19.4164i −0.419722 0.839445i
\(536\) 0 0
\(537\) 0.583592 1.52786i 0.0251839 0.0659322i
\(538\) 0 0
\(539\) 13.8885i 0.598222i
\(540\) 0 0
\(541\) 7.05573i 0.303349i −0.988430 0.151675i \(-0.951533\pi\)
0.988430 0.151675i \(-0.0484666\pi\)
\(542\) 0 0
\(543\) 0.583592 1.52786i 0.0250443 0.0655669i
\(544\) 0 0
\(545\) 25.8885 12.9443i 1.10894 0.554472i
\(546\) 0 0
\(547\) 14.7639i 0.631260i 0.948882 + 0.315630i \(0.102216\pi\)
−0.948882 + 0.315630i \(0.897784\pi\)
\(548\) 0 0
\(549\) −9.88854 + 11.0557i −0.422033 + 0.471847i
\(550\) 0 0
\(551\) −11.0557 −0.470990
\(552\) 0 0
\(553\) 33.8885i 1.44109i
\(554\) 0 0
\(555\) −0.583592 5.88854i −0.0247721 0.249955i
\(556\) 0 0
\(557\) 5.88854i 0.249506i −0.992188 0.124753i \(-0.960186\pi\)
0.992188 0.124753i \(-0.0398138\pi\)
\(558\) 0 0
\(559\) 59.7771i 2.52830i
\(560\) 0 0
\(561\) 16.0000 41.8885i 0.675521 1.76854i
\(562\) 0 0
\(563\) −29.1246 −1.22746 −0.613728 0.789518i \(-0.710331\pi\)
−0.613728 + 0.789518i \(0.710331\pi\)
\(564\) 0 0
\(565\) 14.4721 + 28.9443i 0.608847 + 1.21769i
\(566\) 0 0
\(567\) −3.23607 28.9443i −0.135902 1.21555i
\(568\) 0 0
\(569\) 31.7771i 1.33216i −0.745878 0.666082i \(-0.767970\pi\)
0.745878 0.666082i \(-0.232030\pi\)
\(570\) 0 0
\(571\) 18.4721 0.773035 0.386517 0.922282i \(-0.373678\pi\)
0.386517 + 0.922282i \(0.373678\pi\)
\(572\) 0 0
\(573\) 8.00000 + 3.05573i 0.334205 + 0.127655i
\(574\) 0 0
\(575\) 4.94427 + 3.70820i 0.206190 + 0.154643i
\(576\) 0 0
\(577\) 8.00000i 0.333044i 0.986038 + 0.166522i \(0.0532537\pi\)
−0.986038 + 0.166522i \(0.946746\pi\)
\(578\) 0 0
\(579\) −12.9443 + 33.8885i −0.537946 + 1.40836i
\(580\) 0 0
\(581\) −26.4721 −1.09825
\(582\) 0 0
\(583\) 35.7771 1.48174
\(584\) 0 0
\(585\) −11.4164 + 41.8885i −0.472010 + 1.73188i
\(586\) 0 0
\(587\) −36.7639 −1.51741 −0.758705 0.651434i \(-0.774168\pi\)
−0.758705 + 0.651434i \(0.774168\pi\)
\(588\) 0 0
\(589\) 6.11146i 0.251818i
\(590\) 0 0
\(591\) 5.52786 14.4721i 0.227386 0.595304i
\(592\) 0 0
\(593\) 30.4721 1.25134 0.625670 0.780088i \(-0.284826\pi\)
0.625670 + 0.780088i \(0.284826\pi\)
\(594\) 0 0
\(595\) −20.9443 41.8885i −0.858631 1.71726i
\(596\) 0 0
\(597\) 8.36068 21.8885i 0.342180 0.895838i
\(598\) 0 0
\(599\) −4.94427 −0.202017 −0.101009 0.994886i \(-0.532207\pi\)
−0.101009 + 0.994886i \(0.532207\pi\)
\(600\) 0 0
\(601\) 4.47214 0.182422 0.0912111 0.995832i \(-0.470926\pi\)
0.0912111 + 0.995832i \(0.470926\pi\)
\(602\) 0 0
\(603\) −23.4164 + 26.1803i −0.953590 + 1.06615i
\(604\) 0 0
\(605\) −5.00000 10.0000i −0.203279 0.406558i
\(606\) 0 0
\(607\) −48.1803 −1.95558 −0.977790 0.209588i \(-0.932788\pi\)
−0.977790 + 0.209588i \(0.932788\pi\)
\(608\) 0 0
\(609\) 23.4164 + 8.94427i 0.948881 + 0.362440i
\(610\) 0 0
\(611\) 59.7771i 2.41832i
\(612\) 0 0
\(613\) −19.4164 −0.784221 −0.392111 0.919918i \(-0.628255\pi\)
−0.392111 + 0.919918i \(0.628255\pi\)
\(614\) 0 0
\(615\) 15.4164 1.52786i 0.621650 0.0616094i
\(616\) 0 0
\(617\) −35.4164 −1.42581 −0.712905 0.701260i \(-0.752621\pi\)
−0.712905 + 0.701260i \(0.752621\pi\)
\(618\) 0 0
\(619\) 34.4721 1.38555 0.692776 0.721153i \(-0.256387\pi\)
0.692776 + 0.721153i \(0.256387\pi\)
\(620\) 0 0
\(621\) 5.70820 2.94427i 0.229062 0.118150i
\(622\) 0 0
\(623\) 25.8885i 1.03720i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 6.11146 16.0000i 0.244068 0.638978i
\(628\) 0 0
\(629\) −9.88854 −0.394282
\(630\) 0 0
\(631\) 13.5279i 0.538536i −0.963065 0.269268i \(-0.913218\pi\)
0.963065 0.269268i \(-0.0867817\pi\)
\(632\) 0 0
\(633\) 12.0000 + 4.58359i 0.476957 + 0.182181i
\(634\) 0 0
\(635\) 11.2361 + 22.4721i 0.445890 + 0.891780i
\(636\) 0 0
\(637\) 22.4721 0.890378
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.8885i 0.548564i 0.961649 + 0.274282i \(0.0884403\pi\)
−0.961649 + 0.274282i \(0.911560\pi\)
\(642\) 0 0
\(643\) 21.5967i 0.851693i −0.904796 0.425846i \(-0.859976\pi\)
0.904796 0.425846i \(-0.140024\pi\)
\(644\) 0 0
\(645\) 35.5967 3.52786i 1.40162 0.138910i
\(646\) 0 0
\(647\) 20.2918i 0.797753i 0.917005 + 0.398876i \(0.130600\pi\)
−0.917005 + 0.398876i \(0.869400\pi\)
\(648\) 0 0
\(649\) 35.7771 1.40437
\(650\) 0 0
\(651\) 4.94427 12.9443i 0.193781 0.507326i
\(652\) 0 0
\(653\) 32.9443i 1.28921i 0.764516 + 0.644604i \(0.222978\pi\)
−0.764516 + 0.644604i \(0.777022\pi\)
\(654\) 0 0
\(655\) 1.88854 0.944272i 0.0737915 0.0368958i
\(656\) 0 0
\(657\) 9.88854 11.0557i 0.385789 0.431325i
\(658\) 0 0
\(659\) 7.05573i 0.274852i −0.990512 0.137426i \(-0.956117\pi\)
0.990512 0.137426i \(-0.0438830\pi\)
\(660\) 0 0
\(661\) 3.05573i 0.118854i −0.998233 0.0594270i \(-0.981073\pi\)
0.998233 0.0594270i \(-0.0189274\pi\)
\(662\) 0 0
\(663\) 67.7771 + 25.8885i 2.63224 + 1.00543i
\(664\) 0 0
\(665\) −8.00000 16.0000i −0.310227 0.620453i
\(666\) 0 0
\(667\) 5.52786i 0.214040i
\(668\) 0 0
\(669\) −34.1803 13.0557i −1.32149 0.504764i
\(670\) 0 0
\(671\) 19.7771 0.763486
\(672\) 0 0
\(673\) 28.9443i 1.11572i −0.829935 0.557860i \(-0.811623\pi\)
0.829935 0.557860i \(-0.188377\pi\)
\(674\) 0 0
\(675\) −25.6180 4.32624i −0.986039 0.166517i
\(676\) 0 0
\(677\) 24.9443i 0.958686i 0.877628 + 0.479343i \(0.159125\pi\)
−0.877628 + 0.479343i \(0.840875\pi\)
\(678\) 0 0
\(679\) 41.8885i 1.60753i
\(680\) 0 0
\(681\) −20.6525 7.88854i −0.791405 0.302290i
\(682\) 0 0
\(683\) 11.2361 0.429936 0.214968 0.976621i \(-0.431035\pi\)
0.214968 + 0.976621i \(0.431035\pi\)
\(684\) 0 0
\(685\) −1.52786 3.05573i −0.0583767 0.116753i
\(686\) 0 0
\(687\) 15.4164 40.3607i 0.588173 1.53986i
\(688\) 0 0
\(689\) 57.8885i 2.20538i
\(690\) 0 0
\(691\) −17.3050 −0.658311 −0.329156 0.944276i \(-0.606764\pi\)
−0.329156 + 0.944276i \(0.606764\pi\)
\(692\) 0 0
\(693\) −25.8885 + 28.9443i −0.983424 + 1.09950i
\(694\) 0 0
\(695\) −23.4164 46.8328i −0.888235 1.77647i
\(696\) 0 0
\(697\) 25.8885i 0.980599i
\(698\) 0 0
\(699\) −15.4164 5.88854i −0.583102 0.222725i
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) −3.77709 −0.142456
\(704\) 0 0
\(705\) −35.5967 + 3.52786i −1.34065 + 0.132867i
\(706\) 0 0
\(707\) 11.4164 0.429358
\(708\) 0 0
\(709\) 32.9443i 1.23725i −0.785687 0.618624i \(-0.787690\pi\)
0.785687 0.618624i \(-0.212310\pi\)
\(710\) 0 0
\(711\) 20.9443 23.4164i 0.785472 0.878184i
\(712\) 0 0
\(713\) 3.05573 0.114438
\(714\) 0 0
\(715\) 51.7771 25.8885i 1.93635 0.968177i
\(716\) 0 0
\(717\) 17.8885 + 6.83282i 0.668060 + 0.255176i
\(718\) 0 0
\(719\) −25.8885 −0.965480 −0.482740 0.875764i \(-0.660358\pi\)
−0.482740 + 0.875764i \(0.660358\pi\)
\(720\) 0 0
\(721\) −5.52786 −0.205868
\(722\) 0 0
\(723\) −20.1803 7.70820i −0.750515 0.286671i
\(724\) 0 0
\(725\) 13.4164 17.8885i 0.498273 0.664364i
\(726\) 0 0
\(727\) −12.7639 −0.473388 −0.236694 0.971584i \(-0.576064\pi\)
−0.236694 + 0.971584i \(0.576064\pi\)
\(728\) 0 0
\(729\) −15.6525 + 22.0000i −0.579721 + 0.814815i
\(730\) 0 0
\(731\) 59.7771i 2.21094i
\(732\) 0 0
\(733\) −1.52786 −0.0564329 −0.0282165 0.999602i \(-0.508983\pi\)
−0.0282165 + 0.999602i \(0.508983\pi\)
\(734\) 0 0
\(735\) 1.32624 + 13.3820i 0.0489190 + 0.493601i
\(736\) 0 0
\(737\) 46.8328 1.72511
\(738\) 0 0
\(739\) −18.4721 −0.679509 −0.339754 0.940514i \(-0.610344\pi\)
−0.339754 + 0.940514i \(0.610344\pi\)
\(740\) 0 0
\(741\) 25.8885 + 9.88854i 0.951039 + 0.363265i
\(742\) 0 0
\(743\) 47.4853i 1.74207i 0.491224 + 0.871033i \(0.336550\pi\)
−0.491224 + 0.871033i \(0.663450\pi\)
\(744\) 0 0
\(745\) −11.8885 23.7771i −0.435563 0.871125i
\(746\) 0 0
\(747\) 18.2918 + 16.3607i 0.669262 + 0.598606i
\(748\) 0 0
\(749\) 31.4164 1.14793
\(750\) 0 0
\(751\) 17.3050i 0.631467i −0.948848 0.315733i \(-0.897750\pi\)
0.948848 0.315733i \(-0.102250\pi\)
\(752\) 0 0
\(753\) −13.5279 + 35.4164i −0.492983 + 1.29065i
\(754\) 0 0
\(755\) 20.9443 10.4721i 0.762240 0.381120i
\(756\) 0 0
\(757\) −27.4164 −0.996466 −0.498233 0.867043i \(-0.666018\pi\)
−0.498233 + 0.867043i \(0.666018\pi\)
\(758\) 0 0
\(759\) −8.00000 3.05573i −0.290382 0.110916i
\(760\) 0 0
\(761\) 9.88854i 0.358459i 0.983807 + 0.179230i \(0.0573605\pi\)
−0.983807 + 0.179230i \(0.942639\pi\)
\(762\) 0 0
\(763\) 41.8885i 1.51647i
\(764\) 0 0
\(765\) −11.4164 + 41.8885i −0.412761 + 1.51448i
\(766\) 0 0
\(767\) 57.8885i 2.09023i
\(768\) 0 0
\(769\) 27.8885 1.00569 0.502843 0.864378i \(-0.332287\pi\)
0.502843 + 0.864378i \(0.332287\pi\)
\(770\) 0 0
\(771\) 7.41641 + 2.83282i 0.267095 + 0.102021i
\(772\) 0 0
\(773\) 52.7214i 1.89626i 0.317890 + 0.948128i \(0.397026\pi\)
−0.317890 + 0.948128i \(0.602974\pi\)
\(774\) 0 0
\(775\) −9.88854 7.41641i −0.355207 0.266405i
\(776\) 0 0
\(777\) 8.00000 + 3.05573i 0.286998 + 0.109624i
\(778\) 0 0
\(779\) 9.88854i 0.354294i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −10.6525 20.6525i −0.380688 0.738059i
\(784\) 0 0
\(785\) −1.52786 3.05573i −0.0545318 0.109064i
\(786\) 0 0
\(787\) 14.1803i 0.505475i 0.967535 + 0.252737i \(0.0813308\pi\)
−0.967535 + 0.252737i \(0.918669\pi\)
\(788\) 0 0
\(789\) −8.76393 + 22.9443i −0.312004 + 0.816838i
\(790\) 0 0
\(791\) −46.8328 −1.66518
\(792\) 0 0
\(793\) 32.0000i 1.13635i
\(794\) 0 0
\(795\) −34.4721 + 3.41641i −1.22260 + 0.121168i
\(796\) 0 0
\(797\) 23.0557i 0.816676i −0.912831 0.408338i \(-0.866109\pi\)
0.912831 0.408338i \(-0.133891\pi\)
\(798\) 0 0
\(799\) 59.7771i 2.11476i
\(800\) 0 0
\(801\) −16.0000 + 17.8885i −0.565332 + 0.632061i
\(802\) 0 0
\(803\) −19.7771 −0.697918
\(804\) 0 0
\(805\) −8.00000 + 4.00000i −0.281963 + 0.140981i
\(806\) 0 0
\(807\) −32.1803 12.2918i −1.13280 0.432692i
\(808\) 0 0
\(809\) 40.0000i 1.40633i −0.711029 0.703163i \(-0.751771\pi\)
0.711029 0.703163i \(-0.248229\pi\)
\(810\) 0 0
\(811\) −8.58359 −0.301411 −0.150705 0.988579i \(-0.548154\pi\)
−0.150705 + 0.988579i \(0.548154\pi\)
\(812\) 0 0
\(813\) 16.3607 42.8328i 0.573794 1.50221i
\(814\) 0 0
\(815\) 29.5279 14.7639i 1.03432 0.517158i
\(816\) 0 0
\(817\) 22.8328i 0.798819i
\(818\) 0 0
\(819\) −46.8328 41.8885i −1.63647 1.46370i
\(820\) 0 0
\(821\) 4.11146 0.143491 0.0717454 0.997423i \(-0.477143\pi\)
0.0717454 + 0.997423i \(0.477143\pi\)
\(822\) 0 0
\(823\) −14.2918 −0.498181 −0.249090 0.968480i \(-0.580132\pi\)
−0.249090 + 0.968480i \(0.580132\pi\)
\(824\) 0 0
\(825\) 18.4721 + 29.3050i 0.643117 + 1.02027i
\(826\) 0 0
\(827\) 24.5410 0.853375 0.426687 0.904399i \(-0.359680\pi\)
0.426687 + 0.904399i \(0.359680\pi\)
\(828\) 0 0
\(829\) 20.9443i 0.727425i 0.931511 + 0.363712i \(0.118491\pi\)
−0.931511 + 0.363712i \(0.881509\pi\)
\(830\) 0 0
\(831\) −18.4721 7.05573i −0.640791 0.244760i
\(832\) 0 0
\(833\) 22.4721 0.778613
\(834\) 0 0
\(835\) −2.47214 + 1.23607i −0.0855518 + 0.0427759i
\(836\) 0 0
\(837\) −11.4164 + 5.88854i −0.394609 + 0.203538i
\(838\) 0 0
\(839\) −30.8328 −1.06447 −0.532234 0.846598i \(-0.678647\pi\)
−0.532234 + 0.846598i \(0.678647\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 7.41641 19.4164i 0.255435 0.668737i
\(844\) 0 0
\(845\) 28.8885 + 57.7771i 0.993796 + 1.98759i
\(846\) 0 0
\(847\) 16.1803 0.555963
\(848\) 0 0
\(849\) −2.29180 + 6.00000i −0.0786542 + 0.205919i
\(850\) 0 0
\(851\) 1.88854i 0.0647384i
\(852\) 0 0
\(853\) −41.5279 −1.42189 −0.710943 0.703249i \(-0.751732\pi\)
−0.710943 + 0.703249i \(0.751732\pi\)
\(854\) 0 0
\(855\) −4.36068 + 16.0000i −0.149132 + 0.547188i
\(856\) 0 0
\(857\) 40.3607 1.37869 0.689347 0.724431i \(-0.257897\pi\)
0.689347 + 0.724431i \(0.257897\pi\)
\(858\) 0 0
\(859\) 39.4164 1.34487 0.672435 0.740156i \(-0.265248\pi\)
0.672435 + 0.740156i \(0.265248\pi\)
\(860\) 0 0
\(861\) −8.00000 + 20.9443i −0.272639 + 0.713779i
\(862\) 0 0
\(863\) 38.7639i 1.31954i −0.751468 0.659770i \(-0.770654\pi\)
0.751468 0.659770i \(-0.229346\pi\)
\(864\) 0 0
\(865\) −8.00000 + 4.00000i −0.272008 + 0.136004i
\(866\) 0 0
\(867\) 40.2705 + 15.3820i 1.36766 + 0.522399i
\(868\) 0 0
\(869\) −41.8885 −1.42097
\(870\) 0 0
\(871\) 75.7771i 2.56761i
\(872\) 0 0
\(873\) 25.8885 28.9443i 0.876194 0.979615i
\(874\) 0 0
\(875\) 35.5967 + 6.47214i 1.20339 + 0.218798i
\(876\) 0 0
\(877\) −33.5279 −1.13216 −0.566078 0.824352i \(-0.691540\pi\)
−0.566078 + 0.824352i \(0.691540\pi\)
\(878\) 0 0
\(879\) 8.58359 22.4721i 0.289517 0.757966i
\(880\) 0 0
\(881\) 29.8885i 1.00697i 0.864004 + 0.503485i \(0.167949\pi\)
−0.864004 + 0.503485i \(0.832051\pi\)
\(882\) 0 0
\(883\) 1.23607i 0.0415970i 0.999784 + 0.0207985i \(0.00662085\pi\)
−0.999784 + 0.0207985i \(0.993379\pi\)
\(884\) 0 0
\(885\) −34.4721 + 3.41641i −1.15877 + 0.114841i
\(886\) 0 0
\(887\) 21.5967i 0.725148i −0.931955 0.362574i \(-0.881898\pi\)
0.931955 0.362574i \(-0.118102\pi\)
\(888\) 0 0
\(889\) −36.3607 −1.21950
\(890\) 0 0
\(891\) 35.7771 4.00000i 1.19858 0.134005i
\(892\) 0 0
\(893\) 22.8328i 0.764071i
\(894\) 0 0
\(895\) 1.88854 0.944272i 0.0631271 0.0315635i
\(896\) 0 0
\(897\) 4.94427 12.9443i 0.165084 0.432197i
\(898\) 0 0
\(899\) 11.0557i 0.368729i
\(900\) 0 0
\(901\) 57.8885i 1.92855i
\(902\) 0 0
\(903\) −18.4721 + 48.3607i −0.614714 + 1.60934i
\(904\) 0 0
\(905\) 1.88854 0.944272i 0.0627773 0.0313887i
\(906\) 0 0
\(907\) 55.4853i 1.84236i 0.389138 + 0.921179i \(0.372773\pi\)
−0.389138 + 0.921179i \(0.627227\pi\)
\(908\) 0 0
\(909\) −7.88854 7.05573i −0.261646 0.234024i
\(910\) 0 0
\(911\) 57.8885 1.91793 0.958967 0.283519i \(-0.0915020\pi\)
0.958967 + 0.283519i \(0.0915020\pi\)
\(912\) 0 0
\(913\) 32.7214i 1.08292i
\(914\) 0 0
\(915\) −19.0557 + 1.88854i −0.629963 + 0.0624333i
\(916\) 0 0
\(917\) 3.05573i 0.100909i
\(918\) 0 0
\(919\) 42.4721i 1.40103i −0.713639 0.700513i \(-0.752954\pi\)
0.713639 0.700513i \(-0.247046\pi\)
\(920\) 0 0
\(921\) 1.12461 2.94427i 0.0370572 0.0970171i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.58359 6.11146i 0.150708 0.200943i
\(926\) 0 0
\(927\) 3.81966 + 3.41641i 0.125454 + 0.112210i
\(928\) 0 0
\(929\) 53.8885i 1.76803i −0.467463 0.884013i \(-0.654832\pi\)
0.467463 0.884013i \(-0.345168\pi\)
\(930\) 0 0
\(931\) 8.58359 0.281316
\(932\) 0 0
\(933\) 25.8885 + 9.88854i 0.847553 + 0.323736i
\(934\) 0 0
\(935\) 51.7771 25.8885i 1.69329 0.846646i
\(936\) 0 0
\(937\) 38.8328i 1.26861i −0.773082 0.634306i \(-0.781286\pi\)
0.773082 0.634306i \(-0.218714\pi\)
\(938\) 0 0
\(939\) 14.8328 38.8328i 0.484051 1.26726i
\(940\) 0 0
\(941\) −53.4164 −1.74133 −0.870663 0.491881i \(-0.836310\pi\)
−0.870663 + 0.491881i \(0.836310\pi\)
\(942\) 0 0
\(943\) −4.94427 −0.161008
\(944\) 0 0
\(945\) 22.1803 30.3607i 0.721527 0.987633i
\(946\) 0 0
\(947\) −50.0689 −1.62702 −0.813510 0.581551i \(-0.802446\pi\)
−0.813510 + 0.581551i \(0.802446\pi\)
\(948\) 0 0
\(949\) 32.0000i 1.03876i
\(950\) 0 0
\(951\) 10.4721 27.4164i 0.339582 0.889038i
\(952\) 0 0
\(953\) −1.52786 −0.0494924 −0.0247462 0.999694i \(-0.507878\pi\)
−0.0247462 + 0.999694i \(0.507878\pi\)
\(954\) 0 0
\(955\) 4.94427 + 9.88854i 0.159993 + 0.319986i
\(956\) 0 0
\(957\) −11.0557 + 28.9443i −0.357381 + 0.935635i
\(958\) 0 0
\(959\) 4.94427 0.159659
\(960\) 0 0
\(961\) 24.8885 0.802856
\(962\) 0 0
\(963\) −21.7082 19.4164i −0.699537 0.625685i
\(964\) 0 0
\(965\) −41.8885 + 20.9443i −1.34844 + 0.674220i
\(966\) 0 0
\(967\) −43.5967 −1.40198 −0.700988 0.713173i \(-0.747258\pi\)
−0.700988 + 0.713173i \(0.747258\pi\)
\(968\) 0 0
\(969\) 25.8885 + 9.88854i 0.831660 + 0.317666i
\(970\) 0 0
\(971\) 28.0000i 0.898563i 0.893390 + 0.449281i \(0.148320\pi\)
−0.893390 + 0.449281i \(0.851680\pi\)
\(972\) 0 0
\(973\) 75.7771 2.42930
\(974\) 0 0
\(975\) −47.4164 + 29.8885i −1.51854 + 0.957199i
\(976\) 0 0
\(977\) 12.5836 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(978\) 0 0
\(979\) 32.0000 1.02272
\(980\) 0 0
\(981\) 25.8885 28.9443i 0.826558 0.924119i
\(982\) 0 0
\(983\) 11.7082i 0.373434i 0.982414 + 0.186717i \(0.0597847\pi\)
−0.982414 + 0.186717i \(0.940215\pi\)
\(984\) 0 0
\(985\) 17.8885 8.94427i 0.569976 0.284988i
\(986\) 0 0
\(987\) 18.4721 48.3607i 0.587975 1.53934i
\(988\) 0 0
\(989\) −11.4164 −0.363021
\(990\) 0 0
\(991\) 51.1935i 1.62621i 0.582114 + 0.813107i \(0.302226\pi\)
−0.582114 + 0.813107i \(0.697774\pi\)
\(992\) 0 0
\(993\) 4.00000 + 1.52786i 0.126936 + 0.0484853i
\(994\) 0 0
\(995\) 27.0557 13.5279i 0.857724 0.428862i
\(996\) 0 0
\(997\) 42.2492 1.33805 0.669023 0.743242i \(-0.266713\pi\)
0.669023 + 0.743242i \(0.266713\pi\)
\(998\) 0 0
\(999\) −3.63932 7.05573i −0.115143 0.223233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.t.959.4 yes 4
3.2 odd 2 1920.2.m.d.959.2 yes 4
4.3 odd 2 1920.2.m.h.959.1 yes 4
5.4 even 2 1920.2.m.g.959.1 yes 4
8.3 odd 2 1920.2.m.o.959.4 yes 4
8.5 even 2 1920.2.m.c.959.1 4
12.11 even 2 1920.2.m.p.959.3 yes 4
15.14 odd 2 1920.2.m.o.959.3 yes 4
20.19 odd 2 1920.2.m.s.959.4 yes 4
24.5 odd 2 1920.2.m.s.959.3 yes 4
24.11 even 2 1920.2.m.g.959.2 yes 4
40.19 odd 2 1920.2.m.d.959.1 yes 4
40.29 even 2 1920.2.m.p.959.4 yes 4
60.59 even 2 1920.2.m.c.959.2 yes 4
120.29 odd 2 1920.2.m.h.959.2 yes 4
120.59 even 2 inner 1920.2.m.t.959.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.c.959.1 4 8.5 even 2
1920.2.m.c.959.2 yes 4 60.59 even 2
1920.2.m.d.959.1 yes 4 40.19 odd 2
1920.2.m.d.959.2 yes 4 3.2 odd 2
1920.2.m.g.959.1 yes 4 5.4 even 2
1920.2.m.g.959.2 yes 4 24.11 even 2
1920.2.m.h.959.1 yes 4 4.3 odd 2
1920.2.m.h.959.2 yes 4 120.29 odd 2
1920.2.m.o.959.3 yes 4 15.14 odd 2
1920.2.m.o.959.4 yes 4 8.3 odd 2
1920.2.m.p.959.3 yes 4 12.11 even 2
1920.2.m.p.959.4 yes 4 40.29 even 2
1920.2.m.s.959.3 yes 4 24.5 odd 2
1920.2.m.s.959.4 yes 4 20.19 odd 2
1920.2.m.t.959.3 yes 4 120.59 even 2 inner
1920.2.m.t.959.4 yes 4 1.1 even 1 trivial