Properties

Label 192.4.j.a.145.5
Level $192$
Weight $4$
Character 192.145
Analytic conductor $11.328$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(49,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 145.5
Character \(\chi\) \(=\) 192.145
Dual form 192.4.j.a.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12132 - 2.12132i) q^{3} +(10.2951 - 10.2951i) q^{5} +32.8369i q^{7} +9.00000i q^{9} +(18.2226 - 18.2226i) q^{11} +(22.5535 + 22.5535i) q^{13} -43.6785 q^{15} +50.1440 q^{17} +(6.68982 + 6.68982i) q^{19} +(69.6576 - 69.6576i) q^{21} -186.886i q^{23} -86.9788i q^{25} +(19.0919 - 19.0919i) q^{27} +(118.332 + 118.332i) q^{29} +250.110 q^{31} -77.3118 q^{33} +(338.060 + 338.060i) q^{35} +(198.913 - 198.913i) q^{37} -95.6866i q^{39} +186.565i q^{41} +(-10.9329 + 10.9329i) q^{43} +(92.6560 + 92.6560i) q^{45} -23.1346 q^{47} -735.263 q^{49} +(-106.371 - 106.371i) q^{51} +(134.664 - 134.664i) q^{53} -375.207i q^{55} -28.3825i q^{57} +(-220.943 + 220.943i) q^{59} +(-453.845 - 453.845i) q^{61} -295.532 q^{63} +464.383 q^{65} +(184.273 + 184.273i) q^{67} +(-396.444 + 396.444i) q^{69} -18.8163i q^{71} +828.683i q^{73} +(-184.510 + 184.510i) q^{75} +(598.373 + 598.373i) q^{77} -1048.37 q^{79} -81.0000 q^{81} +(173.404 + 173.404i) q^{83} +(516.238 - 516.238i) q^{85} -502.041i q^{87} -335.168i q^{89} +(-740.589 + 740.589i) q^{91} +(-530.564 - 530.564i) q^{93} +137.745 q^{95} -687.122 q^{97} +(164.003 + 164.003i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 40 q^{11} - 120 q^{15} - 24 q^{19} + 400 q^{29} + 744 q^{31} + 456 q^{35} + 16 q^{37} - 1240 q^{43} - 1176 q^{49} - 744 q^{51} + 752 q^{53} + 1376 q^{59} - 912 q^{61} + 504 q^{63} + 976 q^{65} + 2256 q^{67}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.12132 2.12132i −0.408248 0.408248i
\(4\) 0 0
\(5\) 10.2951 10.2951i 0.920823 0.920823i −0.0762646 0.997088i \(-0.524299\pi\)
0.997088 + 0.0762646i \(0.0242994\pi\)
\(6\) 0 0
\(7\) 32.8369i 1.77303i 0.462703 + 0.886513i \(0.346880\pi\)
−0.462703 + 0.886513i \(0.653120\pi\)
\(8\) 0 0
\(9\) 9.00000i 0.333333i
\(10\) 0 0
\(11\) 18.2226 18.2226i 0.499483 0.499483i −0.411794 0.911277i \(-0.635098\pi\)
0.911277 + 0.411794i \(0.135098\pi\)
\(12\) 0 0
\(13\) 22.5535 + 22.5535i 0.481171 + 0.481171i 0.905506 0.424334i \(-0.139492\pi\)
−0.424334 + 0.905506i \(0.639492\pi\)
\(14\) 0 0
\(15\) −43.6785 −0.751849
\(16\) 0 0
\(17\) 50.1440 0.715394 0.357697 0.933838i \(-0.383562\pi\)
0.357697 + 0.933838i \(0.383562\pi\)
\(18\) 0 0
\(19\) 6.68982 + 6.68982i 0.0807763 + 0.0807763i 0.746341 0.665564i \(-0.231809\pi\)
−0.665564 + 0.746341i \(0.731809\pi\)
\(20\) 0 0
\(21\) 69.6576 69.6576i 0.723835 0.723835i
\(22\) 0 0
\(23\) 186.886i 1.69428i −0.531373 0.847138i \(-0.678324\pi\)
0.531373 0.847138i \(-0.321676\pi\)
\(24\) 0 0
\(25\) 86.9788i 0.695830i
\(26\) 0 0
\(27\) 19.0919 19.0919i 0.136083 0.136083i
\(28\) 0 0
\(29\) 118.332 + 118.332i 0.757715 + 0.757715i 0.975906 0.218191i \(-0.0700156\pi\)
−0.218191 + 0.975906i \(0.570016\pi\)
\(30\) 0 0
\(31\) 250.110 1.44907 0.724534 0.689239i \(-0.242055\pi\)
0.724534 + 0.689239i \(0.242055\pi\)
\(32\) 0 0
\(33\) −77.3118 −0.407826
\(34\) 0 0
\(35\) 338.060 + 338.060i 1.63264 + 1.63264i
\(36\) 0 0
\(37\) 198.913 198.913i 0.883813 0.883813i −0.110107 0.993920i \(-0.535119\pi\)
0.993920 + 0.110107i \(0.0351194\pi\)
\(38\) 0 0
\(39\) 95.6866i 0.392875i
\(40\) 0 0
\(41\) 186.565i 0.710647i 0.934743 + 0.355324i \(0.115629\pi\)
−0.934743 + 0.355324i \(0.884371\pi\)
\(42\) 0 0
\(43\) −10.9329 + 10.9329i −0.0387734 + 0.0387734i −0.726228 0.687454i \(-0.758728\pi\)
0.687454 + 0.726228i \(0.258728\pi\)
\(44\) 0 0
\(45\) 92.6560 + 92.6560i 0.306941 + 0.306941i
\(46\) 0 0
\(47\) −23.1346 −0.0717983 −0.0358992 0.999355i \(-0.511430\pi\)
−0.0358992 + 0.999355i \(0.511430\pi\)
\(48\) 0 0
\(49\) −735.263 −2.14362
\(50\) 0 0
\(51\) −106.371 106.371i −0.292058 0.292058i
\(52\) 0 0
\(53\) 134.664 134.664i 0.349011 0.349011i −0.510730 0.859741i \(-0.670625\pi\)
0.859741 + 0.510730i \(0.170625\pi\)
\(54\) 0 0
\(55\) 375.207i 0.919870i
\(56\) 0 0
\(57\) 28.3825i 0.0659536i
\(58\) 0 0
\(59\) −220.943 + 220.943i −0.487531 + 0.487531i −0.907526 0.419995i \(-0.862032\pi\)
0.419995 + 0.907526i \(0.362032\pi\)
\(60\) 0 0
\(61\) −453.845 453.845i −0.952604 0.952604i 0.0463225 0.998927i \(-0.485250\pi\)
−0.998927 + 0.0463225i \(0.985250\pi\)
\(62\) 0 0
\(63\) −295.532 −0.591009
\(64\) 0 0
\(65\) 464.383 0.886147
\(66\) 0 0
\(67\) 184.273 + 184.273i 0.336007 + 0.336007i 0.854862 0.518855i \(-0.173642\pi\)
−0.518855 + 0.854862i \(0.673642\pi\)
\(68\) 0 0
\(69\) −396.444 + 396.444i −0.691685 + 0.691685i
\(70\) 0 0
\(71\) 18.8163i 0.0314519i −0.999876 0.0157259i \(-0.994994\pi\)
0.999876 0.0157259i \(-0.00500593\pi\)
\(72\) 0 0
\(73\) 828.683i 1.32863i 0.747453 + 0.664315i \(0.231277\pi\)
−0.747453 + 0.664315i \(0.768723\pi\)
\(74\) 0 0
\(75\) −184.510 + 184.510i −0.284071 + 0.284071i
\(76\) 0 0
\(77\) 598.373 + 598.373i 0.885596 + 0.885596i
\(78\) 0 0
\(79\) −1048.37 −1.49304 −0.746522 0.665361i \(-0.768278\pi\)
−0.746522 + 0.665361i \(0.768278\pi\)
\(80\) 0 0
\(81\) −81.0000 −0.111111
\(82\) 0 0
\(83\) 173.404 + 173.404i 0.229320 + 0.229320i 0.812409 0.583088i \(-0.198156\pi\)
−0.583088 + 0.812409i \(0.698156\pi\)
\(84\) 0 0
\(85\) 516.238 516.238i 0.658751 0.658751i
\(86\) 0 0
\(87\) 502.041i 0.618672i
\(88\) 0 0
\(89\) 335.168i 0.399188i −0.979879 0.199594i \(-0.936038\pi\)
0.979879 0.199594i \(-0.0639623\pi\)
\(90\) 0 0
\(91\) −740.589 + 740.589i −0.853130 + 0.853130i
\(92\) 0 0
\(93\) −530.564 530.564i −0.591579 0.591579i
\(94\) 0 0
\(95\) 137.745 0.148761
\(96\) 0 0
\(97\) −687.122 −0.719244 −0.359622 0.933098i \(-0.617094\pi\)
−0.359622 + 0.933098i \(0.617094\pi\)
\(98\) 0 0
\(99\) 164.003 + 164.003i 0.166494 + 0.166494i
\(100\) 0 0
\(101\) 51.6403 51.6403i 0.0508752 0.0508752i −0.681211 0.732087i \(-0.738547\pi\)
0.732087 + 0.681211i \(0.238547\pi\)
\(102\) 0 0
\(103\) 116.260i 0.111218i 0.998453 + 0.0556089i \(0.0177100\pi\)
−0.998453 + 0.0556089i \(0.982290\pi\)
\(104\) 0 0
\(105\) 1434.27i 1.33305i
\(106\) 0 0
\(107\) 330.891 330.891i 0.298958 0.298958i −0.541648 0.840605i \(-0.682199\pi\)
0.840605 + 0.541648i \(0.182199\pi\)
\(108\) 0 0
\(109\) 508.212 + 508.212i 0.446586 + 0.446586i 0.894218 0.447632i \(-0.147732\pi\)
−0.447632 + 0.894218i \(0.647732\pi\)
\(110\) 0 0
\(111\) −843.916 −0.721630
\(112\) 0 0
\(113\) −1947.12 −1.62097 −0.810486 0.585758i \(-0.800797\pi\)
−0.810486 + 0.585758i \(0.800797\pi\)
\(114\) 0 0
\(115\) −1924.01 1924.01i −1.56013 1.56013i
\(116\) 0 0
\(117\) −202.982 + 202.982i −0.160390 + 0.160390i
\(118\) 0 0
\(119\) 1646.57i 1.26841i
\(120\) 0 0
\(121\) 666.876i 0.501034i
\(122\) 0 0
\(123\) 395.764 395.764i 0.290121 0.290121i
\(124\) 0 0
\(125\) 391.433 + 391.433i 0.280087 + 0.280087i
\(126\) 0 0
\(127\) 2298.87 1.60623 0.803117 0.595821i \(-0.203173\pi\)
0.803117 + 0.595821i \(0.203173\pi\)
\(128\) 0 0
\(129\) 46.3845 0.0316583
\(130\) 0 0
\(131\) 916.347 + 916.347i 0.611157 + 0.611157i 0.943248 0.332090i \(-0.107754\pi\)
−0.332090 + 0.943248i \(0.607754\pi\)
\(132\) 0 0
\(133\) −219.673 + 219.673i −0.143219 + 0.143219i
\(134\) 0 0
\(135\) 393.106i 0.250616i
\(136\) 0 0
\(137\) 867.840i 0.541201i 0.962692 + 0.270601i \(0.0872223\pi\)
−0.962692 + 0.270601i \(0.912778\pi\)
\(138\) 0 0
\(139\) 241.394 241.394i 0.147300 0.147300i −0.629611 0.776911i \(-0.716786\pi\)
0.776911 + 0.629611i \(0.216786\pi\)
\(140\) 0 0
\(141\) 49.0758 + 49.0758i 0.0293115 + 0.0293115i
\(142\) 0 0
\(143\) 821.967 0.480674
\(144\) 0 0
\(145\) 2436.49 1.39544
\(146\) 0 0
\(147\) 1559.73 + 1559.73i 0.875130 + 0.875130i
\(148\) 0 0
\(149\) −1733.18 + 1733.18i −0.952939 + 0.952939i −0.998941 0.0460022i \(-0.985352\pi\)
0.0460022 + 0.998941i \(0.485352\pi\)
\(150\) 0 0
\(151\) 1719.99i 0.926959i 0.886108 + 0.463479i \(0.153399\pi\)
−0.886108 + 0.463479i \(0.846601\pi\)
\(152\) 0 0
\(153\) 451.296i 0.238465i
\(154\) 0 0
\(155\) 2574.91 2574.91i 1.33433 1.33433i
\(156\) 0 0
\(157\) −1613.85 1613.85i −0.820377 0.820377i 0.165785 0.986162i \(-0.446984\pi\)
−0.986162 + 0.165785i \(0.946984\pi\)
\(158\) 0 0
\(159\) −571.332 −0.284966
\(160\) 0 0
\(161\) 6136.74 3.00400
\(162\) 0 0
\(163\) −2582.38 2582.38i −1.24090 1.24090i −0.959626 0.281278i \(-0.909242\pi\)
−0.281278 0.959626i \(-0.590758\pi\)
\(164\) 0 0
\(165\) −795.934 + 795.934i −0.375536 + 0.375536i
\(166\) 0 0
\(167\) 1938.49i 0.898233i −0.893473 0.449117i \(-0.851739\pi\)
0.893473 0.449117i \(-0.148261\pi\)
\(168\) 0 0
\(169\) 1179.68i 0.536948i
\(170\) 0 0
\(171\) −60.2084 + 60.2084i −0.0269254 + 0.0269254i
\(172\) 0 0
\(173\) −2044.47 2044.47i −0.898487 0.898487i 0.0968155 0.995302i \(-0.469134\pi\)
−0.995302 + 0.0968155i \(0.969134\pi\)
\(174\) 0 0
\(175\) 2856.11 1.23373
\(176\) 0 0
\(177\) 937.383 0.398068
\(178\) 0 0
\(179\) 676.126 + 676.126i 0.282324 + 0.282324i 0.834035 0.551711i \(-0.186025\pi\)
−0.551711 + 0.834035i \(0.686025\pi\)
\(180\) 0 0
\(181\) 1298.63 1298.63i 0.533295 0.533295i −0.388257 0.921551i \(-0.626923\pi\)
0.921551 + 0.388257i \(0.126923\pi\)
\(182\) 0 0
\(183\) 1925.50i 0.777798i
\(184\) 0 0
\(185\) 4095.66i 1.62767i
\(186\) 0 0
\(187\) 913.752 913.752i 0.357327 0.357327i
\(188\) 0 0
\(189\) 626.918 + 626.918i 0.241278 + 0.241278i
\(190\) 0 0
\(191\) −2290.42 −0.867692 −0.433846 0.900987i \(-0.642844\pi\)
−0.433846 + 0.900987i \(0.642844\pi\)
\(192\) 0 0
\(193\) 128.763 0.0480235 0.0240117 0.999712i \(-0.492356\pi\)
0.0240117 + 0.999712i \(0.492356\pi\)
\(194\) 0 0
\(195\) −985.104 985.104i −0.361768 0.361768i
\(196\) 0 0
\(197\) 725.669 725.669i 0.262446 0.262446i −0.563601 0.826047i \(-0.690585\pi\)
0.826047 + 0.563601i \(0.190585\pi\)
\(198\) 0 0
\(199\) 2779.71i 0.990192i 0.868838 + 0.495096i \(0.164867\pi\)
−0.868838 + 0.495096i \(0.835133\pi\)
\(200\) 0 0
\(201\) 781.802i 0.274349i
\(202\) 0 0
\(203\) −3885.66 + 3885.66i −1.34345 + 1.34345i
\(204\) 0 0
\(205\) 1920.71 + 1920.71i 0.654381 + 0.654381i
\(206\) 0 0
\(207\) 1681.97 0.564758
\(208\) 0 0
\(209\) 243.811 0.0806928
\(210\) 0 0
\(211\) −691.983 691.983i −0.225773 0.225773i 0.585151 0.810924i \(-0.301035\pi\)
−0.810924 + 0.585151i \(0.801035\pi\)
\(212\) 0 0
\(213\) −39.9154 + 39.9154i −0.0128402 + 0.0128402i
\(214\) 0 0
\(215\) 225.111i 0.0714068i
\(216\) 0 0
\(217\) 8212.84i 2.56924i
\(218\) 0 0
\(219\) 1757.90 1757.90i 0.542411 0.542411i
\(220\) 0 0
\(221\) 1130.92 + 1130.92i 0.344227 + 0.344227i
\(222\) 0 0
\(223\) 2188.31 0.657130 0.328565 0.944481i \(-0.393435\pi\)
0.328565 + 0.944481i \(0.393435\pi\)
\(224\) 0 0
\(225\) 782.809 0.231943
\(226\) 0 0
\(227\) −3063.77 3063.77i −0.895814 0.895814i 0.0992483 0.995063i \(-0.468356\pi\)
−0.995063 + 0.0992483i \(0.968356\pi\)
\(228\) 0 0
\(229\) 3654.19 3654.19i 1.05448 1.05448i 0.0560514 0.998428i \(-0.482149\pi\)
0.998428 0.0560514i \(-0.0178511\pi\)
\(230\) 0 0
\(231\) 2538.68i 0.723086i
\(232\) 0 0
\(233\) 4142.40i 1.16471i −0.812935 0.582355i \(-0.802131\pi\)
0.812935 0.582355i \(-0.197869\pi\)
\(234\) 0 0
\(235\) −238.173 + 238.173i −0.0661135 + 0.0661135i
\(236\) 0 0
\(237\) 2223.92 + 2223.92i 0.609533 + 0.609533i
\(238\) 0 0
\(239\) −3081.29 −0.833942 −0.416971 0.908920i \(-0.636908\pi\)
−0.416971 + 0.908920i \(0.636908\pi\)
\(240\) 0 0
\(241\) −5328.92 −1.42434 −0.712170 0.702007i \(-0.752287\pi\)
−0.712170 + 0.702007i \(0.752287\pi\)
\(242\) 0 0
\(243\) 171.827 + 171.827i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −7569.61 + 7569.61i −1.97390 + 1.97390i
\(246\) 0 0
\(247\) 301.758i 0.0777345i
\(248\) 0 0
\(249\) 735.692i 0.187239i
\(250\) 0 0
\(251\) −360.857 + 360.857i −0.0907455 + 0.0907455i −0.751022 0.660277i \(-0.770439\pi\)
0.660277 + 0.751022i \(0.270439\pi\)
\(252\) 0 0
\(253\) −3405.53 3405.53i −0.846261 0.846261i
\(254\) 0 0
\(255\) −2190.21 −0.537868
\(256\) 0 0
\(257\) −4829.14 −1.17211 −0.586057 0.810270i \(-0.699321\pi\)
−0.586057 + 0.810270i \(0.699321\pi\)
\(258\) 0 0
\(259\) 6531.68 + 6531.68i 1.56702 + 1.56702i
\(260\) 0 0
\(261\) −1064.99 + 1064.99i −0.252572 + 0.252572i
\(262\) 0 0
\(263\) 2949.69i 0.691581i −0.938312 0.345791i \(-0.887611\pi\)
0.938312 0.345791i \(-0.112389\pi\)
\(264\) 0 0
\(265\) 2772.77i 0.642754i
\(266\) 0 0
\(267\) −710.999 + 710.999i −0.162968 + 0.162968i
\(268\) 0 0
\(269\) −2262.88 2262.88i −0.512900 0.512900i 0.402514 0.915414i \(-0.368137\pi\)
−0.915414 + 0.402514i \(0.868137\pi\)
\(270\) 0 0
\(271\) −1330.31 −0.298194 −0.149097 0.988823i \(-0.547637\pi\)
−0.149097 + 0.988823i \(0.547637\pi\)
\(272\) 0 0
\(273\) 3142.05 0.696577
\(274\) 0 0
\(275\) −1584.98 1584.98i −0.347555 0.347555i
\(276\) 0 0
\(277\) −3226.46 + 3226.46i −0.699853 + 0.699853i −0.964379 0.264525i \(-0.914785\pi\)
0.264525 + 0.964379i \(0.414785\pi\)
\(278\) 0 0
\(279\) 2250.99i 0.483023i
\(280\) 0 0
\(281\) 6371.42i 1.35262i 0.736615 + 0.676312i \(0.236423\pi\)
−0.736615 + 0.676312i \(0.763577\pi\)
\(282\) 0 0
\(283\) −2438.64 + 2438.64i −0.512234 + 0.512234i −0.915210 0.402976i \(-0.867976\pi\)
0.402976 + 0.915210i \(0.367976\pi\)
\(284\) 0 0
\(285\) −292.201 292.201i −0.0607316 0.0607316i
\(286\) 0 0
\(287\) −6126.22 −1.26000
\(288\) 0 0
\(289\) −2398.58 −0.488212
\(290\) 0 0
\(291\) 1457.61 + 1457.61i 0.293630 + 0.293630i
\(292\) 0 0
\(293\) 6920.93 6920.93i 1.37995 1.37995i 0.535265 0.844684i \(-0.320212\pi\)
0.844684 0.535265i \(-0.179788\pi\)
\(294\) 0 0
\(295\) 4549.27i 0.897860i
\(296\) 0 0
\(297\) 695.806i 0.135942i
\(298\) 0 0
\(299\) 4214.93 4214.93i 0.815237 0.815237i
\(300\) 0 0
\(301\) −359.003 359.003i −0.0687462 0.0687462i
\(302\) 0 0
\(303\) −219.091 −0.0415394
\(304\) 0 0
\(305\) −9344.76 −1.75436
\(306\) 0 0
\(307\) −2964.65 2964.65i −0.551146 0.551146i 0.375626 0.926771i \(-0.377428\pi\)
−0.926771 + 0.375626i \(0.877428\pi\)
\(308\) 0 0
\(309\) 246.625 246.625i 0.0454045 0.0454045i
\(310\) 0 0
\(311\) 3503.10i 0.638722i −0.947633 0.319361i \(-0.896532\pi\)
0.947633 0.319361i \(-0.103468\pi\)
\(312\) 0 0
\(313\) 119.690i 0.0216144i −0.999942 0.0108072i \(-0.996560\pi\)
0.999942 0.0108072i \(-0.00344010\pi\)
\(314\) 0 0
\(315\) −3042.54 + 3042.54i −0.544215 + 0.544215i
\(316\) 0 0
\(317\) −1793.71 1793.71i −0.317806 0.317806i 0.530118 0.847924i \(-0.322148\pi\)
−0.847924 + 0.530118i \(0.822148\pi\)
\(318\) 0 0
\(319\) 4312.63 0.756931
\(320\) 0 0
\(321\) −1403.85 −0.244098
\(322\) 0 0
\(323\) 335.454 + 335.454i 0.0577869 + 0.0577869i
\(324\) 0 0
\(325\) 1961.68 1961.68i 0.334814 0.334814i
\(326\) 0 0
\(327\) 2156.16i 0.364636i
\(328\) 0 0
\(329\) 759.667i 0.127300i
\(330\) 0 0
\(331\) 1546.84 1546.84i 0.256864 0.256864i −0.566913 0.823778i \(-0.691862\pi\)
0.823778 + 0.566913i \(0.191862\pi\)
\(332\) 0 0
\(333\) 1790.22 + 1790.22i 0.294604 + 0.294604i
\(334\) 0 0
\(335\) 3794.21 0.618806
\(336\) 0 0
\(337\) 2433.56 0.393367 0.196683 0.980467i \(-0.436983\pi\)
0.196683 + 0.980467i \(0.436983\pi\)
\(338\) 0 0
\(339\) 4130.47 + 4130.47i 0.661759 + 0.661759i
\(340\) 0 0
\(341\) 4557.65 4557.65i 0.723784 0.723784i
\(342\) 0 0
\(343\) 12880.7i 2.02767i
\(344\) 0 0
\(345\) 8162.88i 1.27384i
\(346\) 0 0
\(347\) −1171.50 + 1171.50i −0.181237 + 0.181237i −0.791895 0.610658i \(-0.790905\pi\)
0.610658 + 0.791895i \(0.290905\pi\)
\(348\) 0 0
\(349\) 7672.16 + 7672.16i 1.17674 + 1.17674i 0.980571 + 0.196166i \(0.0628492\pi\)
0.196166 + 0.980571i \(0.437151\pi\)
\(350\) 0 0
\(351\) 861.179 0.130958
\(352\) 0 0
\(353\) −2040.98 −0.307734 −0.153867 0.988092i \(-0.549173\pi\)
−0.153867 + 0.988092i \(0.549173\pi\)
\(354\) 0 0
\(355\) −193.716 193.716i −0.0289616 0.0289616i
\(356\) 0 0
\(357\) 3492.91 3492.91i 0.517827 0.517827i
\(358\) 0 0
\(359\) 4623.13i 0.679664i 0.940486 + 0.339832i \(0.110370\pi\)
−0.940486 + 0.339832i \(0.889630\pi\)
\(360\) 0 0
\(361\) 6769.49i 0.986950i
\(362\) 0 0
\(363\) 1414.66 1414.66i 0.204546 0.204546i
\(364\) 0 0
\(365\) 8531.38 + 8531.38i 1.22343 + 1.22343i
\(366\) 0 0
\(367\) −10876.3 −1.54697 −0.773487 0.633813i \(-0.781489\pi\)
−0.773487 + 0.633813i \(0.781489\pi\)
\(368\) 0 0
\(369\) −1679.08 −0.236882
\(370\) 0 0
\(371\) 4421.96 + 4421.96i 0.618805 + 0.618805i
\(372\) 0 0
\(373\) −621.022 + 621.022i −0.0862073 + 0.0862073i −0.748895 0.662688i \(-0.769415\pi\)
0.662688 + 0.748895i \(0.269415\pi\)
\(374\) 0 0
\(375\) 1660.71i 0.228690i
\(376\) 0 0
\(377\) 5337.62i 0.729181i
\(378\) 0 0
\(379\) −8642.89 + 8642.89i −1.17139 + 1.17139i −0.189507 + 0.981879i \(0.560689\pi\)
−0.981879 + 0.189507i \(0.939311\pi\)
\(380\) 0 0
\(381\) −4876.64 4876.64i −0.655742 0.655742i
\(382\) 0 0
\(383\) 3607.79 0.481330 0.240665 0.970608i \(-0.422635\pi\)
0.240665 + 0.970608i \(0.422635\pi\)
\(384\) 0 0
\(385\) 12320.6 1.63095
\(386\) 0 0
\(387\) −98.3963 98.3963i −0.0129245 0.0129245i
\(388\) 0 0
\(389\) 3437.52 3437.52i 0.448045 0.448045i −0.446659 0.894704i \(-0.647386\pi\)
0.894704 + 0.446659i \(0.147386\pi\)
\(390\) 0 0
\(391\) 9371.18i 1.21207i
\(392\) 0 0
\(393\) 3887.73i 0.499008i
\(394\) 0 0
\(395\) −10793.1 + 10793.1i −1.37483 + 1.37483i
\(396\) 0 0
\(397\) 1579.30 + 1579.30i 0.199655 + 0.199655i 0.799852 0.600197i \(-0.204911\pi\)
−0.600197 + 0.799852i \(0.704911\pi\)
\(398\) 0 0
\(399\) 931.994 0.116937
\(400\) 0 0
\(401\) 2316.77 0.288513 0.144257 0.989540i \(-0.453921\pi\)
0.144257 + 0.989540i \(0.453921\pi\)
\(402\) 0 0
\(403\) 5640.87 + 5640.87i 0.697250 + 0.697250i
\(404\) 0 0
\(405\) −833.904 + 833.904i −0.102314 + 0.102314i
\(406\) 0 0
\(407\) 7249.40i 0.882898i
\(408\) 0 0
\(409\) 669.173i 0.0809009i 0.999182 + 0.0404504i \(0.0128793\pi\)
−0.999182 + 0.0404504i \(0.987121\pi\)
\(410\) 0 0
\(411\) 1840.97 1840.97i 0.220945 0.220945i
\(412\) 0 0
\(413\) −7255.09 7255.09i −0.864406 0.864406i
\(414\) 0 0
\(415\) 3570.44 0.422327
\(416\) 0 0
\(417\) −1024.15 −0.120270
\(418\) 0 0
\(419\) 3656.45 + 3656.45i 0.426323 + 0.426323i 0.887374 0.461051i \(-0.152527\pi\)
−0.461051 + 0.887374i \(0.652527\pi\)
\(420\) 0 0
\(421\) −837.867 + 837.867i −0.0969956 + 0.0969956i −0.753939 0.656944i \(-0.771849\pi\)
0.656944 + 0.753939i \(0.271849\pi\)
\(422\) 0 0
\(423\) 208.211i 0.0239328i
\(424\) 0 0
\(425\) 4361.46i 0.497793i
\(426\) 0 0
\(427\) 14902.9 14902.9i 1.68899 1.68899i
\(428\) 0 0
\(429\) −1743.66 1743.66i −0.196234 0.196234i
\(430\) 0 0
\(431\) 6690.20 0.747693 0.373846 0.927491i \(-0.378039\pi\)
0.373846 + 0.927491i \(0.378039\pi\)
\(432\) 0 0
\(433\) −7836.97 −0.869794 −0.434897 0.900480i \(-0.643215\pi\)
−0.434897 + 0.900480i \(0.643215\pi\)
\(434\) 0 0
\(435\) −5168.57 5168.57i −0.569687 0.569687i
\(436\) 0 0
\(437\) 1250.23 1250.23i 0.136857 0.136857i
\(438\) 0 0
\(439\) 6041.06i 0.656775i 0.944543 + 0.328387i \(0.106505\pi\)
−0.944543 + 0.328387i \(0.893495\pi\)
\(440\) 0 0
\(441\) 6617.36i 0.714541i
\(442\) 0 0
\(443\) 8281.65 8281.65i 0.888201 0.888201i −0.106149 0.994350i \(-0.533852\pi\)
0.994350 + 0.106149i \(0.0338521\pi\)
\(444\) 0 0
\(445\) −3450.59 3450.59i −0.367581 0.367581i
\(446\) 0 0
\(447\) 7353.28 0.778072
\(448\) 0 0
\(449\) 15502.7 1.62944 0.814718 0.579858i \(-0.196892\pi\)
0.814718 + 0.579858i \(0.196892\pi\)
\(450\) 0 0
\(451\) 3399.69 + 3399.69i 0.354956 + 0.354956i
\(452\) 0 0
\(453\) 3648.65 3648.65i 0.378429 0.378429i
\(454\) 0 0
\(455\) 15248.9i 1.57116i
\(456\) 0 0
\(457\) 4866.06i 0.498085i 0.968493 + 0.249043i \(0.0801159\pi\)
−0.968493 + 0.249043i \(0.919884\pi\)
\(458\) 0 0
\(459\) 957.343 957.343i 0.0973528 0.0973528i
\(460\) 0 0
\(461\) 7449.82 + 7449.82i 0.752653 + 0.752653i 0.974974 0.222321i \(-0.0713633\pi\)
−0.222321 + 0.974974i \(0.571363\pi\)
\(462\) 0 0
\(463\) −6924.56 −0.695058 −0.347529 0.937669i \(-0.612979\pi\)
−0.347529 + 0.937669i \(0.612979\pi\)
\(464\) 0 0
\(465\) −10924.4 −1.08948
\(466\) 0 0
\(467\) −4040.04 4040.04i −0.400323 0.400323i 0.478024 0.878347i \(-0.341353\pi\)
−0.878347 + 0.478024i \(0.841353\pi\)
\(468\) 0 0
\(469\) −6050.94 + 6050.94i −0.595750 + 0.595750i
\(470\) 0 0
\(471\) 6846.98i 0.669835i
\(472\) 0 0
\(473\) 398.452i 0.0387333i
\(474\) 0 0
\(475\) 581.872 581.872i 0.0562066 0.0562066i
\(476\) 0 0
\(477\) 1211.98 + 1211.98i 0.116337 + 0.116337i
\(478\) 0 0
\(479\) 9957.56 0.949839 0.474919 0.880029i \(-0.342477\pi\)
0.474919 + 0.880029i \(0.342477\pi\)
\(480\) 0 0
\(481\) 8972.38 0.850531
\(482\) 0 0
\(483\) −13018.0 13018.0i −1.22638 1.22638i
\(484\) 0 0
\(485\) −7074.00 + 7074.00i −0.662296 + 0.662296i
\(486\) 0 0
\(487\) 7671.90i 0.713854i 0.934132 + 0.356927i \(0.116176\pi\)
−0.934132 + 0.356927i \(0.883824\pi\)
\(488\) 0 0
\(489\) 10956.1i 1.01319i
\(490\) 0 0
\(491\) 13794.0 13794.0i 1.26785 1.26785i 0.320656 0.947196i \(-0.396097\pi\)
0.947196 0.320656i \(-0.103903\pi\)
\(492\) 0 0
\(493\) 5933.64 + 5933.64i 0.542065 + 0.542065i
\(494\) 0 0
\(495\) 3376.86 0.306623
\(496\) 0 0
\(497\) 617.869 0.0557650
\(498\) 0 0
\(499\) −2138.01 2138.01i −0.191805 0.191805i 0.604671 0.796476i \(-0.293305\pi\)
−0.796476 + 0.604671i \(0.793305\pi\)
\(500\) 0 0
\(501\) −4112.16 + 4112.16i −0.366702 + 0.366702i
\(502\) 0 0
\(503\) 1414.75i 0.125409i 0.998032 + 0.0627045i \(0.0199726\pi\)
−0.998032 + 0.0627045i \(0.980027\pi\)
\(504\) 0 0
\(505\) 1063.28i 0.0936942i
\(506\) 0 0
\(507\) −2502.47 + 2502.47i −0.219208 + 0.219208i
\(508\) 0 0
\(509\) −10526.7 10526.7i −0.916677 0.916677i 0.0801087 0.996786i \(-0.474473\pi\)
−0.996786 + 0.0801087i \(0.974473\pi\)
\(510\) 0 0
\(511\) −27211.4 −2.35570
\(512\) 0 0
\(513\) 255.443 0.0219845
\(514\) 0 0
\(515\) 1196.91 + 1196.91i 0.102412 + 0.102412i
\(516\) 0 0
\(517\) −421.571 + 421.571i −0.0358620 + 0.0358620i
\(518\) 0 0
\(519\) 8673.95i 0.733611i
\(520\) 0 0
\(521\) 2004.13i 0.168527i −0.996444 0.0842636i \(-0.973146\pi\)
0.996444 0.0842636i \(-0.0268538\pi\)
\(522\) 0 0
\(523\) −1006.02 + 1006.02i −0.0841110 + 0.0841110i −0.747911 0.663800i \(-0.768943\pi\)
0.663800 + 0.747911i \(0.268943\pi\)
\(524\) 0 0
\(525\) −6058.73 6058.73i −0.503666 0.503666i
\(526\) 0 0
\(527\) 12541.5 1.03665
\(528\) 0 0
\(529\) −22759.2 −1.87057
\(530\) 0 0
\(531\) −1988.49 1988.49i −0.162510 0.162510i
\(532\) 0 0
\(533\) −4207.70 + 4207.70i −0.341943 + 0.341943i
\(534\) 0 0
\(535\) 6813.12i 0.550574i
\(536\) 0 0
\(537\) 2868.56i 0.230517i
\(538\) 0 0
\(539\) −13398.4 + 13398.4i −1.07070 + 1.07070i
\(540\) 0 0
\(541\) −13442.8 13442.8i −1.06830 1.06830i −0.997489 0.0708153i \(-0.977440\pi\)
−0.0708153 0.997489i \(-0.522560\pi\)
\(542\) 0 0
\(543\) −5509.61 −0.435433
\(544\) 0 0
\(545\) 10464.2 0.822454
\(546\) 0 0
\(547\) −10996.4 10996.4i −0.859546 0.859546i 0.131739 0.991284i \(-0.457944\pi\)
−0.991284 + 0.131739i \(0.957944\pi\)
\(548\) 0 0
\(549\) 4084.60 4084.60i 0.317535 0.317535i
\(550\) 0 0
\(551\) 1583.24i 0.122411i
\(552\) 0 0
\(553\) 34425.1i 2.64721i
\(554\) 0 0
\(555\) −8688.21 + 8688.21i −0.664494 + 0.664494i
\(556\) 0 0
\(557\) 7583.67 + 7583.67i 0.576895 + 0.576895i 0.934046 0.357151i \(-0.116252\pi\)
−0.357151 + 0.934046i \(0.616252\pi\)
\(558\) 0 0
\(559\) −493.152 −0.0373133
\(560\) 0 0
\(561\) −3876.72 −0.291756
\(562\) 0 0
\(563\) −7263.00 7263.00i −0.543693 0.543693i 0.380917 0.924609i \(-0.375608\pi\)
−0.924609 + 0.380917i \(0.875608\pi\)
\(564\) 0 0
\(565\) −20045.8 + 20045.8i −1.49263 + 1.49263i
\(566\) 0 0
\(567\) 2659.79i 0.197003i
\(568\) 0 0
\(569\) 26176.3i 1.92859i 0.264835 + 0.964294i \(0.414682\pi\)
−0.264835 + 0.964294i \(0.585318\pi\)
\(570\) 0 0
\(571\) 3443.57 3443.57i 0.252380 0.252380i −0.569566 0.821946i \(-0.692889\pi\)
0.821946 + 0.569566i \(0.192889\pi\)
\(572\) 0 0
\(573\) 4858.72 + 4858.72i 0.354234 + 0.354234i
\(574\) 0 0
\(575\) −16255.1 −1.17893
\(576\) 0 0
\(577\) 20621.2 1.48782 0.743909 0.668281i \(-0.232970\pi\)
0.743909 + 0.668281i \(0.232970\pi\)
\(578\) 0 0
\(579\) −273.147 273.147i −0.0196055 0.0196055i
\(580\) 0 0
\(581\) −5694.06 + 5694.06i −0.406591 + 0.406591i
\(582\) 0 0
\(583\) 4907.86i 0.348650i
\(584\) 0 0
\(585\) 4179.44i 0.295382i
\(586\) 0 0
\(587\) −16989.3 + 16989.3i −1.19459 + 1.19459i −0.218823 + 0.975765i \(0.570222\pi\)
−0.975765 + 0.218823i \(0.929778\pi\)
\(588\) 0 0
\(589\) 1673.19 + 1673.19i 0.117050 + 0.117050i
\(590\) 0 0
\(591\) −3078.75 −0.214286
\(592\) 0 0
\(593\) 2210.09 0.153048 0.0765239 0.997068i \(-0.475618\pi\)
0.0765239 + 0.997068i \(0.475618\pi\)
\(594\) 0 0
\(595\) 16951.7 + 16951.7i 1.16798 + 1.16798i
\(596\) 0 0
\(597\) 5896.65 5896.65i 0.404244 0.404244i
\(598\) 0 0
\(599\) 16545.3i 1.12859i 0.825574 + 0.564294i \(0.190852\pi\)
−0.825574 + 0.564294i \(0.809148\pi\)
\(600\) 0 0
\(601\) 19182.8i 1.30197i −0.759092 0.650983i \(-0.774357\pi\)
0.759092 0.650983i \(-0.225643\pi\)
\(602\) 0 0
\(603\) −1658.45 + 1658.45i −0.112002 + 0.112002i
\(604\) 0 0
\(605\) 6865.57 + 6865.57i 0.461364 + 0.461364i
\(606\) 0 0
\(607\) 8375.82 0.560073 0.280036 0.959989i \(-0.409653\pi\)
0.280036 + 0.959989i \(0.409653\pi\)
\(608\) 0 0
\(609\) 16485.5 1.09692
\(610\) 0 0
\(611\) −521.766 521.766i −0.0345473 0.0345473i
\(612\) 0 0
\(613\) −9161.47 + 9161.47i −0.603635 + 0.603635i −0.941275 0.337640i \(-0.890371\pi\)
0.337640 + 0.941275i \(0.390371\pi\)
\(614\) 0 0
\(615\) 8148.87i 0.534299i
\(616\) 0 0
\(617\) 7849.67i 0.512181i 0.966653 + 0.256091i \(0.0824346\pi\)
−0.966653 + 0.256091i \(0.917565\pi\)
\(618\) 0 0
\(619\) −19459.4 + 19459.4i −1.26355 + 1.26355i −0.314190 + 0.949360i \(0.601733\pi\)
−0.949360 + 0.314190i \(0.898267\pi\)
\(620\) 0 0
\(621\) −3568.00 3568.00i −0.230562 0.230562i
\(622\) 0 0
\(623\) 11005.9 0.707771
\(624\) 0 0
\(625\) 18932.0 1.21165
\(626\) 0 0
\(627\) −517.202 517.202i −0.0329427 0.0329427i
\(628\) 0 0
\(629\) 9974.28 9974.28i 0.632274 0.632274i
\(630\) 0 0
\(631\) 27115.0i 1.71067i 0.518078 + 0.855334i \(0.326648\pi\)
−0.518078 + 0.855334i \(0.673352\pi\)
\(632\) 0 0
\(633\) 2935.83i 0.184343i
\(634\) 0 0
\(635\) 23667.1 23667.1i 1.47906 1.47906i
\(636\) 0 0
\(637\) −16582.8 16582.8i −1.03145 1.03145i
\(638\) 0 0
\(639\) 169.347 0.0104840
\(640\) 0 0
\(641\) −22843.0 −1.40755 −0.703777 0.710421i \(-0.748505\pi\)
−0.703777 + 0.710421i \(0.748505\pi\)
\(642\) 0 0
\(643\) −10235.4 10235.4i −0.627754 0.627754i 0.319749 0.947502i \(-0.396402\pi\)
−0.947502 + 0.319749i \(0.896402\pi\)
\(644\) 0 0
\(645\) 477.533 477.533i 0.0291517 0.0291517i
\(646\) 0 0
\(647\) 3376.19i 0.205149i −0.994725 0.102575i \(-0.967292\pi\)
0.994725 0.102575i \(-0.0327080\pi\)
\(648\) 0 0
\(649\) 8052.30i 0.487027i
\(650\) 0 0
\(651\) 17422.1 17422.1i 1.04889 1.04889i
\(652\) 0 0
\(653\) 2226.27 + 2226.27i 0.133416 + 0.133416i 0.770661 0.637245i \(-0.219926\pi\)
−0.637245 + 0.770661i \(0.719926\pi\)
\(654\) 0 0
\(655\) 18867.8 1.12554
\(656\) 0 0
\(657\) −7458.14 −0.442877
\(658\) 0 0
\(659\) −18279.8 18279.8i −1.08055 1.08055i −0.996458 0.0840908i \(-0.973201\pi\)
−0.0840908 0.996458i \(-0.526799\pi\)
\(660\) 0 0
\(661\) 2202.71 2202.71i 0.129615 0.129615i −0.639323 0.768938i \(-0.720785\pi\)
0.768938 + 0.639323i \(0.220785\pi\)
\(662\) 0 0
\(663\) 4798.10i 0.281060i
\(664\) 0 0
\(665\) 4523.12i 0.263758i
\(666\) 0 0
\(667\) 22114.6 22114.6i 1.28378 1.28378i
\(668\) 0 0
\(669\) −4642.10 4642.10i −0.268272 0.268272i
\(670\) 0 0
\(671\) −16540.4 −0.951619
\(672\) 0 0
\(673\) −9151.57 −0.524171 −0.262086 0.965045i \(-0.584410\pi\)
−0.262086 + 0.965045i \(0.584410\pi\)
\(674\) 0 0
\(675\) −1660.59 1660.59i −0.0946905 0.0946905i
\(676\) 0 0
\(677\) 17555.1 17555.1i 0.996597 0.996597i −0.00339762 0.999994i \(-0.501081\pi\)
0.999994 + 0.00339762i \(0.00108150\pi\)
\(678\) 0 0
\(679\) 22563.0i 1.27524i
\(680\) 0 0
\(681\) 12998.5i 0.731429i
\(682\) 0 0
\(683\) 933.246 933.246i 0.0522836 0.0522836i −0.680482 0.732765i \(-0.738229\pi\)
0.732765 + 0.680482i \(0.238229\pi\)
\(684\) 0 0
\(685\) 8934.52 + 8934.52i 0.498351 + 0.498351i
\(686\) 0 0
\(687\) −15503.4 −0.860979
\(688\) 0 0
\(689\) 6074.31 0.335868
\(690\) 0 0
\(691\) 14135.0 + 14135.0i 0.778175 + 0.778175i 0.979520 0.201345i \(-0.0645313\pi\)
−0.201345 + 0.979520i \(0.564531\pi\)
\(692\) 0 0
\(693\) −5385.35 + 5385.35i −0.295199 + 0.295199i
\(694\) 0 0
\(695\) 4970.35i 0.271275i
\(696\) 0 0
\(697\) 9355.10i 0.508393i
\(698\) 0 0
\(699\) −8787.35 + 8787.35i −0.475491 + 0.475491i
\(700\) 0 0
\(701\) −22882.9 22882.9i −1.23292 1.23292i −0.962839 0.270077i \(-0.912951\pi\)
−0.270077 0.962839i \(-0.587049\pi\)
\(702\) 0 0
\(703\) 2661.38 0.142782
\(704\) 0 0
\(705\) 1010.48 0.0539815
\(706\) 0 0
\(707\) 1695.71 + 1695.71i 0.0902031 + 0.0902031i
\(708\) 0 0
\(709\) −5612.43 + 5612.43i −0.297291 + 0.297291i −0.839952 0.542661i \(-0.817417\pi\)
0.542661 + 0.839952i \(0.317417\pi\)
\(710\) 0 0
\(711\) 9435.30i 0.497681i
\(712\) 0 0
\(713\) 46742.0i 2.45512i
\(714\) 0 0
\(715\) 8462.24 8462.24i 0.442615 0.442615i
\(716\) 0 0
\(717\) 6536.41 + 6536.41i 0.340455 + 0.340455i
\(718\) 0 0
\(719\) 29244.9 1.51690 0.758450 0.651732i \(-0.225957\pi\)
0.758450 + 0.651732i \(0.225957\pi\)
\(720\) 0 0
\(721\) −3817.62 −0.197192
\(722\) 0 0
\(723\) 11304.3 + 11304.3i 0.581484 + 0.581484i
\(724\) 0 0
\(725\) 10292.4 10292.4i 0.527241 0.527241i
\(726\) 0 0
\(727\) 3308.71i 0.168794i 0.996432 + 0.0843971i \(0.0268964\pi\)
−0.996432 + 0.0843971i \(0.973104\pi\)
\(728\) 0 0
\(729\) 729.000i 0.0370370i
\(730\) 0 0
\(731\) −548.220 + 548.220i −0.0277382 + 0.0277382i
\(732\) 0 0
\(733\) 25116.9 + 25116.9i 1.26564 + 1.26564i 0.948318 + 0.317323i \(0.102784\pi\)
0.317323 + 0.948318i \(0.397216\pi\)
\(734\) 0 0
\(735\) 32115.2 1.61168
\(736\) 0 0
\(737\) 6715.84 0.335660
\(738\) 0 0
\(739\) 17503.6 + 17503.6i 0.871286 + 0.871286i 0.992613 0.121327i \(-0.0387150\pi\)
−0.121327 + 0.992613i \(0.538715\pi\)
\(740\) 0 0
\(741\) 640.126 640.126i 0.0317350 0.0317350i
\(742\) 0 0
\(743\) 14568.9i 0.719356i 0.933077 + 0.359678i \(0.117113\pi\)
−0.933077 + 0.359678i \(0.882887\pi\)
\(744\) 0 0
\(745\) 35686.6i 1.75498i
\(746\) 0 0
\(747\) −1560.64 + 1560.64i −0.0764402 + 0.0764402i
\(748\) 0 0
\(749\) 10865.4 + 10865.4i 0.530060 + 0.530060i
\(750\) 0 0
\(751\) −10015.9 −0.486665 −0.243333 0.969943i \(-0.578241\pi\)
−0.243333 + 0.969943i \(0.578241\pi\)
\(752\) 0 0
\(753\) 1530.99 0.0740934
\(754\) 0 0
\(755\) 17707.5 + 17707.5i 0.853565 + 0.853565i
\(756\) 0 0
\(757\) 1632.84 1632.84i 0.0783971 0.0783971i −0.666821 0.745218i \(-0.732345\pi\)
0.745218 + 0.666821i \(0.232345\pi\)
\(758\) 0 0
\(759\) 14448.5i 0.690970i
\(760\) 0 0
\(761\) 5379.15i 0.256234i 0.991759 + 0.128117i \(0.0408933\pi\)
−0.991759 + 0.128117i \(0.959107\pi\)
\(762\) 0 0
\(763\) −16688.1 + 16688.1i −0.791809 + 0.791809i
\(764\) 0 0
\(765\) 4646.14 + 4646.14i 0.219584 + 0.219584i
\(766\) 0 0
\(767\) −9966.11 −0.469172
\(768\) 0 0
\(769\) 1737.59 0.0814812 0.0407406 0.999170i \(-0.487028\pi\)
0.0407406 + 0.999170i \(0.487028\pi\)
\(770\) 0 0
\(771\) 10244.1 + 10244.1i 0.478514 + 0.478514i
\(772\) 0 0
\(773\) −2551.94 + 2551.94i −0.118741 + 0.118741i −0.763980 0.645239i \(-0.776758\pi\)
0.645239 + 0.763980i \(0.276758\pi\)
\(774\) 0 0
\(775\) 21754.3i 1.00831i
\(776\) 0 0
\(777\) 27711.6i 1.27947i
\(778\) 0 0
\(779\) −1248.09 + 1248.09i −0.0574035 + 0.0574035i
\(780\) 0 0
\(781\) −342.881 342.881i −0.0157097 0.0157097i
\(782\) 0 0
\(783\) 4518.37 0.206224
\(784\) 0 0
\(785\) −33229.5 −1.51084
\(786\) 0 0
\(787\) 12908.2 + 12908.2i 0.584658 + 0.584658i 0.936180 0.351522i \(-0.114336\pi\)
−0.351522 + 0.936180i \(0.614336\pi\)
\(788\) 0 0
\(789\) −6257.24 + 6257.24i −0.282337 + 0.282337i
\(790\) 0 0
\(791\) 63937.5i 2.87403i
\(792\) 0 0
\(793\) 20471.6i 0.916732i
\(794\) 0 0
\(795\) −5881.93 + 5881.93i −0.262403 + 0.262403i
\(796\) 0 0
\(797\) 7292.39 + 7292.39i 0.324102 + 0.324102i 0.850339 0.526236i \(-0.176397\pi\)
−0.526236 + 0.850339i \(0.676397\pi\)
\(798\) 0 0
\(799\) −1160.06 −0.0513641
\(800\) 0 0
\(801\) 3016.51 0.133063
\(802\) 0 0
\(803\) 15100.7 + 15100.7i 0.663628 + 0.663628i
\(804\) 0 0
\(805\) 63178.5 63178.5i 2.76615 2.76615i
\(806\) 0 0
\(807\) 9600.59i 0.418781i
\(808\) 0 0
\(809\) 13623.8i 0.592073i 0.955177 + 0.296036i \(0.0956650\pi\)
−0.955177 + 0.296036i \(0.904335\pi\)
\(810\) 0 0
\(811\) −6432.57 + 6432.57i −0.278518 + 0.278518i −0.832517 0.553999i \(-0.813101\pi\)
0.553999 + 0.832517i \(0.313101\pi\)
\(812\) 0 0
\(813\) 2822.01 + 2822.01i 0.121737 + 0.121737i
\(814\) 0 0
\(815\) −53171.7 −2.28531
\(816\) 0 0
\(817\) −146.279 −0.00626394
\(818\) 0 0
\(819\) −6665.30 6665.30i −0.284377 0.284377i
\(820\) 0 0
\(821\) −10383.1 + 10383.1i −0.441380 + 0.441380i −0.892475 0.451096i \(-0.851033\pi\)
0.451096 + 0.892475i \(0.351033\pi\)
\(822\) 0 0
\(823\) 13572.9i 0.574876i −0.957799 0.287438i \(-0.907196\pi\)
0.957799 0.287438i \(-0.0928035\pi\)
\(824\) 0 0
\(825\) 6724.49i 0.283778i
\(826\) 0 0
\(827\) −14405.3 + 14405.3i −0.605708 + 0.605708i −0.941821 0.336114i \(-0.890887\pi\)
0.336114 + 0.941821i \(0.390887\pi\)
\(828\) 0 0
\(829\) 30030.7 + 30030.7i 1.25815 + 1.25815i 0.951975 + 0.306177i \(0.0990500\pi\)
0.306177 + 0.951975i \(0.400950\pi\)
\(830\) 0 0
\(831\) 13688.7 0.571428
\(832\) 0 0
\(833\) −36869.0 −1.53353
\(834\) 0 0
\(835\) −19957.0 19957.0i −0.827114 0.827114i
\(836\) 0 0
\(837\) 4775.07 4775.07i 0.197193 0.197193i
\(838\) 0 0
\(839\) 5825.32i 0.239705i 0.992792 + 0.119852i \(0.0382421\pi\)
−0.992792 + 0.119852i \(0.961758\pi\)
\(840\) 0 0
\(841\) 3616.01i 0.148264i
\(842\) 0 0
\(843\) 13515.8 13515.8i 0.552206 0.552206i
\(844\) 0 0
\(845\) −12144.9 12144.9i −0.494434 0.494434i
\(846\) 0 0
\(847\) −21898.2 −0.888346
\(848\) 0 0
\(849\) 10346.3 0.418237
\(850\) 0 0
\(851\) −37173.9 37173.9i −1.49742 1.49742i
\(852\) 0 0
\(853\) 16206.3 16206.3i 0.650521 0.650521i −0.302598 0.953118i \(-0.597854\pi\)
0.953118 + 0.302598i \(0.0978539\pi\)
\(854\) 0 0
\(855\) 1239.70i 0.0495871i
\(856\) 0 0
\(857\) 2342.64i 0.0933759i −0.998910 0.0466879i \(-0.985133\pi\)
0.998910 0.0466879i \(-0.0148666\pi\)
\(858\) 0 0
\(859\) 12182.8 12182.8i 0.483904 0.483904i −0.422472 0.906376i \(-0.638838\pi\)
0.906376 + 0.422472i \(0.138838\pi\)
\(860\) 0 0
\(861\) 12995.7 + 12995.7i 0.514391 + 0.514391i
\(862\) 0 0
\(863\) 29827.9 1.17654 0.588269 0.808665i \(-0.299810\pi\)
0.588269 + 0.808665i \(0.299810\pi\)
\(864\) 0 0
\(865\) −42096.1 −1.65469
\(866\) 0 0
\(867\) 5088.16 + 5088.16i 0.199312 + 0.199312i
\(868\) 0 0
\(869\) −19103.9 + 19103.9i −0.745750 + 0.745750i
\(870\) 0 0
\(871\) 8312.00i 0.323354i
\(872\) 0 0
\(873\) 6184.10i 0.239748i
\(874\) 0 0
\(875\) −12853.4 + 12853.4i −0.496601 + 0.496601i
\(876\) 0 0
\(877\) −26406.8 26406.8i −1.01675 1.01675i −0.999857 0.0168967i \(-0.994621\pi\)
−0.0168967 0.999857i \(-0.505379\pi\)
\(878\) 0 0
\(879\) −29363.0 −1.12672
\(880\) 0 0
\(881\) 30799.2 1.17781 0.588906 0.808202i \(-0.299559\pi\)
0.588906 + 0.808202i \(0.299559\pi\)
\(882\) 0 0
\(883\) −31934.4 31934.4i −1.21708 1.21708i −0.968651 0.248424i \(-0.920087\pi\)
−0.248424 0.968651i \(-0.579913\pi\)
\(884\) 0 0
\(885\) 9650.46 9650.46i 0.366550 0.366550i
\(886\) 0 0
\(887\) 8071.18i 0.305528i 0.988263 + 0.152764i \(0.0488175\pi\)
−0.988263 + 0.152764i \(0.951183\pi\)
\(888\) 0 0
\(889\) 75487.8i 2.84790i
\(890\) 0 0
\(891\) −1476.03 + 1476.03i −0.0554981 + 0.0554981i
\(892\) 0 0
\(893\) −154.766 154.766i −0.00579960 0.00579960i
\(894\) 0 0
\(895\) 13921.6 0.519941
\(896\) 0 0
\(897\) −17882.4 −0.665638
\(898\) 0 0
\(899\) 29596.1 + 29596.1i 1.09798 + 1.09798i
\(900\) 0 0
\(901\) 6752.60 6752.60i 0.249680 0.249680i
\(902\) 0 0
\(903\) 1523.12i 0.0561311i
\(904\) 0 0
\(905\) 26739.1i 0.982140i
\(906\) 0 0
\(907\) −5166.14 + 5166.14i −0.189128 + 0.189128i −0.795319 0.606191i \(-0.792697\pi\)
0.606191 + 0.795319i \(0.292697\pi\)
\(908\) 0 0
\(909\) 464.762 + 464.762i 0.0169584 + 0.0169584i
\(910\) 0 0
\(911\) −31180.6 −1.13398 −0.566992 0.823723i \(-0.691893\pi\)
−0.566992 + 0.823723i \(0.691893\pi\)
\(912\) 0 0
\(913\) 6319.74 0.229083
\(914\) 0 0
\(915\) 19823.2 + 19823.2i 0.716214 + 0.716214i
\(916\) 0 0
\(917\) −30090.0 + 30090.0i −1.08360 + 1.08360i
\(918\) 0 0
\(919\) 27889.6i 1.00108i 0.865713 + 0.500541i \(0.166866\pi\)
−0.865713 + 0.500541i \(0.833134\pi\)
\(920\) 0 0
\(921\) 12578.0i 0.450009i
\(922\) 0 0
\(923\) 424.374 424.374i 0.0151337 0.0151337i
\(924\) 0 0
\(925\) −17301.2 17301.2i −0.614984 0.614984i
\(926\) 0 0
\(927\) −1046.34 −0.0370726
\(928\) 0 0
\(929\) 17906.3 0.632385 0.316192 0.948695i \(-0.397595\pi\)
0.316192 + 0.948695i \(0.397595\pi\)
\(930\) 0 0
\(931\) −4918.78 4918.78i −0.173154 0.173154i
\(932\) 0 0
\(933\) −7431.19 + 7431.19i −0.260757 + 0.260757i
\(934\) 0 0
\(935\) 18814.4i 0.658070i
\(936\) 0 0
\(937\) 10815.1i 0.377070i −0.982067 0.188535i \(-0.939626\pi\)
0.982067 0.188535i \(-0.0603738\pi\)
\(938\) 0 0
\(939\) −253.901 + 253.901i −0.00882402 + 0.00882402i
\(940\) 0 0
\(941\) −29716.3 29716.3i −1.02946 1.02946i −0.999553 0.0299093i \(-0.990478\pi\)
−0.0299093 0.999553i \(-0.509522\pi\)
\(942\) 0 0
\(943\) 34866.3 1.20403
\(944\) 0 0
\(945\) 12908.4 0.444349
\(946\) 0 0
\(947\) 15362.1 + 15362.1i 0.527138 + 0.527138i 0.919718 0.392580i \(-0.128417\pi\)
−0.392580 + 0.919718i \(0.628417\pi\)
\(948\) 0 0
\(949\) −18689.7 + 18689.7i −0.639299 + 0.639299i
\(950\) 0 0
\(951\) 7610.05i 0.259488i
\(952\) 0 0
\(953\) 24261.6i 0.824671i −0.911032 0.412336i \(-0.864713\pi\)
0.911032 0.412336i \(-0.135287\pi\)
\(954\) 0 0
\(955\) −23580.2 + 23580.2i −0.798991 + 0.798991i
\(956\) 0 0
\(957\) −9148.47 9148.47i −0.309016 0.309016i
\(958\) 0 0
\(959\) −28497.2 −0.959565
\(960\) 0 0
\(961\) 32764.1 1.09980
\(962\) 0 0
\(963\) 2978.02 + 2978.02i 0.0996525 + 0.0996525i
\(964\) 0 0
\(965\) 1325.63 1325.63i 0.0442211 0.0442211i
\(966\) 0 0
\(967\) 6229.01i 0.207147i −0.994622 0.103574i \(-0.966972\pi\)
0.994622 0.103574i \(-0.0330277\pi\)
\(968\) 0 0
\(969\) 1423.21i 0.0471828i
\(970\) 0 0
\(971\) 1224.70 1224.70i 0.0404762 0.0404762i −0.686579 0.727055i \(-0.740888\pi\)
0.727055 + 0.686579i \(0.240888\pi\)
\(972\) 0 0
\(973\) 7926.62 + 7926.62i 0.261167 + 0.261167i
\(974\) 0 0
\(975\) −8322.70 −0.273374
\(976\) 0 0
\(977\) −35749.1 −1.17064 −0.585320 0.810802i \(-0.699031\pi\)
−0.585320 + 0.810802i \(0.699031\pi\)
\(978\) 0 0
\(979\) −6107.62 6107.62i −0.199387 0.199387i
\(980\) 0 0
\(981\) −4573.91 + 4573.91i −0.148862 + 0.148862i
\(982\) 0 0
\(983\) 53895.9i 1.74874i −0.485259 0.874371i \(-0.661275\pi\)
0.485259 0.874371i \(-0.338725\pi\)
\(984\) 0 0
\(985\) 14941.7i 0.483332i
\(986\) 0 0
\(987\) −1611.50 + 1611.50i −0.0519701 + 0.0519701i
\(988\) 0 0
\(989\) 2043.21 + 2043.21i 0.0656928 + 0.0656928i
\(990\) 0 0
\(991\) 9898.33 0.317286 0.158643 0.987336i \(-0.449288\pi\)
0.158643 + 0.987336i \(0.449288\pi\)
\(992\) 0 0
\(993\) −6562.70 −0.209729
\(994\) 0 0
\(995\) 28617.4 + 28617.4i 0.911791 + 0.911791i
\(996\) 0 0
\(997\) −37538.1 + 37538.1i −1.19242 + 1.19242i −0.216034 + 0.976386i \(0.569312\pi\)
−0.976386 + 0.216034i \(0.930688\pi\)
\(998\) 0 0
\(999\) 7595.24i 0.240543i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.j.a.145.5 24
3.2 odd 2 576.4.k.b.145.3 24
4.3 odd 2 48.4.j.a.13.7 24
8.3 odd 2 384.4.j.b.289.2 24
8.5 even 2 384.4.j.a.289.11 24
12.11 even 2 144.4.k.b.109.6 24
16.3 odd 4 384.4.j.b.97.2 24
16.5 even 4 inner 192.4.j.a.49.5 24
16.11 odd 4 48.4.j.a.37.7 yes 24
16.13 even 4 384.4.j.a.97.11 24
48.5 odd 4 576.4.k.b.433.3 24
48.11 even 4 144.4.k.b.37.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.7 24 4.3 odd 2
48.4.j.a.37.7 yes 24 16.11 odd 4
144.4.k.b.37.6 24 48.11 even 4
144.4.k.b.109.6 24 12.11 even 2
192.4.j.a.49.5 24 16.5 even 4 inner
192.4.j.a.145.5 24 1.1 even 1 trivial
384.4.j.a.97.11 24 16.13 even 4
384.4.j.a.289.11 24 8.5 even 2
384.4.j.b.97.2 24 16.3 odd 4
384.4.j.b.289.2 24 8.3 odd 2
576.4.k.b.145.3 24 3.2 odd 2
576.4.k.b.433.3 24 48.5 odd 4