Properties

Label 1920.2.bh.a.703.1
Level $1920$
Weight $2$
Character 1920.703
Analytic conductor $15.331$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(703,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.703"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bh (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8,0,0,0,0,0,0,0,4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 703.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1920.703
Dual form 1920.2.bh.a.1087.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.00000 - 1.00000i) q^{5} +(2.82843 + 2.82843i) q^{7} +1.00000i q^{9} -2.82843 q^{11} +(1.00000 - 1.00000i) q^{13} +(0.707107 + 2.12132i) q^{15} +(-1.00000 + 1.00000i) q^{17} -4.00000i q^{21} +(3.00000 + 4.00000i) q^{25} +(0.707107 - 0.707107i) q^{27} -2.00000 q^{29} -8.48528i q^{31} +(2.00000 + 2.00000i) q^{33} +(-2.82843 - 8.48528i) q^{35} +(-7.00000 - 7.00000i) q^{37} -1.41421 q^{39} -12.0000 q^{41} +(5.65685 + 5.65685i) q^{43} +(1.00000 - 2.00000i) q^{45} +(-2.82843 - 2.82843i) q^{47} +9.00000i q^{49} +1.41421 q^{51} +(-7.00000 + 7.00000i) q^{53} +(5.65685 + 2.82843i) q^{55} +8.48528i q^{59} +2.00000i q^{61} +(-2.82843 + 2.82843i) q^{63} +(-3.00000 + 1.00000i) q^{65} +(5.65685 - 5.65685i) q^{67} -11.3137i q^{71} +(-9.00000 - 9.00000i) q^{73} +(0.707107 - 4.94975i) q^{75} +(-8.00000 - 8.00000i) q^{77} +2.82843 q^{79} -1.00000 q^{81} +(-2.82843 - 2.82843i) q^{83} +(3.00000 - 1.00000i) q^{85} +(1.41421 + 1.41421i) q^{87} +12.0000i q^{89} +5.65685 q^{91} +(-6.00000 + 6.00000i) q^{93} +(-13.0000 + 13.0000i) q^{97} -2.82843i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + 4 q^{13} - 4 q^{17} + 12 q^{25} - 8 q^{29} + 8 q^{33} - 28 q^{37} - 48 q^{41} + 4 q^{45} - 28 q^{53} - 12 q^{65} - 36 q^{73} - 32 q^{77} - 4 q^{81} + 12 q^{85} - 24 q^{93} - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 2.82843 + 2.82843i 1.06904 + 1.06904i 0.997433 + 0.0716124i \(0.0228145\pi\)
0.0716124 + 0.997433i \(0.477186\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000i 0.277350 0.277350i −0.554700 0.832050i \(-0.687167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0.707107 + 2.12132i 0.182574 + 0.547723i
\(16\) 0 0
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 4.00000i 0.872872i
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 8.48528i 1.52400i −0.647576 0.762001i \(-0.724217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(32\) 0 0
\(33\) 2.00000 + 2.00000i 0.348155 + 0.348155i
\(34\) 0 0
\(35\) −2.82843 8.48528i −0.478091 1.43427i
\(36\) 0 0
\(37\) −7.00000 7.00000i −1.15079 1.15079i −0.986394 0.164399i \(-0.947432\pi\)
−0.164399 0.986394i \(-0.552568\pi\)
\(38\) 0 0
\(39\) −1.41421 −0.226455
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) 5.65685 + 5.65685i 0.862662 + 0.862662i 0.991647 0.128984i \(-0.0411717\pi\)
−0.128984 + 0.991647i \(0.541172\pi\)
\(44\) 0 0
\(45\) 1.00000 2.00000i 0.149071 0.298142i
\(46\) 0 0
\(47\) −2.82843 2.82843i −0.412568 0.412568i 0.470064 0.882632i \(-0.344231\pi\)
−0.882632 + 0.470064i \(0.844231\pi\)
\(48\) 0 0
\(49\) 9.00000i 1.28571i
\(50\) 0 0
\(51\) 1.41421 0.198030
\(52\) 0 0
\(53\) −7.00000 + 7.00000i −0.961524 + 0.961524i −0.999287 0.0377628i \(-0.987977\pi\)
0.0377628 + 0.999287i \(0.487977\pi\)
\(54\) 0 0
\(55\) 5.65685 + 2.82843i 0.762770 + 0.381385i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.48528i 1.10469i 0.833616 + 0.552345i \(0.186267\pi\)
−0.833616 + 0.552345i \(0.813733\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i 0.991769 + 0.128037i \(0.0408676\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(62\) 0 0
\(63\) −2.82843 + 2.82843i −0.356348 + 0.356348i
\(64\) 0 0
\(65\) −3.00000 + 1.00000i −0.372104 + 0.124035i
\(66\) 0 0
\(67\) 5.65685 5.65685i 0.691095 0.691095i −0.271378 0.962473i \(-0.587479\pi\)
0.962473 + 0.271378i \(0.0874794\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3137i 1.34269i −0.741145 0.671345i \(-0.765717\pi\)
0.741145 0.671345i \(-0.234283\pi\)
\(72\) 0 0
\(73\) −9.00000 9.00000i −1.05337 1.05337i −0.998493 0.0548772i \(-0.982523\pi\)
−0.0548772 0.998493i \(-0.517477\pi\)
\(74\) 0 0
\(75\) 0.707107 4.94975i 0.0816497 0.571548i
\(76\) 0 0
\(77\) −8.00000 8.00000i −0.911685 0.911685i
\(78\) 0 0
\(79\) 2.82843 0.318223 0.159111 0.987261i \(-0.449137\pi\)
0.159111 + 0.987261i \(0.449137\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −2.82843 2.82843i −0.310460 0.310460i 0.534628 0.845088i \(-0.320452\pi\)
−0.845088 + 0.534628i \(0.820452\pi\)
\(84\) 0 0
\(85\) 3.00000 1.00000i 0.325396 0.108465i
\(86\) 0 0
\(87\) 1.41421 + 1.41421i 0.151620 + 0.151620i
\(88\) 0 0
\(89\) 12.0000i 1.27200i 0.771690 + 0.635999i \(0.219412\pi\)
−0.771690 + 0.635999i \(0.780588\pi\)
\(90\) 0 0
\(91\) 5.65685 0.592999
\(92\) 0 0
\(93\) −6.00000 + 6.00000i −0.622171 + 0.622171i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.0000 + 13.0000i −1.31995 + 1.31995i −0.406138 + 0.913812i \(0.633125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 2.82843i 0.284268i
\(100\) 0 0
\(101\) 4.00000i 0.398015i 0.979998 + 0.199007i \(0.0637718\pi\)
−0.979998 + 0.199007i \(0.936228\pi\)
\(102\) 0 0
\(103\) −5.65685 + 5.65685i −0.557386 + 0.557386i −0.928562 0.371176i \(-0.878955\pi\)
0.371176 + 0.928562i \(0.378955\pi\)
\(104\) 0 0
\(105\) −4.00000 + 8.00000i −0.390360 + 0.780720i
\(106\) 0 0
\(107\) −5.65685 + 5.65685i −0.546869 + 0.546869i −0.925534 0.378665i \(-0.876383\pi\)
0.378665 + 0.925534i \(0.376383\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 9.89949i 0.939618i
\(112\) 0 0
\(113\) 5.00000 + 5.00000i 0.470360 + 0.470360i 0.902031 0.431671i \(-0.142076\pi\)
−0.431671 + 0.902031i \(0.642076\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 + 1.00000i 0.0924500 + 0.0924500i
\(118\) 0 0
\(119\) −5.65685 −0.518563
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) 8.48528 + 8.48528i 0.765092 + 0.765092i
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 8.00000i 0.704361i
\(130\) 0 0
\(131\) −19.7990 −1.72985 −0.864923 0.501905i \(-0.832633\pi\)
−0.864923 + 0.501905i \(0.832633\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.12132 + 0.707107i −0.182574 + 0.0608581i
\(136\) 0 0
\(137\) 7.00000 7.00000i 0.598050 0.598050i −0.341743 0.939793i \(-0.611017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) 16.9706i 1.43942i 0.694273 + 0.719712i \(0.255726\pi\)
−0.694273 + 0.719712i \(0.744274\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) 0 0
\(143\) −2.82843 + 2.82843i −0.236525 + 0.236525i
\(144\) 0 0
\(145\) 4.00000 + 2.00000i 0.332182 + 0.166091i
\(146\) 0 0
\(147\) 6.36396 6.36396i 0.524891 0.524891i
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i 0.938507 + 0.345261i \(0.112210\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(152\) 0 0
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) 0 0
\(155\) −8.48528 + 16.9706i −0.681554 + 1.36311i
\(156\) 0 0
\(157\) −13.0000 13.0000i −1.03751 1.03751i −0.999268 0.0382445i \(-0.987823\pi\)
−0.0382445 0.999268i \(-0.512177\pi\)
\(158\) 0 0
\(159\) 9.89949 0.785081
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.1421 14.1421i −1.10770 1.10770i −0.993453 0.114245i \(-0.963555\pi\)
−0.114245 0.993453i \(-0.536445\pi\)
\(164\) 0 0
\(165\) −2.00000 6.00000i −0.155700 0.467099i
\(166\) 0 0
\(167\) −8.48528 8.48528i −0.656611 0.656611i 0.297966 0.954577i \(-0.403692\pi\)
−0.954577 + 0.297966i \(0.903692\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.00000 7.00000i 0.532200 0.532200i −0.389026 0.921227i \(-0.627189\pi\)
0.921227 + 0.389026i \(0.127189\pi\)
\(174\) 0 0
\(175\) −2.82843 + 19.7990i −0.213809 + 1.49666i
\(176\) 0 0
\(177\) 6.00000 6.00000i 0.450988 0.450988i
\(178\) 0 0
\(179\) 2.82843i 0.211407i 0.994398 + 0.105703i \(0.0337094\pi\)
−0.994398 + 0.105703i \(0.966291\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 1.41421 1.41421i 0.104542 0.104542i
\(184\) 0 0
\(185\) 7.00000 + 21.0000i 0.514650 + 1.54395i
\(186\) 0 0
\(187\) 2.82843 2.82843i 0.206835 0.206835i
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 16.9706i 1.22795i −0.789327 0.613973i \(-0.789570\pi\)
0.789327 0.613973i \(-0.210430\pi\)
\(192\) 0 0
\(193\) −7.00000 7.00000i −0.503871 0.503871i 0.408768 0.912639i \(-0.365959\pi\)
−0.912639 + 0.408768i \(0.865959\pi\)
\(194\) 0 0
\(195\) 2.82843 + 1.41421i 0.202548 + 0.101274i
\(196\) 0 0
\(197\) −11.0000 11.0000i −0.783718 0.783718i 0.196738 0.980456i \(-0.436965\pi\)
−0.980456 + 0.196738i \(0.936965\pi\)
\(198\) 0 0
\(199\) −8.48528 −0.601506 −0.300753 0.953702i \(-0.597238\pi\)
−0.300753 + 0.953702i \(0.597238\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) −5.65685 5.65685i −0.397033 0.397033i
\(204\) 0 0
\(205\) 24.0000 + 12.0000i 1.67623 + 0.838116i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.6274 1.55774 0.778868 0.627188i \(-0.215794\pi\)
0.778868 + 0.627188i \(0.215794\pi\)
\(212\) 0 0
\(213\) −8.00000 + 8.00000i −0.548151 + 0.548151i
\(214\) 0 0
\(215\) −5.65685 16.9706i −0.385794 1.15738i
\(216\) 0 0
\(217\) 24.0000 24.0000i 1.62923 1.62923i
\(218\) 0 0
\(219\) 12.7279i 0.860073i
\(220\) 0 0
\(221\) 2.00000i 0.134535i
\(222\) 0 0
\(223\) −5.65685 + 5.65685i −0.378811 + 0.378811i −0.870673 0.491862i \(-0.836316\pi\)
0.491862 + 0.870673i \(0.336316\pi\)
\(224\) 0 0
\(225\) −4.00000 + 3.00000i −0.266667 + 0.200000i
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 11.3137i 0.744387i
\(232\) 0 0
\(233\) 3.00000 + 3.00000i 0.196537 + 0.196537i 0.798513 0.601977i \(-0.205620\pi\)
−0.601977 + 0.798513i \(0.705620\pi\)
\(234\) 0 0
\(235\) 2.82843 + 8.48528i 0.184506 + 0.553519i
\(236\) 0 0
\(237\) −2.00000 2.00000i −0.129914 0.129914i
\(238\) 0 0
\(239\) 28.2843 1.82956 0.914779 0.403955i \(-0.132365\pi\)
0.914779 + 0.403955i \(0.132365\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 9.00000 18.0000i 0.574989 1.14998i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000i 0.253490i
\(250\) 0 0
\(251\) 14.1421 0.892644 0.446322 0.894873i \(-0.352734\pi\)
0.446322 + 0.894873i \(0.352734\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.82843 1.41421i −0.177123 0.0885615i
\(256\) 0 0
\(257\) 21.0000 21.0000i 1.30994 1.30994i 0.388492 0.921452i \(-0.372996\pi\)
0.921452 0.388492i \(-0.127004\pi\)
\(258\) 0 0
\(259\) 39.5980i 2.46050i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) 19.7990 19.7990i 1.22086 1.22086i 0.253531 0.967327i \(-0.418408\pi\)
0.967327 0.253531i \(-0.0815919\pi\)
\(264\) 0 0
\(265\) 21.0000 7.00000i 1.29002 0.430007i
\(266\) 0 0
\(267\) 8.48528 8.48528i 0.519291 0.519291i
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 8.48528i 0.515444i 0.966219 + 0.257722i \(0.0829719\pi\)
−0.966219 + 0.257722i \(0.917028\pi\)
\(272\) 0 0
\(273\) −4.00000 4.00000i −0.242091 0.242091i
\(274\) 0 0
\(275\) −8.48528 11.3137i −0.511682 0.682242i
\(276\) 0 0
\(277\) 3.00000 + 3.00000i 0.180253 + 0.180253i 0.791466 0.611213i \(-0.209318\pi\)
−0.611213 + 0.791466i \(0.709318\pi\)
\(278\) 0 0
\(279\) 8.48528 0.508001
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −5.65685 5.65685i −0.336265 0.336265i 0.518695 0.854960i \(-0.326418\pi\)
−0.854960 + 0.518695i \(0.826418\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −33.9411 33.9411i −2.00348 2.00348i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 18.3848 1.07773
\(292\) 0 0
\(293\) −11.0000 + 11.0000i −0.642627 + 0.642627i −0.951200 0.308574i \(-0.900148\pi\)
0.308574 + 0.951200i \(0.400148\pi\)
\(294\) 0 0
\(295\) 8.48528 16.9706i 0.494032 0.988064i
\(296\) 0 0
\(297\) −2.00000 + 2.00000i −0.116052 + 0.116052i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 32.0000i 1.84445i
\(302\) 0 0
\(303\) 2.82843 2.82843i 0.162489 0.162489i
\(304\) 0 0
\(305\) 2.00000 4.00000i 0.114520 0.229039i
\(306\) 0 0
\(307\) −2.82843 + 2.82843i −0.161427 + 0.161427i −0.783199 0.621772i \(-0.786413\pi\)
0.621772 + 0.783199i \(0.286413\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 22.6274i 1.28308i 0.767088 + 0.641542i \(0.221705\pi\)
−0.767088 + 0.641542i \(0.778295\pi\)
\(312\) 0 0
\(313\) −13.0000 13.0000i −0.734803 0.734803i 0.236764 0.971567i \(-0.423913\pi\)
−0.971567 + 0.236764i \(0.923913\pi\)
\(314\) 0 0
\(315\) 8.48528 2.82843i 0.478091 0.159364i
\(316\) 0 0
\(317\) 11.0000 + 11.0000i 0.617822 + 0.617822i 0.944972 0.327151i \(-0.106088\pi\)
−0.327151 + 0.944972i \(0.606088\pi\)
\(318\) 0 0
\(319\) 5.65685 0.316723
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 7.00000 + 1.00000i 0.388290 + 0.0554700i
\(326\) 0 0
\(327\) 11.3137 + 11.3137i 0.625650 + 0.625650i
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) 11.3137 0.621858 0.310929 0.950433i \(-0.399360\pi\)
0.310929 + 0.950433i \(0.399360\pi\)
\(332\) 0 0
\(333\) 7.00000 7.00000i 0.383598 0.383598i
\(334\) 0 0
\(335\) −16.9706 + 5.65685i −0.927201 + 0.309067i
\(336\) 0 0
\(337\) 5.00000 5.00000i 0.272367 0.272367i −0.557685 0.830053i \(-0.688310\pi\)
0.830053 + 0.557685i \(0.188310\pi\)
\(338\) 0 0
\(339\) 7.07107i 0.384048i
\(340\) 0 0
\(341\) 24.0000i 1.29967i
\(342\) 0 0
\(343\) −5.65685 + 5.65685i −0.305441 + 0.305441i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.6274 + 22.6274i −1.21470 + 1.21470i −0.245241 + 0.969462i \(0.578867\pi\)
−0.969462 + 0.245241i \(0.921133\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 1.41421i 0.0754851i
\(352\) 0 0
\(353\) −17.0000 17.0000i −0.904819 0.904819i 0.0910295 0.995848i \(-0.470984\pi\)
−0.995848 + 0.0910295i \(0.970984\pi\)
\(354\) 0 0
\(355\) −11.3137 + 22.6274i −0.600469 + 1.20094i
\(356\) 0 0
\(357\) 4.00000 + 4.00000i 0.211702 + 0.211702i
\(358\) 0 0
\(359\) −5.65685 −0.298557 −0.149279 0.988795i \(-0.547695\pi\)
−0.149279 + 0.988795i \(0.547695\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 2.12132 + 2.12132i 0.111340 + 0.111340i
\(364\) 0 0
\(365\) 9.00000 + 27.0000i 0.471082 + 1.41324i
\(366\) 0 0
\(367\) 19.7990 + 19.7990i 1.03350 + 1.03350i 0.999419 + 0.0340797i \(0.0108500\pi\)
0.0340797 + 0.999419i \(0.489150\pi\)
\(368\) 0 0
\(369\) 12.0000i 0.624695i
\(370\) 0 0
\(371\) −39.5980 −2.05582
\(372\) 0 0
\(373\) 1.00000 1.00000i 0.0517780 0.0517780i −0.680744 0.732522i \(-0.738343\pi\)
0.732522 + 0.680744i \(0.238343\pi\)
\(374\) 0 0
\(375\) −6.36396 + 9.19239i −0.328634 + 0.474693i
\(376\) 0 0
\(377\) −2.00000 + 2.00000i −0.103005 + 0.103005i
\(378\) 0 0
\(379\) 22.6274i 1.16229i −0.813799 0.581146i \(-0.802604\pi\)
0.813799 0.581146i \(-0.197396\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.6274 22.6274i 1.15621 1.15621i 0.170923 0.985284i \(-0.445325\pi\)
0.985284 0.170923i \(-0.0546748\pi\)
\(384\) 0 0
\(385\) 8.00000 + 24.0000i 0.407718 + 1.22315i
\(386\) 0 0
\(387\) −5.65685 + 5.65685i −0.287554 + 0.287554i
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 14.0000 + 14.0000i 0.706207 + 0.706207i
\(394\) 0 0
\(395\) −5.65685 2.82843i −0.284627 0.142314i
\(396\) 0 0
\(397\) −21.0000 21.0000i −1.05396 1.05396i −0.998459 0.0555012i \(-0.982324\pi\)
−0.0555012 0.998459i \(-0.517676\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −8.48528 8.48528i −0.422682 0.422682i
\(404\) 0 0
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 19.7990 + 19.7990i 0.981399 + 0.981399i
\(408\) 0 0
\(409\) 34.0000i 1.68119i −0.541663 0.840596i \(-0.682205\pi\)
0.541663 0.840596i \(-0.317795\pi\)
\(410\) 0 0
\(411\) −9.89949 −0.488306
\(412\) 0 0
\(413\) −24.0000 + 24.0000i −1.18096 + 1.18096i
\(414\) 0 0
\(415\) 2.82843 + 8.48528i 0.138842 + 0.416526i
\(416\) 0 0
\(417\) 12.0000 12.0000i 0.587643 0.587643i
\(418\) 0 0
\(419\) 19.7990i 0.967244i 0.875277 + 0.483622i \(0.160679\pi\)
−0.875277 + 0.483622i \(0.839321\pi\)
\(420\) 0 0
\(421\) 26.0000i 1.26716i 0.773676 + 0.633581i \(0.218416\pi\)
−0.773676 + 0.633581i \(0.781584\pi\)
\(422\) 0 0
\(423\) 2.82843 2.82843i 0.137523 0.137523i
\(424\) 0 0
\(425\) −7.00000 1.00000i −0.339550 0.0485071i
\(426\) 0 0
\(427\) −5.65685 + 5.65685i −0.273754 + 0.273754i
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 5.65685i 0.272481i −0.990676 0.136241i \(-0.956498\pi\)
0.990676 0.136241i \(-0.0435020\pi\)
\(432\) 0 0
\(433\) −9.00000 9.00000i −0.432512 0.432512i 0.456970 0.889482i \(-0.348935\pi\)
−0.889482 + 0.456970i \(0.848935\pi\)
\(434\) 0 0
\(435\) −1.41421 4.24264i −0.0678064 0.203419i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −8.48528 −0.404980 −0.202490 0.979284i \(-0.564903\pi\)
−0.202490 + 0.979284i \(0.564903\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) −5.65685 5.65685i −0.268765 0.268765i 0.559837 0.828603i \(-0.310864\pi\)
−0.828603 + 0.559837i \(0.810864\pi\)
\(444\) 0 0
\(445\) 12.0000 24.0000i 0.568855 1.13771i
\(446\) 0 0
\(447\) −8.48528 8.48528i −0.401340 0.401340i
\(448\) 0 0
\(449\) 18.0000i 0.849473i −0.905317 0.424736i \(-0.860367\pi\)
0.905317 0.424736i \(-0.139633\pi\)
\(450\) 0 0
\(451\) 33.9411 1.59823
\(452\) 0 0
\(453\) 6.00000 6.00000i 0.281905 0.281905i
\(454\) 0 0
\(455\) −11.3137 5.65685i −0.530395 0.265197i
\(456\) 0 0
\(457\) 15.0000 15.0000i 0.701670 0.701670i −0.263099 0.964769i \(-0.584744\pi\)
0.964769 + 0.263099i \(0.0847444\pi\)
\(458\) 0 0
\(459\) 1.41421i 0.0660098i
\(460\) 0 0
\(461\) 12.0000i 0.558896i 0.960161 + 0.279448i \(0.0901514\pi\)
−0.960161 + 0.279448i \(0.909849\pi\)
\(462\) 0 0
\(463\) −25.4558 + 25.4558i −1.18303 + 1.18303i −0.204079 + 0.978954i \(0.565420\pi\)
−0.978954 + 0.204079i \(0.934580\pi\)
\(464\) 0 0
\(465\) 18.0000 6.00000i 0.834730 0.278243i
\(466\) 0 0
\(467\) 14.1421 14.1421i 0.654420 0.654420i −0.299634 0.954054i \(-0.596865\pi\)
0.954054 + 0.299634i \(0.0968646\pi\)
\(468\) 0 0
\(469\) 32.0000 1.47762
\(470\) 0 0
\(471\) 18.3848i 0.847126i
\(472\) 0 0
\(473\) −16.0000 16.0000i −0.735681 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.00000 7.00000i −0.320508 0.320508i
\(478\) 0 0
\(479\) −11.3137 −0.516937 −0.258468 0.966020i \(-0.583218\pi\)
−0.258468 + 0.966020i \(0.583218\pi\)
\(480\) 0 0
\(481\) −14.0000 −0.638345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 39.0000 13.0000i 1.77090 0.590300i
\(486\) 0 0
\(487\) 11.3137 + 11.3137i 0.512673 + 0.512673i 0.915345 0.402671i \(-0.131918\pi\)
−0.402671 + 0.915345i \(0.631918\pi\)
\(488\) 0 0
\(489\) 20.0000i 0.904431i
\(490\) 0 0
\(491\) −14.1421 −0.638226 −0.319113 0.947717i \(-0.603385\pi\)
−0.319113 + 0.947717i \(0.603385\pi\)
\(492\) 0 0
\(493\) 2.00000 2.00000i 0.0900755 0.0900755i
\(494\) 0 0
\(495\) −2.82843 + 5.65685i −0.127128 + 0.254257i
\(496\) 0 0
\(497\) 32.0000 32.0000i 1.43540 1.43540i
\(498\) 0 0
\(499\) 16.9706i 0.759707i 0.925047 + 0.379853i \(0.124026\pi\)
−0.925047 + 0.379853i \(0.875974\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 8.48528 8.48528i 0.378340 0.378340i −0.492163 0.870503i \(-0.663794\pi\)
0.870503 + 0.492163i \(0.163794\pi\)
\(504\) 0 0
\(505\) 4.00000 8.00000i 0.177998 0.355995i
\(506\) 0 0
\(507\) 7.77817 7.77817i 0.345441 0.345441i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 50.9117i 2.25220i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.9706 5.65685i 0.747812 0.249271i
\(516\) 0 0
\(517\) 8.00000 + 8.00000i 0.351840 + 0.351840i
\(518\) 0 0
\(519\) −9.89949 −0.434540
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 14.1421 + 14.1421i 0.618392 + 0.618392i 0.945119 0.326727i \(-0.105946\pi\)
−0.326727 + 0.945119i \(0.605946\pi\)
\(524\) 0 0
\(525\) 16.0000 12.0000i 0.698297 0.523723i
\(526\) 0 0
\(527\) 8.48528 + 8.48528i 0.369625 + 0.369625i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) −8.48528 −0.368230
\(532\) 0 0
\(533\) −12.0000 + 12.0000i −0.519778 + 0.519778i
\(534\) 0 0
\(535\) 16.9706 5.65685i 0.733701 0.244567i
\(536\) 0 0
\(537\) 2.00000 2.00000i 0.0863064 0.0863064i
\(538\) 0 0
\(539\) 25.4558i 1.09646i
\(540\) 0 0
\(541\) 16.0000i 0.687894i −0.938989 0.343947i \(-0.888236\pi\)
0.938989 0.343947i \(-0.111764\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 32.0000 + 16.0000i 1.37073 + 0.685365i
\(546\) 0 0
\(547\) −16.9706 + 16.9706i −0.725609 + 0.725609i −0.969742 0.244133i \(-0.921497\pi\)
0.244133 + 0.969742i \(0.421497\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000 + 8.00000i 0.340195 + 0.340195i
\(554\) 0 0
\(555\) 9.89949 19.7990i 0.420210 0.840420i
\(556\) 0 0
\(557\) −5.00000 5.00000i −0.211857 0.211857i 0.593199 0.805056i \(-0.297865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 11.3137 0.478519
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 16.9706 + 16.9706i 0.715224 + 0.715224i 0.967623 0.252399i \(-0.0812196\pi\)
−0.252399 + 0.967623i \(0.581220\pi\)
\(564\) 0 0
\(565\) −5.00000 15.0000i −0.210352 0.631055i
\(566\) 0 0
\(567\) −2.82843 2.82843i −0.118783 0.118783i
\(568\) 0 0
\(569\) 26.0000i 1.08998i 0.838444 + 0.544988i \(0.183466\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) 16.9706 0.710196 0.355098 0.934829i \(-0.384448\pi\)
0.355098 + 0.934829i \(0.384448\pi\)
\(572\) 0 0
\(573\) −12.0000 + 12.0000i −0.501307 + 0.501307i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15.0000 15.0000i 0.624458 0.624458i −0.322210 0.946668i \(-0.604426\pi\)
0.946668 + 0.322210i \(0.104426\pi\)
\(578\) 0 0
\(579\) 9.89949i 0.411409i
\(580\) 0 0
\(581\) 16.0000i 0.663792i
\(582\) 0 0
\(583\) 19.7990 19.7990i 0.819990 0.819990i
\(584\) 0 0
\(585\) −1.00000 3.00000i −0.0413449 0.124035i
\(586\) 0 0
\(587\) 5.65685 5.65685i 0.233483 0.233483i −0.580662 0.814145i \(-0.697206\pi\)
0.814145 + 0.580662i \(0.197206\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 15.5563i 0.639903i
\(592\) 0 0
\(593\) −13.0000 13.0000i −0.533846 0.533846i 0.387869 0.921715i \(-0.373211\pi\)
−0.921715 + 0.387869i \(0.873211\pi\)
\(594\) 0 0
\(595\) 11.3137 + 5.65685i 0.463817 + 0.231908i
\(596\) 0 0
\(597\) 6.00000 + 6.00000i 0.245564 + 0.245564i
\(598\) 0 0
\(599\) −45.2548 −1.84906 −0.924531 0.381106i \(-0.875543\pi\)
−0.924531 + 0.381106i \(0.875543\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 5.65685 + 5.65685i 0.230365 + 0.230365i
\(604\) 0 0
\(605\) 6.00000 + 3.00000i 0.243935 + 0.121967i
\(606\) 0 0
\(607\) −25.4558 25.4558i −1.03322 1.03322i −0.999429 0.0337920i \(-0.989242\pi\)
−0.0337920 0.999429i \(-0.510758\pi\)
\(608\) 0 0
\(609\) 8.00000i 0.324176i
\(610\) 0 0
\(611\) −5.65685 −0.228852
\(612\) 0 0
\(613\) −15.0000 + 15.0000i −0.605844 + 0.605844i −0.941857 0.336013i \(-0.890921\pi\)
0.336013 + 0.941857i \(0.390921\pi\)
\(614\) 0 0
\(615\) −8.48528 25.4558i −0.342160 1.02648i
\(616\) 0 0
\(617\) −5.00000 + 5.00000i −0.201292 + 0.201292i −0.800554 0.599261i \(-0.795461\pi\)
0.599261 + 0.800554i \(0.295461\pi\)
\(618\) 0 0
\(619\) 11.3137i 0.454736i −0.973809 0.227368i \(-0.926988\pi\)
0.973809 0.227368i \(-0.0730121\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −33.9411 + 33.9411i −1.35982 + 1.35982i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.0000 0.558217
\(630\) 0 0
\(631\) 8.48528i 0.337794i −0.985634 0.168897i \(-0.945980\pi\)
0.985634 0.168897i \(-0.0540205\pi\)
\(632\) 0 0
\(633\) −16.0000 16.0000i −0.635943 0.635943i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.00000 + 9.00000i 0.356593 + 0.356593i
\(638\) 0 0
\(639\) 11.3137 0.447563
\(640\) 0 0
\(641\) 20.0000 0.789953 0.394976 0.918691i \(-0.370753\pi\)
0.394976 + 0.918691i \(0.370753\pi\)
\(642\) 0 0
\(643\) 31.1127 + 31.1127i 1.22697 + 1.22697i 0.965106 + 0.261859i \(0.0843355\pi\)
0.261859 + 0.965106i \(0.415665\pi\)
\(644\) 0 0
\(645\) −8.00000 + 16.0000i −0.315000 + 0.629999i
\(646\) 0 0
\(647\) −8.48528 8.48528i −0.333591 0.333591i 0.520358 0.853948i \(-0.325799\pi\)
−0.853948 + 0.520358i \(0.825799\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) −33.9411 −1.33026
\(652\) 0 0
\(653\) 29.0000 29.0000i 1.13486 1.13486i 0.145499 0.989358i \(-0.453521\pi\)
0.989358 0.145499i \(-0.0464789\pi\)
\(654\) 0 0
\(655\) 39.5980 + 19.7990i 1.54722 + 0.773611i
\(656\) 0 0
\(657\) 9.00000 9.00000i 0.351123 0.351123i
\(658\) 0 0
\(659\) 14.1421i 0.550899i 0.961315 + 0.275450i \(0.0888267\pi\)
−0.961315 + 0.275450i \(0.911173\pi\)
\(660\) 0 0
\(661\) 10.0000i 0.388955i −0.980907 0.194477i \(-0.937699\pi\)
0.980907 0.194477i \(-0.0623011\pi\)
\(662\) 0 0
\(663\) 1.41421 1.41421i 0.0549235 0.0549235i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 8.00000 0.309298
\(670\) 0 0
\(671\) 5.65685i 0.218380i
\(672\) 0 0
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 0 0
\(675\) 4.94975 + 0.707107i 0.190516 + 0.0272166i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) 0 0
\(679\) −73.5391 −2.82217
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.82843 + 2.82843i 0.108227 + 0.108227i 0.759147 0.650920i \(-0.225617\pi\)
−0.650920 + 0.759147i \(0.725617\pi\)
\(684\) 0 0
\(685\) −21.0000 + 7.00000i −0.802369 + 0.267456i
\(686\) 0 0
\(687\) 4.24264 + 4.24264i 0.161867 + 0.161867i
\(688\) 0 0
\(689\) 14.0000i 0.533358i
\(690\) 0 0
\(691\) −5.65685 −0.215197 −0.107598 0.994194i \(-0.534316\pi\)
−0.107598 + 0.994194i \(0.534316\pi\)
\(692\) 0 0
\(693\) 8.00000 8.00000i 0.303895 0.303895i
\(694\) 0 0
\(695\) 16.9706 33.9411i 0.643730 1.28746i
\(696\) 0 0
\(697\) 12.0000 12.0000i 0.454532 0.454532i
\(698\) 0 0
\(699\) 4.24264i 0.160471i
\(700\) 0 0
\(701\) 6.00000i 0.226617i 0.993560 + 0.113308i \(0.0361448\pi\)
−0.993560 + 0.113308i \(0.963855\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 4.00000 8.00000i 0.150649 0.301297i
\(706\) 0 0
\(707\) −11.3137 + 11.3137i −0.425496 + 0.425496i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 2.82843i 0.106074i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 8.48528 2.82843i 0.317332 0.105777i
\(716\) 0 0
\(717\) −20.0000 20.0000i −0.746914 0.746914i
\(718\) 0 0
\(719\) 22.6274 0.843860 0.421930 0.906628i \(-0.361353\pi\)
0.421930 + 0.906628i \(0.361353\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 0 0
\(723\) 11.3137 + 11.3137i 0.420761 + 0.420761i
\(724\) 0 0
\(725\) −6.00000 8.00000i −0.222834 0.297113i
\(726\) 0 0
\(727\) 33.9411 + 33.9411i 1.25881 + 1.25881i 0.951663 + 0.307143i \(0.0993731\pi\)
0.307143 + 0.951663i \(0.400627\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −11.3137 −0.418453
\(732\) 0 0
\(733\) −15.0000 + 15.0000i −0.554038 + 0.554038i −0.927604 0.373566i \(-0.878135\pi\)
0.373566 + 0.927604i \(0.378135\pi\)
\(734\) 0 0
\(735\) −19.0919 + 6.36396i −0.704215 + 0.234738i
\(736\) 0 0
\(737\) −16.0000 + 16.0000i −0.589368 + 0.589368i
\(738\) 0 0
\(739\) 16.9706i 0.624272i 0.950037 + 0.312136i \(0.101045\pi\)
−0.950037 + 0.312136i \(0.898955\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.9706 + 16.9706i −0.622590 + 0.622590i −0.946193 0.323603i \(-0.895106\pi\)
0.323603 + 0.946193i \(0.395106\pi\)
\(744\) 0 0
\(745\) −24.0000 12.0000i −0.879292 0.439646i
\(746\) 0 0
\(747\) 2.82843 2.82843i 0.103487 0.103487i
\(748\) 0 0
\(749\) −32.0000 −1.16925
\(750\) 0 0
\(751\) 14.1421i 0.516054i −0.966138 0.258027i \(-0.916928\pi\)
0.966138 0.258027i \(-0.0830723\pi\)
\(752\) 0 0
\(753\) −10.0000 10.0000i −0.364420 0.364420i
\(754\) 0 0
\(755\) 8.48528 16.9706i 0.308811 0.617622i
\(756\) 0 0
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) −45.2548 45.2548i −1.63833 1.63833i
\(764\) 0 0
\(765\) 1.00000 + 3.00000i 0.0361551 + 0.108465i
\(766\) 0 0
\(767\) 8.48528 + 8.48528i 0.306386 + 0.306386i
\(768\) 0 0
\(769\) 16.0000i 0.576975i 0.957484 + 0.288487i \(0.0931523\pi\)
−0.957484 + 0.288487i \(0.906848\pi\)
\(770\) 0 0
\(771\) −29.6985 −1.06956
\(772\) 0 0
\(773\) 7.00000 7.00000i 0.251773 0.251773i −0.569925 0.821697i \(-0.693028\pi\)
0.821697 + 0.569925i \(0.193028\pi\)
\(774\) 0 0
\(775\) 33.9411 25.4558i 1.21920 0.914401i
\(776\) 0 0
\(777\) −28.0000 + 28.0000i −1.00449 + 1.00449i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000i 1.14505i
\(782\) 0 0
\(783\) −1.41421 + 1.41421i −0.0505399 + 0.0505399i
\(784\) 0 0
\(785\) 13.0000 + 39.0000i 0.463990 + 1.39197i
\(786\) 0 0
\(787\) −19.7990 + 19.7990i −0.705758 + 0.705758i −0.965640 0.259882i \(-0.916316\pi\)
0.259882 + 0.965640i \(0.416316\pi\)
\(788\) 0 0
\(789\) −28.0000 −0.996826
\(790\) 0 0
\(791\) 28.2843i 1.00567i
\(792\) 0 0
\(793\) 2.00000 + 2.00000i 0.0710221 + 0.0710221i
\(794\) 0 0
\(795\) −19.7990 9.89949i −0.702198 0.351099i
\(796\) 0 0
\(797\) 15.0000 + 15.0000i 0.531327 + 0.531327i 0.920967 0.389640i \(-0.127401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 5.65685 0.200125
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 25.4558 + 25.4558i 0.898317 + 0.898317i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.48528 8.48528i −0.298696 0.298696i
\(808\) 0 0
\(809\) 12.0000i 0.421898i 0.977497 + 0.210949i \(0.0676553\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(810\) 0 0
\(811\) −39.5980 −1.39047 −0.695237 0.718781i \(-0.744700\pi\)
−0.695237 + 0.718781i \(0.744700\pi\)
\(812\) 0 0
\(813\) 6.00000 6.00000i 0.210429 0.210429i
\(814\) 0 0
\(815\) 14.1421 + 42.4264i 0.495377 + 1.48613i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 5.65685i 0.197666i
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) −28.2843 + 28.2843i −0.985928 + 0.985928i −0.999902 0.0139746i \(-0.995552\pi\)
0.0139746 + 0.999902i \(0.495552\pi\)
\(824\) 0 0
\(825\) −2.00000 + 14.0000i −0.0696311 + 0.487417i
\(826\) 0 0
\(827\) 36.7696 36.7696i 1.27860 1.27860i 0.337153 0.941450i \(-0.390536\pi\)
0.941450 0.337153i \(-0.109464\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 4.24264i 0.147176i
\(832\) 0 0
\(833\) −9.00000 9.00000i −0.311832 0.311832i
\(834\) 0 0
\(835\) 8.48528 + 25.4558i 0.293645 + 0.880936i
\(836\) 0 0
\(837\) −6.00000 6.00000i −0.207390 0.207390i
\(838\) 0 0
\(839\) 22.6274 0.781185 0.390593 0.920564i \(-0.372270\pi\)
0.390593 + 0.920564i \(0.372270\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 8.48528 + 8.48528i 0.292249 + 0.292249i
\(844\) 0 0
\(845\) 11.0000 22.0000i 0.378412 0.756823i
\(846\) 0 0
\(847\) −8.48528 8.48528i −0.291558 0.291558i
\(848\) 0 0
\(849\) 8.00000i 0.274559i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −23.0000 + 23.0000i −0.787505 + 0.787505i −0.981085 0.193580i \(-0.937990\pi\)
0.193580 + 0.981085i \(0.437990\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.0000 + 13.0000i −0.444072 + 0.444072i −0.893378 0.449306i \(-0.851671\pi\)
0.449306 + 0.893378i \(0.351671\pi\)
\(858\) 0 0
\(859\) 16.9706i 0.579028i −0.957174 0.289514i \(-0.906506\pi\)
0.957174 0.289514i \(-0.0934937\pi\)
\(860\) 0 0
\(861\) 48.0000i 1.63584i
\(862\) 0 0
\(863\) 2.82843 2.82843i 0.0962808 0.0962808i −0.657326 0.753607i \(-0.728312\pi\)
0.753607 + 0.657326i \(0.228312\pi\)
\(864\) 0 0
\(865\) −21.0000 + 7.00000i −0.714021 + 0.238007i
\(866\) 0 0
\(867\) 10.6066 10.6066i 0.360219 0.360219i
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 11.3137i 0.383350i
\(872\) 0 0
\(873\) −13.0000 13.0000i −0.439983 0.439983i
\(874\) 0 0
\(875\) 25.4558 36.7696i 0.860565 1.24304i
\(876\) 0 0
\(877\) 3.00000 + 3.00000i 0.101303 + 0.101303i 0.755942 0.654639i \(-0.227179\pi\)
−0.654639 + 0.755942i \(0.727179\pi\)
\(878\) 0 0
\(879\) 15.5563 0.524703
\(880\) 0 0
\(881\) 4.00000 0.134763 0.0673817 0.997727i \(-0.478535\pi\)
0.0673817 + 0.997727i \(0.478535\pi\)
\(882\) 0 0
\(883\) −31.1127 31.1127i −1.04703 1.04703i −0.998838 0.0481873i \(-0.984656\pi\)
−0.0481873 0.998838i \(-0.515344\pi\)
\(884\) 0 0
\(885\) −18.0000 + 6.00000i −0.605063 + 0.201688i
\(886\) 0 0
\(887\) 19.7990 + 19.7990i 0.664785 + 0.664785i 0.956504 0.291719i \(-0.0942272\pi\)
−0.291719 + 0.956504i \(0.594227\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.82843 0.0947559
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 2.82843 5.65685i 0.0945439 0.189088i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.9706i 0.566000i
\(900\) 0 0
\(901\) 14.0000i 0.466408i
\(902\) 0 0
\(903\) 22.6274 22.6274i 0.752993 0.752993i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.9706 16.9706i 0.563498 0.563498i −0.366801 0.930299i \(-0.619547\pi\)
0.930299 + 0.366801i \(0.119547\pi\)
\(908\) 0 0
\(909\) −4.00000 −0.132672
\(910\) 0 0
\(911\) 45.2548i 1.49936i 0.661801 + 0.749680i \(0.269792\pi\)
−0.661801 + 0.749680i \(0.730208\pi\)
\(912\) 0 0
\(913\) 8.00000 + 8.00000i 0.264761 + 0.264761i
\(914\) 0 0
\(915\) −4.24264 + 1.41421i −0.140257 + 0.0467525i
\(916\) 0 0
\(917\) −56.0000 56.0000i −1.84928 1.84928i
\(918\) 0 0
\(919\) −19.7990 −0.653108 −0.326554 0.945178i \(-0.605888\pi\)
−0.326554 + 0.945178i \(0.605888\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) −11.3137 11.3137i −0.372395 0.372395i
\(924\) 0 0
\(925\) 7.00000 49.0000i 0.230159 1.61111i
\(926\) 0 0
\(927\) −5.65685 5.65685i −0.185795 0.185795i
\(928\) 0 0
\(929\) 18.0000i 0.590561i 0.955411 + 0.295280i \(0.0954131\pi\)
−0.955411 + 0.295280i \(0.904587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 16.0000 16.0000i 0.523816 0.523816i
\(934\) 0 0
\(935\) −8.48528 + 2.82843i −0.277498 + 0.0924995i
\(936\) 0 0
\(937\) −3.00000 + 3.00000i −0.0980057 + 0.0980057i −0.754410 0.656404i \(-0.772077\pi\)
0.656404 + 0.754410i \(0.272077\pi\)
\(938\) 0 0
\(939\) 18.3848i 0.599965i
\(940\) 0 0
\(941\) 52.0000i 1.69515i −0.530674 0.847576i \(-0.678061\pi\)
0.530674 0.847576i \(-0.321939\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −8.00000 4.00000i −0.260240 0.130120i
\(946\) 0 0
\(947\) −8.48528 + 8.48528i −0.275735 + 0.275735i −0.831404 0.555669i \(-0.812462\pi\)
0.555669 + 0.831404i \(0.312462\pi\)
\(948\) 0 0
\(949\) −18.0000 −0.584305
\(950\) 0 0
\(951\) 15.5563i 0.504449i
\(952\) 0 0
\(953\) 25.0000 + 25.0000i 0.809829 + 0.809829i 0.984608 0.174778i \(-0.0559209\pi\)
−0.174778 + 0.984608i \(0.555921\pi\)
\(954\) 0 0
\(955\) −16.9706 + 33.9411i −0.549155 + 1.09831i
\(956\) 0 0
\(957\) −4.00000 4.00000i −0.129302 0.129302i
\(958\) 0 0
\(959\) 39.5980 1.27869
\(960\) 0 0
\(961\) −41.0000 −1.32258
\(962\) 0 0
\(963\) −5.65685 5.65685i −0.182290 0.182290i
\(964\) 0 0
\(965\) 7.00000 + 21.0000i 0.225338 + 0.676014i
\(966\) 0 0
\(967\) 22.6274 + 22.6274i 0.727649 + 0.727649i 0.970151 0.242502i \(-0.0779682\pi\)
−0.242502 + 0.970151i \(0.577968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.7990 −0.635380 −0.317690 0.948195i \(-0.602907\pi\)
−0.317690 + 0.948195i \(0.602907\pi\)
\(972\) 0 0
\(973\) −48.0000 + 48.0000i −1.53881 + 1.53881i
\(974\) 0 0
\(975\) −4.24264 5.65685i −0.135873 0.181164i
\(976\) 0 0
\(977\) 1.00000 1.00000i 0.0319928 0.0319928i −0.690929 0.722922i \(-0.742798\pi\)
0.722922 + 0.690929i \(0.242798\pi\)
\(978\) 0 0
\(979\) 33.9411i 1.08476i
\(980\) 0 0
\(981\) 16.0000i 0.510841i
\(982\) 0 0
\(983\) 33.9411 33.9411i 1.08255 1.08255i 0.0862831 0.996271i \(-0.472501\pi\)
0.996271 0.0862831i \(-0.0274990\pi\)
\(984\) 0 0
\(985\) 11.0000 + 33.0000i 0.350489 + 1.05147i
\(986\) 0 0
\(987\) −11.3137 + 11.3137i −0.360119 + 0.360119i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.3970i 1.88681i −0.331647 0.943403i \(-0.607604\pi\)
0.331647 0.943403i \(-0.392396\pi\)
\(992\) 0 0
\(993\) −8.00000 8.00000i −0.253872 0.253872i
\(994\) 0 0
\(995\) 16.9706 + 8.48528i 0.538003 + 0.269002i
\(996\) 0 0
\(997\) −15.0000 15.0000i −0.475055 0.475055i 0.428491 0.903546i \(-0.359045\pi\)
−0.903546 + 0.428491i \(0.859045\pi\)
\(998\) 0 0
\(999\) −9.89949 −0.313206
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bh.a.703.1 4
4.3 odd 2 inner 1920.2.bh.a.703.2 yes 4
5.2 odd 4 1920.2.bh.h.1087.1 yes 4
8.3 odd 2 1920.2.bh.h.703.1 yes 4
8.5 even 2 1920.2.bh.h.703.2 yes 4
20.7 even 4 1920.2.bh.h.1087.2 yes 4
40.27 even 4 inner 1920.2.bh.a.1087.1 yes 4
40.37 odd 4 inner 1920.2.bh.a.1087.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.bh.a.703.1 4 1.1 even 1 trivial
1920.2.bh.a.703.2 yes 4 4.3 odd 2 inner
1920.2.bh.a.1087.1 yes 4 40.27 even 4 inner
1920.2.bh.a.1087.2 yes 4 40.37 odd 4 inner
1920.2.bh.h.703.1 yes 4 8.3 odd 2
1920.2.bh.h.703.2 yes 4 8.5 even 2
1920.2.bh.h.1087.1 yes 4 5.2 odd 4
1920.2.bh.h.1087.2 yes 4 20.7 even 4