Properties

Label 1920.2.bc.l.1183.8
Level $1920$
Weight $2$
Character 1920.1183
Analytic conductor $15.331$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(607,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.607"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,-8,0,4,0,-20,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1183.8
Root \(0.356677 - 1.36850i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1183
Dual form 1920.2.bc.l.607.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(1.09619 - 1.94894i) q^{5} +(2.09269 - 2.09269i) q^{7} -1.00000 q^{9} +(-2.58551 + 2.58551i) q^{11} -5.56694 q^{13} +(-1.94894 - 1.09619i) q^{15} +(-1.85127 + 1.85127i) q^{17} +(-2.23993 + 2.23993i) q^{19} +(-2.09269 - 2.09269i) q^{21} +(-2.74910 - 2.74910i) q^{23} +(-2.59675 - 4.27281i) q^{25} +1.00000i q^{27} +(-2.52646 - 2.52646i) q^{29} +8.08076i q^{31} +(2.58551 + 2.58551i) q^{33} +(-1.78455 - 6.37250i) q^{35} -11.3539 q^{37} +5.56694i q^{39} -1.77121i q^{41} -2.48260 q^{43} +(-1.09619 + 1.94894i) q^{45} +(-0.525736 - 0.525736i) q^{47} -1.75866i q^{49} +(1.85127 + 1.85127i) q^{51} -10.9352i q^{53} +(2.20481 + 7.87321i) q^{55} +(2.23993 + 2.23993i) q^{57} +(1.09168 + 1.09168i) q^{59} +(6.18650 - 6.18650i) q^{61} +(-2.09269 + 2.09269i) q^{63} +(-6.10241 + 10.8496i) q^{65} +12.3904 q^{67} +(-2.74910 + 2.74910i) q^{69} +4.46143 q^{71} +(4.11339 - 4.11339i) q^{73} +(-4.27281 + 2.59675i) q^{75} +10.8213i q^{77} +13.3425 q^{79} +1.00000 q^{81} -0.335336i q^{83} +(1.57868 + 5.63735i) q^{85} +(-2.52646 + 2.52646i) q^{87} -1.91559 q^{89} +(-11.6499 + 11.6499i) q^{91} +8.08076 q^{93} +(1.91011 + 6.82087i) q^{95} +(2.86143 - 2.86143i) q^{97} +(2.58551 - 2.58551i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{5} + 4 q^{7} - 20 q^{9} + 8 q^{11} - 8 q^{13} + 12 q^{17} - 16 q^{19} - 4 q^{21} + 16 q^{23} - 4 q^{25} - 8 q^{33} - 12 q^{35} - 24 q^{37} - 8 q^{43} + 8 q^{45} - 12 q^{51} + 4 q^{55} + 16 q^{57}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.09619 1.94894i 0.490230 0.871593i
\(6\) 0 0
\(7\) 2.09269 2.09269i 0.790961 0.790961i −0.190690 0.981650i \(-0.561072\pi\)
0.981650 + 0.190690i \(0.0610724\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.58551 + 2.58551i −0.779561 + 0.779561i −0.979756 0.200195i \(-0.935842\pi\)
0.200195 + 0.979756i \(0.435842\pi\)
\(12\) 0 0
\(13\) −5.56694 −1.54399 −0.771996 0.635628i \(-0.780741\pi\)
−0.771996 + 0.635628i \(0.780741\pi\)
\(14\) 0 0
\(15\) −1.94894 1.09619i −0.503215 0.283034i
\(16\) 0 0
\(17\) −1.85127 + 1.85127i −0.448999 + 0.448999i −0.895022 0.446023i \(-0.852840\pi\)
0.446023 + 0.895022i \(0.352840\pi\)
\(18\) 0 0
\(19\) −2.23993 + 2.23993i −0.513875 + 0.513875i −0.915711 0.401836i \(-0.868372\pi\)
0.401836 + 0.915711i \(0.368372\pi\)
\(20\) 0 0
\(21\) −2.09269 2.09269i −0.456661 0.456661i
\(22\) 0 0
\(23\) −2.74910 2.74910i −0.573227 0.573227i 0.359802 0.933029i \(-0.382844\pi\)
−0.933029 + 0.359802i \(0.882844\pi\)
\(24\) 0 0
\(25\) −2.59675 4.27281i −0.519350 0.854562i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.52646 2.52646i −0.469152 0.469152i 0.432488 0.901640i \(-0.357636\pi\)
−0.901640 + 0.432488i \(0.857636\pi\)
\(30\) 0 0
\(31\) 8.08076i 1.45135i 0.688039 + 0.725674i \(0.258472\pi\)
−0.688039 + 0.725674i \(0.741528\pi\)
\(32\) 0 0
\(33\) 2.58551 + 2.58551i 0.450079 + 0.450079i
\(34\) 0 0
\(35\) −1.78455 6.37250i −0.301644 1.07715i
\(36\) 0 0
\(37\) −11.3539 −1.86657 −0.933284 0.359138i \(-0.883071\pi\)
−0.933284 + 0.359138i \(0.883071\pi\)
\(38\) 0 0
\(39\) 5.56694i 0.891424i
\(40\) 0 0
\(41\) 1.77121i 0.276617i −0.990389 0.138309i \(-0.955833\pi\)
0.990389 0.138309i \(-0.0441666\pi\)
\(42\) 0 0
\(43\) −2.48260 −0.378593 −0.189296 0.981920i \(-0.560621\pi\)
−0.189296 + 0.981920i \(0.560621\pi\)
\(44\) 0 0
\(45\) −1.09619 + 1.94894i −0.163410 + 0.290531i
\(46\) 0 0
\(47\) −0.525736 0.525736i −0.0766865 0.0766865i 0.667723 0.744410i \(-0.267269\pi\)
−0.744410 + 0.667723i \(0.767269\pi\)
\(48\) 0 0
\(49\) 1.75866i 0.251238i
\(50\) 0 0
\(51\) 1.85127 + 1.85127i 0.259230 + 0.259230i
\(52\) 0 0
\(53\) 10.9352i 1.50207i −0.660263 0.751035i \(-0.729555\pi\)
0.660263 0.751035i \(-0.270445\pi\)
\(54\) 0 0
\(55\) 2.20481 + 7.87321i 0.297296 + 1.06162i
\(56\) 0 0
\(57\) 2.23993 + 2.23993i 0.296686 + 0.296686i
\(58\) 0 0
\(59\) 1.09168 + 1.09168i 0.142124 + 0.142124i 0.774589 0.632465i \(-0.217957\pi\)
−0.632465 + 0.774589i \(0.717957\pi\)
\(60\) 0 0
\(61\) 6.18650 6.18650i 0.792100 0.792100i −0.189735 0.981835i \(-0.560763\pi\)
0.981835 + 0.189735i \(0.0607630\pi\)
\(62\) 0 0
\(63\) −2.09269 + 2.09269i −0.263654 + 0.263654i
\(64\) 0 0
\(65\) −6.10241 + 10.8496i −0.756910 + 1.34573i
\(66\) 0 0
\(67\) 12.3904 1.51373 0.756865 0.653571i \(-0.226730\pi\)
0.756865 + 0.653571i \(0.226730\pi\)
\(68\) 0 0
\(69\) −2.74910 + 2.74910i −0.330953 + 0.330953i
\(70\) 0 0
\(71\) 4.46143 0.529475 0.264737 0.964321i \(-0.414715\pi\)
0.264737 + 0.964321i \(0.414715\pi\)
\(72\) 0 0
\(73\) 4.11339 4.11339i 0.481436 0.481436i −0.424154 0.905590i \(-0.639428\pi\)
0.905590 + 0.424154i \(0.139428\pi\)
\(74\) 0 0
\(75\) −4.27281 + 2.59675i −0.493381 + 0.299847i
\(76\) 0 0
\(77\) 10.8213i 1.23320i
\(78\) 0 0
\(79\) 13.3425 1.50115 0.750573 0.660788i \(-0.229778\pi\)
0.750573 + 0.660788i \(0.229778\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.335336i 0.0368079i −0.999831 0.0184039i \(-0.994142\pi\)
0.999831 0.0184039i \(-0.00585848\pi\)
\(84\) 0 0
\(85\) 1.57868 + 5.63735i 0.171232 + 0.611457i
\(86\) 0 0
\(87\) −2.52646 + 2.52646i −0.270865 + 0.270865i
\(88\) 0 0
\(89\) −1.91559 −0.203052 −0.101526 0.994833i \(-0.532372\pi\)
−0.101526 + 0.994833i \(0.532372\pi\)
\(90\) 0 0
\(91\) −11.6499 + 11.6499i −1.22124 + 1.22124i
\(92\) 0 0
\(93\) 8.08076 0.837936
\(94\) 0 0
\(95\) 1.91011 + 6.82087i 0.195973 + 0.699807i
\(96\) 0 0
\(97\) 2.86143 2.86143i 0.290534 0.290534i −0.546757 0.837291i \(-0.684138\pi\)
0.837291 + 0.546757i \(0.184138\pi\)
\(98\) 0 0
\(99\) 2.58551 2.58551i 0.259854 0.259854i
\(100\) 0 0
\(101\) −9.70834 9.70834i −0.966016 0.966016i 0.0334254 0.999441i \(-0.489358\pi\)
−0.999441 + 0.0334254i \(0.989358\pi\)
\(102\) 0 0
\(103\) −9.93641 9.93641i −0.979064 0.979064i 0.0207213 0.999785i \(-0.493404\pi\)
−0.999785 + 0.0207213i \(0.993404\pi\)
\(104\) 0 0
\(105\) −6.37250 + 1.78455i −0.621892 + 0.174154i
\(106\) 0 0
\(107\) 2.36442i 0.228577i 0.993448 + 0.114289i \(0.0364589\pi\)
−0.993448 + 0.114289i \(0.963541\pi\)
\(108\) 0 0
\(109\) 8.64138 + 8.64138i 0.827694 + 0.827694i 0.987197 0.159503i \(-0.0509893\pi\)
−0.159503 + 0.987197i \(0.550989\pi\)
\(110\) 0 0
\(111\) 11.3539i 1.07766i
\(112\) 0 0
\(113\) −11.3091 11.3091i −1.06387 1.06387i −0.997816 0.0660567i \(-0.978958\pi\)
−0.0660567 0.997816i \(-0.521042\pi\)
\(114\) 0 0
\(115\) −8.37136 + 2.34431i −0.780633 + 0.218608i
\(116\) 0 0
\(117\) 5.56694 0.514664
\(118\) 0 0
\(119\) 7.74825i 0.710281i
\(120\) 0 0
\(121\) 2.36972i 0.215429i
\(122\) 0 0
\(123\) −1.77121 −0.159705
\(124\) 0 0
\(125\) −11.1740 + 0.377121i −0.999431 + 0.0337308i
\(126\) 0 0
\(127\) 0.566200 + 0.566200i 0.0502421 + 0.0502421i 0.731781 0.681539i \(-0.238689\pi\)
−0.681539 + 0.731781i \(0.738689\pi\)
\(128\) 0 0
\(129\) 2.48260i 0.218581i
\(130\) 0 0
\(131\) −12.6717 12.6717i −1.10713 1.10713i −0.993526 0.113601i \(-0.963761\pi\)
−0.113601 0.993526i \(-0.536239\pi\)
\(132\) 0 0
\(133\) 9.37494i 0.812910i
\(134\) 0 0
\(135\) 1.94894 + 1.09619i 0.167738 + 0.0943447i
\(136\) 0 0
\(137\) −9.38260 9.38260i −0.801610 0.801610i 0.181737 0.983347i \(-0.441828\pi\)
−0.983347 + 0.181737i \(0.941828\pi\)
\(138\) 0 0
\(139\) 1.90899 + 1.90899i 0.161918 + 0.161918i 0.783416 0.621498i \(-0.213476\pi\)
−0.621498 + 0.783416i \(0.713476\pi\)
\(140\) 0 0
\(141\) −0.525736 + 0.525736i −0.0442750 + 0.0442750i
\(142\) 0 0
\(143\) 14.3934 14.3934i 1.20364 1.20364i
\(144\) 0 0
\(145\) −7.69340 + 2.15445i −0.638902 + 0.178918i
\(146\) 0 0
\(147\) −1.75866 −0.145052
\(148\) 0 0
\(149\) −5.52485 + 5.52485i −0.452613 + 0.452613i −0.896221 0.443608i \(-0.853698\pi\)
0.443608 + 0.896221i \(0.353698\pi\)
\(150\) 0 0
\(151\) −15.6530 −1.27383 −0.636914 0.770935i \(-0.719789\pi\)
−0.636914 + 0.770935i \(0.719789\pi\)
\(152\) 0 0
\(153\) 1.85127 1.85127i 0.149666 0.149666i
\(154\) 0 0
\(155\) 15.7489 + 8.85802i 1.26498 + 0.711493i
\(156\) 0 0
\(157\) 3.75134i 0.299390i −0.988732 0.149695i \(-0.952171\pi\)
0.988732 0.149695i \(-0.0478291\pi\)
\(158\) 0 0
\(159\) −10.9352 −0.867220
\(160\) 0 0
\(161\) −11.5060 −0.906800
\(162\) 0 0
\(163\) 24.0013i 1.87993i 0.341277 + 0.939963i \(0.389141\pi\)
−0.341277 + 0.939963i \(0.610859\pi\)
\(164\) 0 0
\(165\) 7.87321 2.20481i 0.612929 0.171644i
\(166\) 0 0
\(167\) −4.52747 + 4.52747i −0.350346 + 0.350346i −0.860238 0.509892i \(-0.829685\pi\)
0.509892 + 0.860238i \(0.329685\pi\)
\(168\) 0 0
\(169\) 17.9908 1.38391
\(170\) 0 0
\(171\) 2.23993 2.23993i 0.171292 0.171292i
\(172\) 0 0
\(173\) −11.4102 −0.867501 −0.433751 0.901033i \(-0.642810\pi\)
−0.433751 + 0.901033i \(0.642810\pi\)
\(174\) 0 0
\(175\) −14.3758 3.50746i −1.08671 0.265139i
\(176\) 0 0
\(177\) 1.09168 1.09168i 0.0820553 0.0820553i
\(178\) 0 0
\(179\) −0.636317 + 0.636317i −0.0475605 + 0.0475605i −0.730487 0.682927i \(-0.760707\pi\)
0.682927 + 0.730487i \(0.260707\pi\)
\(180\) 0 0
\(181\) −7.26171 7.26171i −0.539759 0.539759i 0.383699 0.923458i \(-0.374650\pi\)
−0.923458 + 0.383699i \(0.874650\pi\)
\(182\) 0 0
\(183\) −6.18650 6.18650i −0.457319 0.457319i
\(184\) 0 0
\(185\) −12.4460 + 22.1281i −0.915047 + 1.62689i
\(186\) 0 0
\(187\) 9.57295i 0.700043i
\(188\) 0 0
\(189\) 2.09269 + 2.09269i 0.152220 + 0.152220i
\(190\) 0 0
\(191\) 2.60235i 0.188300i −0.995558 0.0941498i \(-0.969987\pi\)
0.995558 0.0941498i \(-0.0300133\pi\)
\(192\) 0 0
\(193\) −7.12141 7.12141i −0.512610 0.512610i 0.402715 0.915325i \(-0.368066\pi\)
−0.915325 + 0.402715i \(0.868066\pi\)
\(194\) 0 0
\(195\) 10.8496 + 6.10241i 0.776959 + 0.437002i
\(196\) 0 0
\(197\) 20.6396 1.47051 0.735255 0.677791i \(-0.237062\pi\)
0.735255 + 0.677791i \(0.237062\pi\)
\(198\) 0 0
\(199\) 2.57987i 0.182882i −0.995810 0.0914412i \(-0.970853\pi\)
0.995810 0.0914412i \(-0.0291473\pi\)
\(200\) 0 0
\(201\) 12.3904i 0.873952i
\(202\) 0 0
\(203\) −10.5742 −0.742161
\(204\) 0 0
\(205\) −3.45199 1.94158i −0.241098 0.135606i
\(206\) 0 0
\(207\) 2.74910 + 2.74910i 0.191076 + 0.191076i
\(208\) 0 0
\(209\) 11.5827i 0.801194i
\(210\) 0 0
\(211\) −3.30177 3.30177i −0.227303 0.227303i 0.584262 0.811565i \(-0.301384\pi\)
−0.811565 + 0.584262i \(0.801384\pi\)
\(212\) 0 0
\(213\) 4.46143i 0.305692i
\(214\) 0 0
\(215\) −2.72139 + 4.83844i −0.185597 + 0.329979i
\(216\) 0 0
\(217\) 16.9105 + 16.9105i 1.14796 + 1.14796i
\(218\) 0 0
\(219\) −4.11339 4.11339i −0.277957 0.277957i
\(220\) 0 0
\(221\) 10.3059 10.3059i 0.693250 0.693250i
\(222\) 0 0
\(223\) −1.64213 + 1.64213i −0.109965 + 0.109965i −0.759948 0.649983i \(-0.774776\pi\)
0.649983 + 0.759948i \(0.274776\pi\)
\(224\) 0 0
\(225\) 2.59675 + 4.27281i 0.173117 + 0.284854i
\(226\) 0 0
\(227\) 18.8542 1.25140 0.625699 0.780064i \(-0.284814\pi\)
0.625699 + 0.780064i \(0.284814\pi\)
\(228\) 0 0
\(229\) −11.8744 + 11.8744i −0.784683 + 0.784683i −0.980617 0.195934i \(-0.937226\pi\)
0.195934 + 0.980617i \(0.437226\pi\)
\(230\) 0 0
\(231\) 10.8213 0.711990
\(232\) 0 0
\(233\) 12.9422 12.9422i 0.847874 0.847874i −0.141994 0.989868i \(-0.545351\pi\)
0.989868 + 0.141994i \(0.0453513\pi\)
\(234\) 0 0
\(235\) −1.60093 + 0.448324i −0.104433 + 0.0292455i
\(236\) 0 0
\(237\) 13.3425i 0.866687i
\(238\) 0 0
\(239\) −17.0514 −1.10297 −0.551483 0.834186i \(-0.685938\pi\)
−0.551483 + 0.834186i \(0.685938\pi\)
\(240\) 0 0
\(241\) 14.1921 0.914195 0.457097 0.889417i \(-0.348889\pi\)
0.457097 + 0.889417i \(0.348889\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −3.42753 1.92782i −0.218977 0.123164i
\(246\) 0 0
\(247\) 12.4696 12.4696i 0.793419 0.793419i
\(248\) 0 0
\(249\) −0.335336 −0.0212510
\(250\) 0 0
\(251\) 21.4140 21.4140i 1.35164 1.35164i 0.467808 0.883830i \(-0.345044\pi\)
0.883830 0.467808i \(-0.154956\pi\)
\(252\) 0 0
\(253\) 14.2156 0.893730
\(254\) 0 0
\(255\) 5.63735 1.57868i 0.353025 0.0988608i
\(256\) 0 0
\(257\) 5.47773 5.47773i 0.341691 0.341691i −0.515312 0.857003i \(-0.672324\pi\)
0.857003 + 0.515312i \(0.172324\pi\)
\(258\) 0 0
\(259\) −23.7601 + 23.7601i −1.47638 + 1.47638i
\(260\) 0 0
\(261\) 2.52646 + 2.52646i 0.156384 + 0.156384i
\(262\) 0 0
\(263\) −13.4067 13.4067i −0.826693 0.826693i 0.160365 0.987058i \(-0.448733\pi\)
−0.987058 + 0.160365i \(0.948733\pi\)
\(264\) 0 0
\(265\) −21.3121 11.9871i −1.30919 0.736359i
\(266\) 0 0
\(267\) 1.91559i 0.117232i
\(268\) 0 0
\(269\) −6.54686 6.54686i −0.399169 0.399169i 0.478771 0.877940i \(-0.341083\pi\)
−0.877940 + 0.478771i \(0.841083\pi\)
\(270\) 0 0
\(271\) 8.11806i 0.493137i 0.969125 + 0.246568i \(0.0793030\pi\)
−0.969125 + 0.246568i \(0.920697\pi\)
\(272\) 0 0
\(273\) 11.6499 + 11.6499i 0.705081 + 0.705081i
\(274\) 0 0
\(275\) 17.7613 + 4.33346i 1.07105 + 0.261318i
\(276\) 0 0
\(277\) 27.8708 1.67460 0.837299 0.546746i \(-0.184134\pi\)
0.837299 + 0.546746i \(0.184134\pi\)
\(278\) 0 0
\(279\) 8.08076i 0.483782i
\(280\) 0 0
\(281\) 2.35087i 0.140241i 0.997539 + 0.0701206i \(0.0223384\pi\)
−0.997539 + 0.0701206i \(0.977662\pi\)
\(282\) 0 0
\(283\) 15.9550 0.948425 0.474212 0.880410i \(-0.342733\pi\)
0.474212 + 0.880410i \(0.342733\pi\)
\(284\) 0 0
\(285\) 6.82087 1.91011i 0.404034 0.113145i
\(286\) 0 0
\(287\) −3.70659 3.70659i −0.218793 0.218793i
\(288\) 0 0
\(289\) 10.1456i 0.596800i
\(290\) 0 0
\(291\) −2.86143 2.86143i −0.167740 0.167740i
\(292\) 0 0
\(293\) 14.9047i 0.870741i 0.900251 + 0.435371i \(0.143383\pi\)
−0.900251 + 0.435371i \(0.856617\pi\)
\(294\) 0 0
\(295\) 3.32429 0.930932i 0.193548 0.0542010i
\(296\) 0 0
\(297\) −2.58551 2.58551i −0.150026 0.150026i
\(298\) 0 0
\(299\) 15.3041 + 15.3041i 0.885058 + 0.885058i
\(300\) 0 0
\(301\) −5.19530 + 5.19530i −0.299452 + 0.299452i
\(302\) 0 0
\(303\) −9.70834 + 9.70834i −0.557729 + 0.557729i
\(304\) 0 0
\(305\) −5.27557 18.8387i −0.302078 1.07870i
\(306\) 0 0
\(307\) 8.95078 0.510848 0.255424 0.966829i \(-0.417785\pi\)
0.255424 + 0.966829i \(0.417785\pi\)
\(308\) 0 0
\(309\) −9.93641 + 9.93641i −0.565263 + 0.565263i
\(310\) 0 0
\(311\) −7.32409 −0.415311 −0.207655 0.978202i \(-0.566583\pi\)
−0.207655 + 0.978202i \(0.566583\pi\)
\(312\) 0 0
\(313\) 1.98518 1.98518i 0.112209 0.112209i −0.648773 0.760982i \(-0.724718\pi\)
0.760982 + 0.648773i \(0.224718\pi\)
\(314\) 0 0
\(315\) 1.78455 + 6.37250i 0.100548 + 0.359049i
\(316\) 0 0
\(317\) 17.5989i 0.988450i 0.869334 + 0.494225i \(0.164548\pi\)
−0.869334 + 0.494225i \(0.835452\pi\)
\(318\) 0 0
\(319\) 13.0644 0.731465
\(320\) 0 0
\(321\) 2.36442 0.131969
\(322\) 0 0
\(323\) 8.29343i 0.461459i
\(324\) 0 0
\(325\) 14.4560 + 23.7865i 0.801872 + 1.31944i
\(326\) 0 0
\(327\) 8.64138 8.64138i 0.477869 0.477869i
\(328\) 0 0
\(329\) −2.20040 −0.121312
\(330\) 0 0
\(331\) −4.38662 + 4.38662i −0.241111 + 0.241111i −0.817310 0.576199i \(-0.804535\pi\)
0.576199 + 0.817310i \(0.304535\pi\)
\(332\) 0 0
\(333\) 11.3539 0.622190
\(334\) 0 0
\(335\) 13.5822 24.1482i 0.742075 1.31936i
\(336\) 0 0
\(337\) −12.2682 + 12.2682i −0.668290 + 0.668290i −0.957320 0.289030i \(-0.906667\pi\)
0.289030 + 0.957320i \(0.406667\pi\)
\(338\) 0 0
\(339\) −11.3091 + 11.3091i −0.614227 + 0.614227i
\(340\) 0 0
\(341\) −20.8929 20.8929i −1.13141 1.13141i
\(342\) 0 0
\(343\) 10.9685 + 10.9685i 0.592242 + 0.592242i
\(344\) 0 0
\(345\) 2.34431 + 8.37136i 0.126213 + 0.450699i
\(346\) 0 0
\(347\) 34.9889i 1.87830i −0.343501 0.939152i \(-0.611613\pi\)
0.343501 0.939152i \(-0.388387\pi\)
\(348\) 0 0
\(349\) −7.60199 7.60199i −0.406925 0.406925i 0.473740 0.880665i \(-0.342904\pi\)
−0.880665 + 0.473740i \(0.842904\pi\)
\(350\) 0 0
\(351\) 5.56694i 0.297141i
\(352\) 0 0
\(353\) 13.8582 + 13.8582i 0.737596 + 0.737596i 0.972112 0.234516i \(-0.0753505\pi\)
−0.234516 + 0.972112i \(0.575351\pi\)
\(354\) 0 0
\(355\) 4.89056 8.69508i 0.259564 0.461487i
\(356\) 0 0
\(357\) 7.74825 0.410081
\(358\) 0 0
\(359\) 2.68203i 0.141552i −0.997492 0.0707762i \(-0.977452\pi\)
0.997492 0.0707762i \(-0.0225476\pi\)
\(360\) 0 0
\(361\) 8.96543i 0.471865i
\(362\) 0 0
\(363\) −2.36972 −0.124378
\(364\) 0 0
\(365\) −3.50772 12.5258i −0.183602 0.655631i
\(366\) 0 0
\(367\) −12.0246 12.0246i −0.627680 0.627680i 0.319804 0.947484i \(-0.396383\pi\)
−0.947484 + 0.319804i \(0.896383\pi\)
\(368\) 0 0
\(369\) 1.77121i 0.0922057i
\(370\) 0 0
\(371\) −22.8840 22.8840i −1.18808 1.18808i
\(372\) 0 0
\(373\) 15.5668i 0.806019i −0.915196 0.403009i \(-0.867964\pi\)
0.915196 0.403009i \(-0.132036\pi\)
\(374\) 0 0
\(375\) 0.377121 + 11.1740i 0.0194745 + 0.577022i
\(376\) 0 0
\(377\) 14.0647 + 14.0647i 0.724367 + 0.724367i
\(378\) 0 0
\(379\) −7.51070 7.51070i −0.385799 0.385799i 0.487387 0.873186i \(-0.337950\pi\)
−0.873186 + 0.487387i \(0.837950\pi\)
\(380\) 0 0
\(381\) 0.566200 0.566200i 0.0290073 0.0290073i
\(382\) 0 0
\(383\) 21.1077 21.1077i 1.07855 1.07855i 0.0819157 0.996639i \(-0.473896\pi\)
0.996639 0.0819157i \(-0.0261038\pi\)
\(384\) 0 0
\(385\) 21.0901 + 11.8622i 1.07485 + 0.604553i
\(386\) 0 0
\(387\) 2.48260 0.126198
\(388\) 0 0
\(389\) −3.95949 + 3.95949i −0.200754 + 0.200754i −0.800323 0.599569i \(-0.795339\pi\)
0.599569 + 0.800323i \(0.295339\pi\)
\(390\) 0 0
\(391\) 10.1786 0.514756
\(392\) 0 0
\(393\) −12.6717 + 12.6717i −0.639200 + 0.639200i
\(394\) 0 0
\(395\) 14.6258 26.0037i 0.735906 1.30839i
\(396\) 0 0
\(397\) 11.9369i 0.599095i 0.954081 + 0.299547i \(0.0968357\pi\)
−0.954081 + 0.299547i \(0.903164\pi\)
\(398\) 0 0
\(399\) 9.37494 0.469334
\(400\) 0 0
\(401\) −18.6196 −0.929821 −0.464910 0.885358i \(-0.653913\pi\)
−0.464910 + 0.885358i \(0.653913\pi\)
\(402\) 0 0
\(403\) 44.9851i 2.24087i
\(404\) 0 0
\(405\) 1.09619 1.94894i 0.0544699 0.0968437i
\(406\) 0 0
\(407\) 29.3556 29.3556i 1.45510 1.45510i
\(408\) 0 0
\(409\) −32.2590 −1.59510 −0.797552 0.603250i \(-0.793872\pi\)
−0.797552 + 0.603250i \(0.793872\pi\)
\(410\) 0 0
\(411\) −9.38260 + 9.38260i −0.462810 + 0.462810i
\(412\) 0 0
\(413\) 4.56907 0.224829
\(414\) 0 0
\(415\) −0.653550 0.367590i −0.0320815 0.0180443i
\(416\) 0 0
\(417\) 1.90899 1.90899i 0.0934835 0.0934835i
\(418\) 0 0
\(419\) 15.5579 15.5579i 0.760052 0.760052i −0.216280 0.976331i \(-0.569392\pi\)
0.976331 + 0.216280i \(0.0693924\pi\)
\(420\) 0 0
\(421\) 11.8886 + 11.8886i 0.579415 + 0.579415i 0.934742 0.355327i \(-0.115631\pi\)
−0.355327 + 0.934742i \(0.615631\pi\)
\(422\) 0 0
\(423\) 0.525736 + 0.525736i 0.0255622 + 0.0255622i
\(424\) 0 0
\(425\) 12.7174 + 3.10283i 0.616885 + 0.150510i
\(426\) 0 0
\(427\) 25.8928i 1.25304i
\(428\) 0 0
\(429\) −14.3934 14.3934i −0.694919 0.694919i
\(430\) 0 0
\(431\) 11.2888i 0.543763i −0.962331 0.271881i \(-0.912354\pi\)
0.962331 0.271881i \(-0.0876458\pi\)
\(432\) 0 0
\(433\) −3.79336 3.79336i −0.182297 0.182297i 0.610059 0.792356i \(-0.291146\pi\)
−0.792356 + 0.610059i \(0.791146\pi\)
\(434\) 0 0
\(435\) 2.15445 + 7.69340i 0.103298 + 0.368870i
\(436\) 0 0
\(437\) 12.3156 0.589134
\(438\) 0 0
\(439\) 14.6582i 0.699599i 0.936825 + 0.349799i \(0.113750\pi\)
−0.936825 + 0.349799i \(0.886250\pi\)
\(440\) 0 0
\(441\) 1.75866i 0.0837459i
\(442\) 0 0
\(443\) −38.3556 −1.82233 −0.911165 0.412041i \(-0.864816\pi\)
−0.911165 + 0.412041i \(0.864816\pi\)
\(444\) 0 0
\(445\) −2.09984 + 3.73337i −0.0995419 + 0.176979i
\(446\) 0 0
\(447\) 5.52485 + 5.52485i 0.261316 + 0.261316i
\(448\) 0 0
\(449\) 15.1632i 0.715596i −0.933799 0.357798i \(-0.883528\pi\)
0.933799 0.357798i \(-0.116472\pi\)
\(450\) 0 0
\(451\) 4.57949 + 4.57949i 0.215640 + 0.215640i
\(452\) 0 0
\(453\) 15.6530i 0.735444i
\(454\) 0 0
\(455\) 9.93448 + 35.4753i 0.465736 + 1.66311i
\(456\) 0 0
\(457\) 11.4152 + 11.4152i 0.533980 + 0.533980i 0.921754 0.387775i \(-0.126756\pi\)
−0.387775 + 0.921754i \(0.626756\pi\)
\(458\) 0 0
\(459\) −1.85127 1.85127i −0.0864098 0.0864098i
\(460\) 0 0
\(461\) −26.5782 + 26.5782i −1.23787 + 1.23787i −0.277000 + 0.960870i \(0.589340\pi\)
−0.960870 + 0.277000i \(0.910660\pi\)
\(462\) 0 0
\(463\) −24.9521 + 24.9521i −1.15962 + 1.15962i −0.175068 + 0.984556i \(0.556015\pi\)
−0.984556 + 0.175068i \(0.943985\pi\)
\(464\) 0 0
\(465\) 8.85802 15.7489i 0.410781 0.730339i
\(466\) 0 0
\(467\) 0.641894 0.0297033 0.0148517 0.999890i \(-0.495272\pi\)
0.0148517 + 0.999890i \(0.495272\pi\)
\(468\) 0 0
\(469\) 25.9292 25.9292i 1.19730 1.19730i
\(470\) 0 0
\(471\) −3.75134 −0.172853
\(472\) 0 0
\(473\) 6.41879 6.41879i 0.295136 0.295136i
\(474\) 0 0
\(475\) 15.3873 + 3.75425i 0.706019 + 0.172257i
\(476\) 0 0
\(477\) 10.9352i 0.500690i
\(478\) 0 0
\(479\) −4.75189 −0.217119 −0.108560 0.994090i \(-0.534624\pi\)
−0.108560 + 0.994090i \(0.534624\pi\)
\(480\) 0 0
\(481\) 63.2065 2.88197
\(482\) 0 0
\(483\) 11.5060i 0.523541i
\(484\) 0 0
\(485\) −2.44010 8.71342i −0.110799 0.395656i
\(486\) 0 0
\(487\) 5.12743 5.12743i 0.232346 0.232346i −0.581325 0.813671i \(-0.697466\pi\)
0.813671 + 0.581325i \(0.197466\pi\)
\(488\) 0 0
\(489\) 24.0013 1.08538
\(490\) 0 0
\(491\) −13.4733 + 13.4733i −0.608040 + 0.608040i −0.942434 0.334394i \(-0.891469\pi\)
0.334394 + 0.942434i \(0.391469\pi\)
\(492\) 0 0
\(493\) 9.35432 0.421297
\(494\) 0 0
\(495\) −2.20481 7.87321i −0.0990987 0.353874i
\(496\) 0 0
\(497\) 9.33638 9.33638i 0.418794 0.418794i
\(498\) 0 0
\(499\) 3.98679 3.98679i 0.178473 0.178473i −0.612217 0.790690i \(-0.709722\pi\)
0.790690 + 0.612217i \(0.209722\pi\)
\(500\) 0 0
\(501\) 4.52747 + 4.52747i 0.202272 + 0.202272i
\(502\) 0 0
\(503\) 8.69088 + 8.69088i 0.387507 + 0.387507i 0.873797 0.486290i \(-0.161650\pi\)
−0.486290 + 0.873797i \(0.661650\pi\)
\(504\) 0 0
\(505\) −29.5631 + 8.27884i −1.31554 + 0.368404i
\(506\) 0 0
\(507\) 17.9908i 0.799001i
\(508\) 0 0
\(509\) 15.2515 + 15.2515i 0.676010 + 0.676010i 0.959095 0.283085i \(-0.0913577\pi\)
−0.283085 + 0.959095i \(0.591358\pi\)
\(510\) 0 0
\(511\) 17.2161i 0.761594i
\(512\) 0 0
\(513\) −2.23993 2.23993i −0.0988953 0.0988953i
\(514\) 0 0
\(515\) −30.2577 + 8.47333i −1.33331 + 0.373380i
\(516\) 0 0
\(517\) 2.71859 0.119564
\(518\) 0 0
\(519\) 11.4102i 0.500852i
\(520\) 0 0
\(521\) 12.9907i 0.569131i 0.958657 + 0.284565i \(0.0918493\pi\)
−0.958657 + 0.284565i \(0.908151\pi\)
\(522\) 0 0
\(523\) −11.0988 −0.485315 −0.242658 0.970112i \(-0.578019\pi\)
−0.242658 + 0.970112i \(0.578019\pi\)
\(524\) 0 0
\(525\) −3.50746 + 14.3758i −0.153078 + 0.627412i
\(526\) 0 0
\(527\) −14.9597 14.9597i −0.651653 0.651653i
\(528\) 0 0
\(529\) 7.88490i 0.342822i
\(530\) 0 0
\(531\) −1.09168 1.09168i −0.0473747 0.0473747i
\(532\) 0 0
\(533\) 9.86024i 0.427095i
\(534\) 0 0
\(535\) 4.60812 + 2.59185i 0.199227 + 0.112055i
\(536\) 0 0
\(537\) 0.636317 + 0.636317i 0.0274591 + 0.0274591i
\(538\) 0 0
\(539\) 4.54704 + 4.54704i 0.195855 + 0.195855i
\(540\) 0 0
\(541\) 30.5732 30.5732i 1.31444 1.31444i 0.396339 0.918104i \(-0.370280\pi\)
0.918104 0.396339i \(-0.129720\pi\)
\(542\) 0 0
\(543\) −7.26171 + 7.26171i −0.311630 + 0.311630i
\(544\) 0 0
\(545\) 26.3141 7.36899i 1.12717 0.315653i
\(546\) 0 0
\(547\) −0.842518 −0.0360235 −0.0180117 0.999838i \(-0.505734\pi\)
−0.0180117 + 0.999838i \(0.505734\pi\)
\(548\) 0 0
\(549\) −6.18650 + 6.18650i −0.264033 + 0.264033i
\(550\) 0 0
\(551\) 11.3182 0.482171
\(552\) 0 0
\(553\) 27.9216 27.9216i 1.18735 1.18735i
\(554\) 0 0
\(555\) 22.1281 + 12.4460i 0.939285 + 0.528303i
\(556\) 0 0
\(557\) 11.3560i 0.481169i −0.970628 0.240584i \(-0.922661\pi\)
0.970628 0.240584i \(-0.0773391\pi\)
\(558\) 0 0
\(559\) 13.8205 0.584544
\(560\) 0 0
\(561\) −9.57295 −0.404170
\(562\) 0 0
\(563\) 4.67224i 0.196912i 0.995141 + 0.0984558i \(0.0313903\pi\)
−0.995141 + 0.0984558i \(0.968610\pi\)
\(564\) 0 0
\(565\) −34.4377 + 9.64391i −1.44881 + 0.405723i
\(566\) 0 0
\(567\) 2.09269 2.09269i 0.0878845 0.0878845i
\(568\) 0 0
\(569\) −29.8812 −1.25269 −0.626343 0.779548i \(-0.715449\pi\)
−0.626343 + 0.779548i \(0.715449\pi\)
\(570\) 0 0
\(571\) −10.3941 + 10.3941i −0.434978 + 0.434978i −0.890318 0.455339i \(-0.849518\pi\)
0.455339 + 0.890318i \(0.349518\pi\)
\(572\) 0 0
\(573\) −2.60235 −0.108715
\(574\) 0 0
\(575\) −4.60765 + 18.8851i −0.192152 + 0.787563i
\(576\) 0 0
\(577\) 9.76065 9.76065i 0.406341 0.406341i −0.474119 0.880461i \(-0.657233\pi\)
0.880461 + 0.474119i \(0.157233\pi\)
\(578\) 0 0
\(579\) −7.12141 + 7.12141i −0.295956 + 0.295956i
\(580\) 0 0
\(581\) −0.701752 0.701752i −0.0291136 0.0291136i
\(582\) 0 0
\(583\) 28.2731 + 28.2731i 1.17095 + 1.17095i
\(584\) 0 0
\(585\) 6.10241 10.8496i 0.252303 0.448578i
\(586\) 0 0
\(587\) 20.8152i 0.859136i 0.903034 + 0.429568i \(0.141334\pi\)
−0.903034 + 0.429568i \(0.858666\pi\)
\(588\) 0 0
\(589\) −18.1003 18.1003i −0.745811 0.745811i
\(590\) 0 0
\(591\) 20.6396i 0.848999i
\(592\) 0 0
\(593\) −11.1613 11.1613i −0.458341 0.458341i 0.439770 0.898110i \(-0.355060\pi\)
−0.898110 + 0.439770i \(0.855060\pi\)
\(594\) 0 0
\(595\) 15.1009 + 8.49352i 0.619076 + 0.348201i
\(596\) 0 0
\(597\) −2.57987 −0.105587
\(598\) 0 0
\(599\) 21.8308i 0.891983i −0.895037 0.445992i \(-0.852851\pi\)
0.895037 0.445992i \(-0.147149\pi\)
\(600\) 0 0
\(601\) 7.57808i 0.309116i 0.987984 + 0.154558i \(0.0493954\pi\)
−0.987984 + 0.154558i \(0.950605\pi\)
\(602\) 0 0
\(603\) −12.3904 −0.504577
\(604\) 0 0
\(605\) −4.61845 2.59766i −0.187767 0.105610i
\(606\) 0 0
\(607\) −6.52513 6.52513i −0.264847 0.264847i 0.562173 0.827020i \(-0.309966\pi\)
−0.827020 + 0.562173i \(0.809966\pi\)
\(608\) 0 0
\(609\) 10.5742i 0.428487i
\(610\) 0 0
\(611\) 2.92674 + 2.92674i 0.118403 + 0.118403i
\(612\) 0 0
\(613\) 31.2019i 1.26023i −0.776500 0.630117i \(-0.783007\pi\)
0.776500 0.630117i \(-0.216993\pi\)
\(614\) 0 0
\(615\) −1.94158 + 3.45199i −0.0782921 + 0.139198i
\(616\) 0 0
\(617\) 12.7799 + 12.7799i 0.514501 + 0.514501i 0.915902 0.401401i \(-0.131477\pi\)
−0.401401 + 0.915902i \(0.631477\pi\)
\(618\) 0 0
\(619\) 7.22587 + 7.22587i 0.290432 + 0.290432i 0.837251 0.546819i \(-0.184161\pi\)
−0.546819 + 0.837251i \(0.684161\pi\)
\(620\) 0 0
\(621\) 2.74910 2.74910i 0.110318 0.110318i
\(622\) 0 0
\(623\) −4.00872 + 4.00872i −0.160606 + 0.160606i
\(624\) 0 0
\(625\) −11.5138 + 22.1908i −0.460551 + 0.887633i
\(626\) 0 0
\(627\) −11.5827 −0.462569
\(628\) 0 0
\(629\) 21.0191 21.0191i 0.838087 0.838087i
\(630\) 0 0
\(631\) −24.3757 −0.970382 −0.485191 0.874408i \(-0.661250\pi\)
−0.485191 + 0.874408i \(0.661250\pi\)
\(632\) 0 0
\(633\) −3.30177 + 3.30177i −0.131233 + 0.131233i
\(634\) 0 0
\(635\) 1.72415 0.482830i 0.0684208 0.0191605i
\(636\) 0 0
\(637\) 9.79038i 0.387909i
\(638\) 0 0
\(639\) −4.46143 −0.176492
\(640\) 0 0
\(641\) 24.3980 0.963662 0.481831 0.876264i \(-0.339972\pi\)
0.481831 + 0.876264i \(0.339972\pi\)
\(642\) 0 0
\(643\) 19.4887i 0.768561i −0.923216 0.384280i \(-0.874450\pi\)
0.923216 0.384280i \(-0.125550\pi\)
\(644\) 0 0
\(645\) 4.83844 + 2.72139i 0.190514 + 0.107155i
\(646\) 0 0
\(647\) −10.7325 + 10.7325i −0.421938 + 0.421938i −0.885871 0.463932i \(-0.846438\pi\)
0.463932 + 0.885871i \(0.346438\pi\)
\(648\) 0 0
\(649\) −5.64507 −0.221589
\(650\) 0 0
\(651\) 16.9105 16.9105i 0.662774 0.662774i
\(652\) 0 0
\(653\) −28.6204 −1.12000 −0.560001 0.828492i \(-0.689199\pi\)
−0.560001 + 0.828492i \(0.689199\pi\)
\(654\) 0 0
\(655\) −38.5868 + 10.8058i −1.50771 + 0.422219i
\(656\) 0 0
\(657\) −4.11339 + 4.11339i −0.160479 + 0.160479i
\(658\) 0 0
\(659\) −13.9606 + 13.9606i −0.543830 + 0.543830i −0.924649 0.380820i \(-0.875642\pi\)
0.380820 + 0.924649i \(0.375642\pi\)
\(660\) 0 0
\(661\) −2.74706 2.74706i −0.106848 0.106848i 0.651662 0.758510i \(-0.274072\pi\)
−0.758510 + 0.651662i \(0.774072\pi\)
\(662\) 0 0
\(663\) −10.3059 10.3059i −0.400248 0.400248i
\(664\) 0 0
\(665\) 18.2712 + 10.2767i 0.708527 + 0.398512i
\(666\) 0 0
\(667\) 13.8910i 0.537861i
\(668\) 0 0
\(669\) 1.64213 + 1.64213i 0.0634884 + 0.0634884i
\(670\) 0 0
\(671\) 31.9905i 1.23498i
\(672\) 0 0
\(673\) −6.92750 6.92750i −0.267036 0.267036i 0.560869 0.827905i \(-0.310467\pi\)
−0.827905 + 0.560869i \(0.810467\pi\)
\(674\) 0 0
\(675\) 4.27281 2.59675i 0.164460 0.0999490i
\(676\) 0 0
\(677\) 42.2218 1.62272 0.811358 0.584550i \(-0.198729\pi\)
0.811358 + 0.584550i \(0.198729\pi\)
\(678\) 0 0
\(679\) 11.9761i 0.459602i
\(680\) 0 0
\(681\) 18.8542i 0.722495i
\(682\) 0 0
\(683\) 30.2180 1.15626 0.578130 0.815945i \(-0.303783\pi\)
0.578130 + 0.815945i \(0.303783\pi\)
\(684\) 0 0
\(685\) −28.5712 + 8.00106i −1.09165 + 0.305705i
\(686\) 0 0
\(687\) 11.8744 + 11.8744i 0.453037 + 0.453037i
\(688\) 0 0
\(689\) 60.8758i 2.31918i
\(690\) 0 0
\(691\) 11.9148 + 11.9148i 0.453260 + 0.453260i 0.896435 0.443175i \(-0.146148\pi\)
−0.443175 + 0.896435i \(0.646148\pi\)
\(692\) 0 0
\(693\) 10.8213i 0.411068i
\(694\) 0 0
\(695\) 5.81311 1.62790i 0.220504 0.0617497i
\(696\) 0 0
\(697\) 3.27899 + 3.27899i 0.124201 + 0.124201i
\(698\) 0 0
\(699\) −12.9422 12.9422i −0.489520 0.489520i
\(700\) 0 0
\(701\) 22.4391 22.4391i 0.847512 0.847512i −0.142310 0.989822i \(-0.545453\pi\)
0.989822 + 0.142310i \(0.0454531\pi\)
\(702\) 0 0
\(703\) 25.4319 25.4319i 0.959183 0.959183i
\(704\) 0 0
\(705\) 0.448324 + 1.60093i 0.0168849 + 0.0602947i
\(706\) 0 0
\(707\) −40.6330 −1.52816
\(708\) 0 0
\(709\) 27.2337 27.2337i 1.02278 1.02278i 0.0230475 0.999734i \(-0.492663\pi\)
0.999734 0.0230475i \(-0.00733688\pi\)
\(710\) 0 0
\(711\) −13.3425 −0.500382
\(712\) 0 0
\(713\) 22.2148 22.2148i 0.831951 0.831951i
\(714\) 0 0
\(715\) −12.2740 43.8297i −0.459023 1.63914i
\(716\) 0 0
\(717\) 17.0514i 0.636797i
\(718\) 0 0
\(719\) 29.3850 1.09588 0.547938 0.836519i \(-0.315413\pi\)
0.547938 + 0.836519i \(0.315413\pi\)
\(720\) 0 0
\(721\) −41.5876 −1.54880
\(722\) 0 0
\(723\) 14.1921i 0.527811i
\(724\) 0 0
\(725\) −4.23449 + 17.3557i −0.157265 + 0.644573i
\(726\) 0 0
\(727\) −6.54058 + 6.54058i −0.242577 + 0.242577i −0.817915 0.575339i \(-0.804870\pi\)
0.575339 + 0.817915i \(0.304870\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.59596 4.59596i 0.169988 0.169988i
\(732\) 0 0
\(733\) 19.6299 0.725046 0.362523 0.931975i \(-0.381915\pi\)
0.362523 + 0.931975i \(0.381915\pi\)
\(734\) 0 0
\(735\) −1.92782 + 3.42753i −0.0711088 + 0.126426i
\(736\) 0 0
\(737\) −32.0355 + 32.0355i −1.18004 + 1.18004i
\(738\) 0 0
\(739\) 26.2044 26.2044i 0.963946 0.963946i −0.0354261 0.999372i \(-0.511279\pi\)
0.999372 + 0.0354261i \(0.0112788\pi\)
\(740\) 0 0
\(741\) −12.4696 12.4696i −0.458081 0.458081i
\(742\) 0 0
\(743\) −23.1496 23.1496i −0.849278 0.849278i 0.140765 0.990043i \(-0.455044\pi\)
−0.990043 + 0.140765i \(0.955044\pi\)
\(744\) 0 0
\(745\) 4.71134 + 16.8239i 0.172610 + 0.616379i
\(746\) 0 0
\(747\) 0.335336i 0.0122693i
\(748\) 0 0
\(749\) 4.94799 + 4.94799i 0.180796 + 0.180796i
\(750\) 0 0
\(751\) 27.8530i 1.01637i 0.861248 + 0.508186i \(0.169684\pi\)
−0.861248 + 0.508186i \(0.830316\pi\)
\(752\) 0 0
\(753\) −21.4140 21.4140i −0.780369 0.780369i
\(754\) 0 0
\(755\) −17.1587 + 30.5069i −0.624468 + 1.11026i
\(756\) 0 0
\(757\) −30.3747 −1.10399 −0.551994 0.833848i \(-0.686133\pi\)
−0.551994 + 0.833848i \(0.686133\pi\)
\(758\) 0 0
\(759\) 14.2156i 0.515995i
\(760\) 0 0
\(761\) 34.1288i 1.23717i −0.785718 0.618584i \(-0.787707\pi\)
0.785718 0.618584i \(-0.212293\pi\)
\(762\) 0 0
\(763\) 36.1674 1.30935
\(764\) 0 0
\(765\) −1.57868 5.63735i −0.0570773 0.203819i
\(766\) 0 0
\(767\) −6.07729 6.07729i −0.219438 0.219438i
\(768\) 0 0
\(769\) 6.28579i 0.226671i −0.993557 0.113336i \(-0.963846\pi\)
0.993557 0.113336i \(-0.0361535\pi\)
\(770\) 0 0
\(771\) −5.47773 5.47773i −0.197276 0.197276i
\(772\) 0 0
\(773\) 47.1635i 1.69635i 0.529715 + 0.848176i \(0.322299\pi\)
−0.529715 + 0.848176i \(0.677701\pi\)
\(774\) 0 0
\(775\) 34.5275 20.9837i 1.24027 0.753757i
\(776\) 0 0
\(777\) 23.7601 + 23.7601i 0.852390 + 0.852390i
\(778\) 0 0
\(779\) 3.96740 + 3.96740i 0.142147 + 0.142147i
\(780\) 0 0
\(781\) −11.5351 + 11.5351i −0.412758 + 0.412758i
\(782\) 0 0
\(783\) 2.52646 2.52646i 0.0902883 0.0902883i
\(784\) 0 0
\(785\) −7.31115 4.11217i −0.260946 0.146770i
\(786\) 0 0
\(787\) 14.6938 0.523778 0.261889 0.965098i \(-0.415655\pi\)
0.261889 + 0.965098i \(0.415655\pi\)
\(788\) 0 0
\(789\) −13.4067 + 13.4067i −0.477292 + 0.477292i
\(790\) 0 0
\(791\) −47.3329 −1.68296
\(792\) 0 0
\(793\) −34.4399 + 34.4399i −1.22300 + 1.22300i
\(794\) 0 0
\(795\) −11.9871 + 21.3121i −0.425137 + 0.755863i
\(796\) 0 0
\(797\) 3.67259i 0.130090i 0.997882 + 0.0650448i \(0.0207190\pi\)
−0.997882 + 0.0650448i \(0.979281\pi\)
\(798\) 0 0
\(799\) 1.94656 0.0688643
\(800\) 0 0
\(801\) 1.91559 0.0676839
\(802\) 0 0
\(803\) 21.2704i 0.750617i
\(804\) 0 0
\(805\) −12.6127 + 22.4245i −0.444540 + 0.790361i
\(806\) 0 0
\(807\) −6.54686 + 6.54686i −0.230461 + 0.230461i
\(808\) 0 0
\(809\) −33.4485 −1.17599 −0.587994 0.808865i \(-0.700082\pi\)
−0.587994 + 0.808865i \(0.700082\pi\)
\(810\) 0 0
\(811\) −25.8966 + 25.8966i −0.909351 + 0.909351i −0.996220 0.0868685i \(-0.972314\pi\)
0.0868685 + 0.996220i \(0.472314\pi\)
\(812\) 0 0
\(813\) 8.11806 0.284713
\(814\) 0 0
\(815\) 46.7771 + 26.3099i 1.63853 + 0.921595i
\(816\) 0 0
\(817\) 5.56085 5.56085i 0.194550 0.194550i
\(818\) 0 0
\(819\) 11.6499 11.6499i 0.407079 0.407079i
\(820\) 0 0
\(821\) 1.15783 + 1.15783i 0.0404085 + 0.0404085i 0.727022 0.686614i \(-0.240904\pi\)
−0.686614 + 0.727022i \(0.740904\pi\)
\(822\) 0 0
\(823\) −17.9269 17.9269i −0.624891 0.624891i 0.321887 0.946778i \(-0.395683\pi\)
−0.946778 + 0.321887i \(0.895683\pi\)
\(824\) 0 0
\(825\) 4.33346 17.7613i 0.150872 0.618369i
\(826\) 0 0
\(827\) 38.4046i 1.33546i 0.744404 + 0.667729i \(0.232733\pi\)
−0.744404 + 0.667729i \(0.767267\pi\)
\(828\) 0 0
\(829\) −14.5259 14.5259i −0.504506 0.504506i 0.408329 0.912835i \(-0.366112\pi\)
−0.912835 + 0.408329i \(0.866112\pi\)
\(830\) 0 0
\(831\) 27.8708i 0.966829i
\(832\) 0 0
\(833\) 3.25576 + 3.25576i 0.112805 + 0.112805i
\(834\) 0 0
\(835\) 3.86082 + 13.7867i 0.133609 + 0.477109i
\(836\) 0 0
\(837\) −8.08076 −0.279312
\(838\) 0 0
\(839\) 7.66262i 0.264543i 0.991214 + 0.132272i \(0.0422271\pi\)
−0.991214 + 0.132272i \(0.957773\pi\)
\(840\) 0 0
\(841\) 16.2340i 0.559793i
\(842\) 0 0
\(843\) 2.35087 0.0809683
\(844\) 0 0
\(845\) 19.7213 35.0631i 0.678434 1.20621i
\(846\) 0 0
\(847\) −4.95908 4.95908i −0.170396 0.170396i
\(848\) 0 0
\(849\) 15.9550i 0.547573i
\(850\) 0 0
\(851\) 31.2130 + 31.2130i 1.06997 + 1.06997i
\(852\) 0 0
\(853\) 52.3253i 1.79158i −0.444474 0.895792i \(-0.646609\pi\)
0.444474 0.895792i \(-0.353391\pi\)
\(854\) 0 0
\(855\) −1.91011 6.82087i −0.0653245 0.233269i
\(856\) 0 0
\(857\) −8.25252 8.25252i −0.281901 0.281901i 0.551966 0.833867i \(-0.313878\pi\)
−0.833867 + 0.551966i \(0.813878\pi\)
\(858\) 0 0
\(859\) 32.9213 + 32.9213i 1.12326 + 1.12326i 0.991248 + 0.132010i \(0.0421432\pi\)
0.132010 + 0.991248i \(0.457857\pi\)
\(860\) 0 0
\(861\) −3.70659 + 3.70659i −0.126320 + 0.126320i
\(862\) 0 0
\(863\) −18.7646 + 18.7646i −0.638754 + 0.638754i −0.950248 0.311494i \(-0.899171\pi\)
0.311494 + 0.950248i \(0.399171\pi\)
\(864\) 0 0
\(865\) −12.5077 + 22.2378i −0.425275 + 0.756108i
\(866\) 0 0
\(867\) 10.1456 0.344563
\(868\) 0 0
\(869\) −34.4971 + 34.4971i −1.17023 + 1.17023i
\(870\) 0 0
\(871\) −68.9767 −2.33719
\(872\) 0 0
\(873\) −2.86143 + 2.86143i −0.0968447 + 0.0968447i
\(874\) 0 0
\(875\) −22.5944 + 24.1728i −0.763831 + 0.817190i
\(876\) 0 0
\(877\) 7.56014i 0.255288i −0.991820 0.127644i \(-0.959259\pi\)
0.991820 0.127644i \(-0.0407414\pi\)
\(878\) 0 0
\(879\) 14.9047 0.502723
\(880\) 0 0
\(881\) −49.1984 −1.65754 −0.828768 0.559592i \(-0.810958\pi\)
−0.828768 + 0.559592i \(0.810958\pi\)
\(882\) 0 0
\(883\) 18.6145i 0.626428i −0.949683 0.313214i \(-0.898594\pi\)
0.949683 0.313214i \(-0.101406\pi\)
\(884\) 0 0
\(885\) −0.930932 3.32429i −0.0312929 0.111745i
\(886\) 0 0
\(887\) 26.7554 26.7554i 0.898360 0.898360i −0.0969313 0.995291i \(-0.530903\pi\)
0.995291 + 0.0969313i \(0.0309027\pi\)
\(888\) 0 0
\(889\) 2.36976 0.0794790
\(890\) 0 0
\(891\) −2.58551 + 2.58551i −0.0866178 + 0.0866178i
\(892\) 0 0
\(893\) 2.35522 0.0788146
\(894\) 0 0
\(895\) 0.542622 + 1.93767i 0.0181379 + 0.0647690i
\(896\) 0 0
\(897\) 15.3041 15.3041i 0.510988 0.510988i
\(898\) 0 0
\(899\) 20.4157 20.4157i 0.680902 0.680902i
\(900\) 0 0
\(901\) 20.2441 + 20.2441i 0.674427 + 0.674427i
\(902\) 0 0
\(903\) 5.19530 + 5.19530i 0.172889 + 0.172889i
\(904\) 0 0
\(905\) −22.1128 + 6.19246i −0.735056 + 0.205844i
\(906\) 0 0
\(907\) 5.40451i 0.179454i −0.995966 0.0897270i \(-0.971401\pi\)
0.995966 0.0897270i \(-0.0285994\pi\)
\(908\) 0 0
\(909\) 9.70834 + 9.70834i 0.322005 + 0.322005i
\(910\) 0 0
\(911\) 12.6467i 0.419003i −0.977808 0.209502i \(-0.932816\pi\)
0.977808 0.209502i \(-0.0671842\pi\)
\(912\) 0 0
\(913\) 0.867013 + 0.867013i 0.0286940 + 0.0286940i
\(914\) 0 0
\(915\) −18.8387 + 5.27557i −0.622788 + 0.174405i
\(916\) 0 0
\(917\) −53.0356 −1.75139
\(918\) 0 0
\(919\) 49.0361i 1.61755i 0.588117 + 0.808776i \(0.299869\pi\)
−0.588117 + 0.808776i \(0.700131\pi\)
\(920\) 0 0
\(921\) 8.95078i 0.294938i
\(922\) 0 0
\(923\) −24.8365 −0.817505
\(924\) 0 0
\(925\) 29.4832 + 48.5130i 0.969403 + 1.59510i
\(926\) 0 0
\(927\) 9.93641 + 9.93641i 0.326355 + 0.326355i
\(928\) 0 0
\(929\) 30.2575i 0.992715i −0.868118 0.496357i \(-0.834671\pi\)
0.868118 0.496357i \(-0.165329\pi\)
\(930\) 0 0
\(931\) 3.93928 + 3.93928i 0.129105 + 0.129105i
\(932\) 0 0
\(933\) 7.32409i 0.239780i
\(934\) 0 0
\(935\) −18.6571 10.4937i −0.610153 0.343182i
\(936\) 0 0
\(937\) −24.6779 24.6779i −0.806191 0.806191i 0.177864 0.984055i \(-0.443081\pi\)
−0.984055 + 0.177864i \(0.943081\pi\)
\(938\) 0 0
\(939\) −1.98518 1.98518i −0.0647839 0.0647839i
\(940\) 0 0
\(941\) 2.99760 2.99760i 0.0977188 0.0977188i −0.656557 0.754276i \(-0.727988\pi\)
0.754276 + 0.656557i \(0.227988\pi\)
\(942\) 0 0
\(943\) −4.86924 + 4.86924i −0.158564 + 0.158564i
\(944\) 0 0
\(945\) 6.37250 1.78455i 0.207297 0.0580514i
\(946\) 0 0
\(947\) 41.9001 1.36157 0.680786 0.732482i \(-0.261638\pi\)
0.680786 + 0.732482i \(0.261638\pi\)
\(948\) 0 0
\(949\) −22.8990 + 22.8990i −0.743333 + 0.743333i
\(950\) 0 0
\(951\) 17.5989 0.570682
\(952\) 0 0
\(953\) −8.63592 + 8.63592i −0.279745 + 0.279745i −0.833007 0.553262i \(-0.813383\pi\)
0.553262 + 0.833007i \(0.313383\pi\)
\(954\) 0 0
\(955\) −5.07183 2.85266i −0.164121 0.0923100i
\(956\) 0 0
\(957\) 13.0644i 0.422311i
\(958\) 0 0
\(959\) −39.2697 −1.26808
\(960\) 0 0
\(961\) −34.2987 −1.10641
\(962\) 0 0
\(963\) 2.36442i 0.0761925i
\(964\) 0 0
\(965\) −21.6856 + 6.07282i −0.698084 + 0.195491i
\(966\) 0 0
\(967\) 0.452031 0.452031i 0.0145363 0.0145363i −0.699801 0.714338i \(-0.746728\pi\)
0.714338 + 0.699801i \(0.246728\pi\)
\(968\) 0 0
\(969\) −8.29343 −0.266423
\(970\) 0 0
\(971\) 25.6260 25.6260i 0.822379 0.822379i −0.164070 0.986449i \(-0.552462\pi\)
0.986449 + 0.164070i \(0.0524623\pi\)
\(972\) 0 0
\(973\) 7.98982 0.256142
\(974\) 0 0
\(975\) 23.7865 14.4560i 0.761777 0.462961i
\(976\) 0 0
\(977\) 15.6136 15.6136i 0.499524 0.499524i −0.411766 0.911290i \(-0.635088\pi\)
0.911290 + 0.411766i \(0.135088\pi\)
\(978\) 0 0
\(979\) 4.95277 4.95277i 0.158291 0.158291i
\(980\) 0 0
\(981\) −8.64138 8.64138i −0.275898 0.275898i
\(982\) 0 0
\(983\) 25.8799 + 25.8799i 0.825441 + 0.825441i 0.986882 0.161442i \(-0.0516144\pi\)
−0.161442 + 0.986882i \(0.551614\pi\)
\(984\) 0 0
\(985\) 22.6248 40.2254i 0.720887 1.28169i
\(986\) 0 0
\(987\) 2.20040i 0.0700395i
\(988\) 0 0
\(989\) 6.82491 + 6.82491i 0.217020 + 0.217020i
\(990\) 0 0
\(991\) 1.03502i 0.0328785i 0.999865 + 0.0164393i \(0.00523301\pi\)
−0.999865 + 0.0164393i \(0.994767\pi\)
\(992\) 0 0
\(993\) 4.38662 + 4.38662i 0.139205 + 0.139205i
\(994\) 0 0
\(995\) −5.02802 2.82802i −0.159399 0.0896543i
\(996\) 0 0
\(997\) −12.1289 −0.384125 −0.192062 0.981383i \(-0.561518\pi\)
−0.192062 + 0.981383i \(0.561518\pi\)
\(998\) 0 0
\(999\) 11.3539i 0.359221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bc.l.1183.8 20
4.3 odd 2 1920.2.bc.k.1183.8 20
5.2 odd 4 1920.2.y.k.1567.3 20
8.3 odd 2 240.2.bc.f.43.7 yes 20
8.5 even 2 960.2.bc.f.463.3 20
16.3 odd 4 1920.2.y.k.223.3 20
16.5 even 4 240.2.y.f.163.2 20
16.11 odd 4 960.2.y.f.943.8 20
16.13 even 4 1920.2.y.l.223.3 20
20.7 even 4 1920.2.y.l.1567.3 20
24.11 even 2 720.2.bd.h.523.4 20
40.27 even 4 240.2.y.f.187.2 yes 20
40.37 odd 4 960.2.y.f.847.8 20
48.5 odd 4 720.2.z.h.163.9 20
80.27 even 4 960.2.bc.f.367.3 20
80.37 odd 4 240.2.bc.f.67.7 yes 20
80.67 even 4 inner 1920.2.bc.l.607.8 20
80.77 odd 4 1920.2.bc.k.607.8 20
120.107 odd 4 720.2.z.h.667.9 20
240.197 even 4 720.2.bd.h.307.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.2 20 16.5 even 4
240.2.y.f.187.2 yes 20 40.27 even 4
240.2.bc.f.43.7 yes 20 8.3 odd 2
240.2.bc.f.67.7 yes 20 80.37 odd 4
720.2.z.h.163.9 20 48.5 odd 4
720.2.z.h.667.9 20 120.107 odd 4
720.2.bd.h.307.4 20 240.197 even 4
720.2.bd.h.523.4 20 24.11 even 2
960.2.y.f.847.8 20 40.37 odd 4
960.2.y.f.943.8 20 16.11 odd 4
960.2.bc.f.367.3 20 80.27 even 4
960.2.bc.f.463.3 20 8.5 even 2
1920.2.y.k.223.3 20 16.3 odd 4
1920.2.y.k.1567.3 20 5.2 odd 4
1920.2.y.l.223.3 20 16.13 even 4
1920.2.y.l.1567.3 20 20.7 even 4
1920.2.bc.k.607.8 20 80.77 odd 4
1920.2.bc.k.1183.8 20 4.3 odd 2
1920.2.bc.l.607.8 20 80.67 even 4 inner
1920.2.bc.l.1183.8 20 1.1 even 1 trivial