Properties

Label 1904.2.j.b.783.3
Level $1904$
Weight $2$
Character 1904.783
Analytic conductor $15.204$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1904,2,Mod(783,1904)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1904.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1904, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1904.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2035165449\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.3
Character \(\chi\) \(=\) 1904.783
Dual form 1904.2.j.b.783.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69181 q^{3} +1.35274i q^{5} +(-1.38205 + 2.25609i) q^{7} +4.24582 q^{9} +3.05189i q^{11} -1.89309i q^{13} -3.64131i q^{15} +1.00000i q^{17} +6.45459 q^{19} +(3.72022 - 6.07295i) q^{21} +9.21870i q^{23} +3.17010 q^{25} -3.35352 q^{27} +10.1082 q^{29} -8.51357 q^{31} -8.21511i q^{33} +(-3.05189 - 1.86955i) q^{35} -1.85537 q^{37} +5.09582i q^{39} +4.02548i q^{41} -6.23137i q^{43} +5.74348i q^{45} -1.46028 q^{47} +(-3.17987 - 6.23606i) q^{49} -2.69181i q^{51} -0.520824 q^{53} -4.12841 q^{55} -17.3745 q^{57} +11.0102 q^{59} +10.5171i q^{61} +(-5.86795 + 9.57895i) q^{63} +2.56085 q^{65} +10.0173i q^{67} -24.8149i q^{69} -12.7096i q^{71} +1.60926i q^{73} -8.53331 q^{75} +(-6.88534 - 4.21787i) q^{77} -10.2819i q^{79} -3.71045 q^{81} +1.20784 q^{83} -1.35274 q^{85} -27.2093 q^{87} +16.6194i q^{89} +(4.27097 + 2.61634i) q^{91} +22.9169 q^{93} +8.73136i q^{95} +10.8127i q^{97} +12.9578i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{9} - 32 q^{25} - 8 q^{29} + 8 q^{49} + 40 q^{53} + 8 q^{57} - 48 q^{65} - 16 q^{77} + 24 q^{81} + 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1904\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(785\) \(1361\) \(1429\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.69181 −1.55412 −0.777058 0.629429i \(-0.783289\pi\)
−0.777058 + 0.629429i \(0.783289\pi\)
\(4\) 0 0
\(5\) 1.35274i 0.604962i 0.953155 + 0.302481i \(0.0978149\pi\)
−0.953155 + 0.302481i \(0.902185\pi\)
\(6\) 0 0
\(7\) −1.38205 + 2.25609i −0.522366 + 0.852721i
\(8\) 0 0
\(9\) 4.24582 1.41527
\(10\) 0 0
\(11\) 3.05189i 0.920180i 0.887872 + 0.460090i \(0.152183\pi\)
−0.887872 + 0.460090i \(0.847817\pi\)
\(12\) 0 0
\(13\) 1.89309i 0.525048i −0.964925 0.262524i \(-0.915445\pi\)
0.964925 0.262524i \(-0.0845549\pi\)
\(14\) 0 0
\(15\) 3.64131i 0.940181i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 6.45459 1.48079 0.740393 0.672175i \(-0.234640\pi\)
0.740393 + 0.672175i \(0.234640\pi\)
\(20\) 0 0
\(21\) 3.72022 6.07295i 0.811818 1.32523i
\(22\) 0 0
\(23\) 9.21870i 1.92223i 0.276147 + 0.961115i \(0.410942\pi\)
−0.276147 + 0.961115i \(0.589058\pi\)
\(24\) 0 0
\(25\) 3.17010 0.634021
\(26\) 0 0
\(27\) −3.35352 −0.645384
\(28\) 0 0
\(29\) 10.1082 1.87704 0.938522 0.345219i \(-0.112195\pi\)
0.938522 + 0.345219i \(0.112195\pi\)
\(30\) 0 0
\(31\) −8.51357 −1.52908 −0.764541 0.644575i \(-0.777034\pi\)
−0.764541 + 0.644575i \(0.777034\pi\)
\(32\) 0 0
\(33\) 8.21511i 1.43007i
\(34\) 0 0
\(35\) −3.05189 1.86955i −0.515864 0.316012i
\(36\) 0 0
\(37\) −1.85537 −0.305022 −0.152511 0.988302i \(-0.548736\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(38\) 0 0
\(39\) 5.09582i 0.815985i
\(40\) 0 0
\(41\) 4.02548i 0.628674i 0.949311 + 0.314337i \(0.101782\pi\)
−0.949311 + 0.314337i \(0.898218\pi\)
\(42\) 0 0
\(43\) 6.23137i 0.950275i −0.879912 0.475137i \(-0.842398\pi\)
0.879912 0.475137i \(-0.157602\pi\)
\(44\) 0 0
\(45\) 5.74348i 0.856188i
\(46\) 0 0
\(47\) −1.46028 −0.213004 −0.106502 0.994312i \(-0.533965\pi\)
−0.106502 + 0.994312i \(0.533965\pi\)
\(48\) 0 0
\(49\) −3.17987 6.23606i −0.454267 0.890866i
\(50\) 0 0
\(51\) 2.69181i 0.376928i
\(52\) 0 0
\(53\) −0.520824 −0.0715407 −0.0357703 0.999360i \(-0.511388\pi\)
−0.0357703 + 0.999360i \(0.511388\pi\)
\(54\) 0 0
\(55\) −4.12841 −0.556674
\(56\) 0 0
\(57\) −17.3745 −2.30131
\(58\) 0 0
\(59\) 11.0102 1.43340 0.716702 0.697379i \(-0.245651\pi\)
0.716702 + 0.697379i \(0.245651\pi\)
\(60\) 0 0
\(61\) 10.5171i 1.34658i 0.739379 + 0.673290i \(0.235119\pi\)
−0.739379 + 0.673290i \(0.764881\pi\)
\(62\) 0 0
\(63\) −5.86795 + 9.57895i −0.739292 + 1.20683i
\(64\) 0 0
\(65\) 2.56085 0.317634
\(66\) 0 0
\(67\) 10.0173i 1.22380i 0.790934 + 0.611902i \(0.209595\pi\)
−0.790934 + 0.611902i \(0.790405\pi\)
\(68\) 0 0
\(69\) 24.8149i 2.98737i
\(70\) 0 0
\(71\) 12.7096i 1.50836i −0.656669 0.754179i \(-0.728035\pi\)
0.656669 0.754179i \(-0.271965\pi\)
\(72\) 0 0
\(73\) 1.60926i 0.188349i 0.995556 + 0.0941745i \(0.0300212\pi\)
−0.995556 + 0.0941745i \(0.969979\pi\)
\(74\) 0 0
\(75\) −8.53331 −0.985341
\(76\) 0 0
\(77\) −6.88534 4.21787i −0.784657 0.480671i
\(78\) 0 0
\(79\) 10.2819i 1.15681i −0.815750 0.578405i \(-0.803676\pi\)
0.815750 0.578405i \(-0.196324\pi\)
\(80\) 0 0
\(81\) −3.71045 −0.412273
\(82\) 0 0
\(83\) 1.20784 0.132578 0.0662890 0.997800i \(-0.478884\pi\)
0.0662890 + 0.997800i \(0.478884\pi\)
\(84\) 0 0
\(85\) −1.35274 −0.146725
\(86\) 0 0
\(87\) −27.2093 −2.91714
\(88\) 0 0
\(89\) 16.6194i 1.76165i 0.473443 + 0.880825i \(0.343011\pi\)
−0.473443 + 0.880825i \(0.656989\pi\)
\(90\) 0 0
\(91\) 4.27097 + 2.61634i 0.447719 + 0.274267i
\(92\) 0 0
\(93\) 22.9169 2.37637
\(94\) 0 0
\(95\) 8.73136i 0.895819i
\(96\) 0 0
\(97\) 10.8127i 1.09786i 0.835867 + 0.548931i \(0.184965\pi\)
−0.835867 + 0.548931i \(0.815035\pi\)
\(98\) 0 0
\(99\) 12.9578i 1.30231i
\(100\) 0 0
\(101\) 2.21511i 0.220411i −0.993909 0.110206i \(-0.964849\pi\)
0.993909 0.110206i \(-0.0351510\pi\)
\(102\) 0 0
\(103\) −16.9392 −1.66907 −0.834536 0.550954i \(-0.814264\pi\)
−0.834536 + 0.550954i \(0.814264\pi\)
\(104\) 0 0
\(105\) 8.21511 + 5.03247i 0.801712 + 0.491119i
\(106\) 0 0
\(107\) 9.35556i 0.904436i 0.891907 + 0.452218i \(0.149367\pi\)
−0.891907 + 0.452218i \(0.850633\pi\)
\(108\) 0 0
\(109\) −6.37926 −0.611022 −0.305511 0.952189i \(-0.598827\pi\)
−0.305511 + 0.952189i \(0.598827\pi\)
\(110\) 0 0
\(111\) 4.99431 0.474039
\(112\) 0 0
\(113\) −16.8891 −1.58879 −0.794396 0.607400i \(-0.792212\pi\)
−0.794396 + 0.607400i \(0.792212\pi\)
\(114\) 0 0
\(115\) −12.4705 −1.16288
\(116\) 0 0
\(117\) 8.03771i 0.743087i
\(118\) 0 0
\(119\) −2.25609 1.38205i −0.206815 0.126692i
\(120\) 0 0
\(121\) 1.68595 0.153268
\(122\) 0 0
\(123\) 10.8358i 0.977032i
\(124\) 0 0
\(125\) 11.0520i 0.988521i
\(126\) 0 0
\(127\) 8.56472i 0.759996i 0.924987 + 0.379998i \(0.124075\pi\)
−0.924987 + 0.379998i \(0.875925\pi\)
\(128\) 0 0
\(129\) 16.7736i 1.47684i
\(130\) 0 0
\(131\) −10.1861 −0.889965 −0.444982 0.895539i \(-0.646790\pi\)
−0.444982 + 0.895539i \(0.646790\pi\)
\(132\) 0 0
\(133\) −8.92058 + 14.5621i −0.773512 + 1.26270i
\(134\) 0 0
\(135\) 4.53642i 0.390433i
\(136\) 0 0
\(137\) −5.27033 −0.450275 −0.225137 0.974327i \(-0.572283\pi\)
−0.225137 + 0.974327i \(0.572283\pi\)
\(138\) 0 0
\(139\) −8.46101 −0.717653 −0.358827 0.933404i \(-0.616823\pi\)
−0.358827 + 0.933404i \(0.616823\pi\)
\(140\) 0 0
\(141\) 3.93080 0.331033
\(142\) 0 0
\(143\) 5.77750 0.483139
\(144\) 0 0
\(145\) 13.6737i 1.13554i
\(146\) 0 0
\(147\) 8.55959 + 16.7863i 0.705983 + 1.38451i
\(148\) 0 0
\(149\) −16.0463 −1.31456 −0.657281 0.753645i \(-0.728294\pi\)
−0.657281 + 0.753645i \(0.728294\pi\)
\(150\) 0 0
\(151\) 20.9297i 1.70323i 0.524167 + 0.851616i \(0.324377\pi\)
−0.524167 + 0.851616i \(0.675623\pi\)
\(152\) 0 0
\(153\) 4.24582i 0.343254i
\(154\) 0 0
\(155\) 11.5166i 0.925037i
\(156\) 0 0
\(157\) 4.98650i 0.397966i 0.980003 + 0.198983i \(0.0637638\pi\)
−0.980003 + 0.198983i \(0.936236\pi\)
\(158\) 0 0
\(159\) 1.40196 0.111182
\(160\) 0 0
\(161\) −20.7982 12.7407i −1.63913 1.00411i
\(162\) 0 0
\(163\) 14.3260i 1.12210i −0.827781 0.561051i \(-0.810397\pi\)
0.827781 0.561051i \(-0.189603\pi\)
\(164\) 0 0
\(165\) 11.1129 0.865136
\(166\) 0 0
\(167\) 10.6697 0.825646 0.412823 0.910811i \(-0.364543\pi\)
0.412823 + 0.910811i \(0.364543\pi\)
\(168\) 0 0
\(169\) 9.41622 0.724325
\(170\) 0 0
\(171\) 27.4051 2.09572
\(172\) 0 0
\(173\) 21.1472i 1.60779i −0.594771 0.803895i \(-0.702757\pi\)
0.594771 0.803895i \(-0.297243\pi\)
\(174\) 0 0
\(175\) −4.38125 + 7.15203i −0.331191 + 0.540643i
\(176\) 0 0
\(177\) −29.6373 −2.22768
\(178\) 0 0
\(179\) 1.59560i 0.119260i −0.998221 0.0596302i \(-0.981008\pi\)
0.998221 0.0596302i \(-0.0189921\pi\)
\(180\) 0 0
\(181\) 17.2111i 1.27929i −0.768670 0.639646i \(-0.779081\pi\)
0.768670 0.639646i \(-0.220919\pi\)
\(182\) 0 0
\(183\) 28.3101i 2.09274i
\(184\) 0 0
\(185\) 2.50983i 0.184527i
\(186\) 0 0
\(187\) −3.05189 −0.223177
\(188\) 0 0
\(189\) 4.63473 7.56583i 0.337127 0.550333i
\(190\) 0 0
\(191\) 7.49646i 0.542425i −0.962519 0.271213i \(-0.912575\pi\)
0.962519 0.271213i \(-0.0874246\pi\)
\(192\) 0 0
\(193\) 12.1150 0.872057 0.436029 0.899933i \(-0.356385\pi\)
0.436029 + 0.899933i \(0.356385\pi\)
\(194\) 0 0
\(195\) −6.89331 −0.493640
\(196\) 0 0
\(197\) −3.76117 −0.267972 −0.133986 0.990983i \(-0.542778\pi\)
−0.133986 + 0.990983i \(0.542778\pi\)
\(198\) 0 0
\(199\) 8.17379 0.579424 0.289712 0.957114i \(-0.406440\pi\)
0.289712 + 0.957114i \(0.406440\pi\)
\(200\) 0 0
\(201\) 26.9646i 1.90193i
\(202\) 0 0
\(203\) −13.9700 + 22.8050i −0.980505 + 1.60060i
\(204\) 0 0
\(205\) −5.44541 −0.380324
\(206\) 0 0
\(207\) 39.1410i 2.72048i
\(208\) 0 0
\(209\) 19.6987i 1.36259i
\(210\) 0 0
\(211\) 15.4188i 1.06147i −0.847537 0.530737i \(-0.821915\pi\)
0.847537 0.530737i \(-0.178085\pi\)
\(212\) 0 0
\(213\) 34.2119i 2.34416i
\(214\) 0 0
\(215\) 8.42940 0.574881
\(216\) 0 0
\(217\) 11.7662 19.2074i 0.798741 1.30388i
\(218\) 0 0
\(219\) 4.33180i 0.292716i
\(220\) 0 0
\(221\) 1.89309 0.127343
\(222\) 0 0
\(223\) 1.02475 0.0686224 0.0343112 0.999411i \(-0.489076\pi\)
0.0343112 + 0.999411i \(0.489076\pi\)
\(224\) 0 0
\(225\) 13.4597 0.897313
\(226\) 0 0
\(227\) 8.51877 0.565410 0.282705 0.959207i \(-0.408768\pi\)
0.282705 + 0.959207i \(0.408768\pi\)
\(228\) 0 0
\(229\) 20.2401i 1.33750i −0.743486 0.668752i \(-0.766829\pi\)
0.743486 0.668752i \(-0.233171\pi\)
\(230\) 0 0
\(231\) 18.5340 + 11.3537i 1.21945 + 0.747019i
\(232\) 0 0
\(233\) −1.80636 −0.118339 −0.0591694 0.998248i \(-0.518845\pi\)
−0.0591694 + 0.998248i \(0.518845\pi\)
\(234\) 0 0
\(235\) 1.97538i 0.128859i
\(236\) 0 0
\(237\) 27.6770i 1.79781i
\(238\) 0 0
\(239\) 15.2557i 0.986811i −0.869800 0.493405i \(-0.835752\pi\)
0.869800 0.493405i \(-0.164248\pi\)
\(240\) 0 0
\(241\) 24.1482i 1.55552i 0.628559 + 0.777762i \(0.283645\pi\)
−0.628559 + 0.777762i \(0.716355\pi\)
\(242\) 0 0
\(243\) 20.0484 1.28610
\(244\) 0 0
\(245\) 8.43575 4.30152i 0.538940 0.274814i
\(246\) 0 0
\(247\) 12.2191i 0.777483i
\(248\) 0 0
\(249\) −3.25128 −0.206041
\(250\) 0 0
\(251\) 11.2742 0.711618 0.355809 0.934559i \(-0.384205\pi\)
0.355809 + 0.934559i \(0.384205\pi\)
\(252\) 0 0
\(253\) −28.1345 −1.76880
\(254\) 0 0
\(255\) 3.64131 0.228027
\(256\) 0 0
\(257\) 8.86963i 0.553272i −0.960975 0.276636i \(-0.910780\pi\)
0.960975 0.276636i \(-0.0892196\pi\)
\(258\) 0 0
\(259\) 2.56422 4.18589i 0.159333 0.260098i
\(260\) 0 0
\(261\) 42.9176 2.65653
\(262\) 0 0
\(263\) 3.81724i 0.235381i 0.993050 + 0.117690i \(0.0375490\pi\)
−0.993050 + 0.117690i \(0.962451\pi\)
\(264\) 0 0
\(265\) 0.704538i 0.0432794i
\(266\) 0 0
\(267\) 44.7361i 2.73781i
\(268\) 0 0
\(269\) 8.92926i 0.544427i 0.962237 + 0.272213i \(0.0877556\pi\)
−0.962237 + 0.272213i \(0.912244\pi\)
\(270\) 0 0
\(271\) −20.1147 −1.22188 −0.610941 0.791676i \(-0.709209\pi\)
−0.610941 + 0.791676i \(0.709209\pi\)
\(272\) 0 0
\(273\) −11.4966 7.04269i −0.695807 0.426243i
\(274\) 0 0
\(275\) 9.67482i 0.583413i
\(276\) 0 0
\(277\) 3.52916 0.212047 0.106023 0.994364i \(-0.466188\pi\)
0.106023 + 0.994364i \(0.466188\pi\)
\(278\) 0 0
\(279\) −36.1471 −2.16407
\(280\) 0 0
\(281\) 4.27003 0.254729 0.127364 0.991856i \(-0.459348\pi\)
0.127364 + 0.991856i \(0.459348\pi\)
\(282\) 0 0
\(283\) −6.29981 −0.374485 −0.187242 0.982314i \(-0.559955\pi\)
−0.187242 + 0.982314i \(0.559955\pi\)
\(284\) 0 0
\(285\) 23.5031i 1.39221i
\(286\) 0 0
\(287\) −9.08183 5.56342i −0.536084 0.328398i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 29.1057i 1.70621i
\(292\) 0 0
\(293\) 19.2803i 1.12637i 0.826332 + 0.563184i \(0.190424\pi\)
−0.826332 + 0.563184i \(0.809576\pi\)
\(294\) 0 0
\(295\) 14.8939i 0.867155i
\(296\) 0 0
\(297\) 10.2346i 0.593870i
\(298\) 0 0
\(299\) 17.4518 1.00926
\(300\) 0 0
\(301\) 14.0585 + 8.61208i 0.810320 + 0.496392i
\(302\) 0 0
\(303\) 5.96264i 0.342545i
\(304\) 0 0
\(305\) −14.2269 −0.814630
\(306\) 0 0
\(307\) 4.60562 0.262857 0.131428 0.991326i \(-0.458044\pi\)
0.131428 + 0.991326i \(0.458044\pi\)
\(308\) 0 0
\(309\) 45.5971 2.59393
\(310\) 0 0
\(311\) 3.60084 0.204185 0.102092 0.994775i \(-0.467446\pi\)
0.102092 + 0.994775i \(0.467446\pi\)
\(312\) 0 0
\(313\) 22.9391i 1.29659i −0.761388 0.648297i \(-0.775482\pi\)
0.761388 0.648297i \(-0.224518\pi\)
\(314\) 0 0
\(315\) −12.9578 7.93779i −0.730089 0.447244i
\(316\) 0 0
\(317\) −10.0962 −0.567061 −0.283530 0.958963i \(-0.591506\pi\)
−0.283530 + 0.958963i \(0.591506\pi\)
\(318\) 0 0
\(319\) 30.8491i 1.72722i
\(320\) 0 0
\(321\) 25.1834i 1.40560i
\(322\) 0 0
\(323\) 6.45459i 0.359143i
\(324\) 0 0
\(325\) 6.00128i 0.332891i
\(326\) 0 0
\(327\) 17.1717 0.949599
\(328\) 0 0
\(329\) 2.01819 3.29453i 0.111266 0.181633i
\(330\) 0 0
\(331\) 31.0860i 1.70864i 0.519745 + 0.854322i \(0.326027\pi\)
−0.519745 + 0.854322i \(0.673973\pi\)
\(332\) 0 0
\(333\) −7.87759 −0.431689
\(334\) 0 0
\(335\) −13.5507 −0.740355
\(336\) 0 0
\(337\) −31.1997 −1.69955 −0.849777 0.527142i \(-0.823264\pi\)
−0.849777 + 0.527142i \(0.823264\pi\)
\(338\) 0 0
\(339\) 45.4622 2.46917
\(340\) 0 0
\(341\) 25.9825i 1.40703i
\(342\) 0 0
\(343\) 18.4638 + 1.44450i 0.996954 + 0.0779957i
\(344\) 0 0
\(345\) 33.5681 1.80725
\(346\) 0 0
\(347\) 17.8870i 0.960227i −0.877206 0.480113i \(-0.840595\pi\)
0.877206 0.480113i \(-0.159405\pi\)
\(348\) 0 0
\(349\) 23.3335i 1.24901i 0.781019 + 0.624507i \(0.214700\pi\)
−0.781019 + 0.624507i \(0.785300\pi\)
\(350\) 0 0
\(351\) 6.34850i 0.338858i
\(352\) 0 0
\(353\) 18.0248i 0.959362i −0.877443 0.479681i \(-0.840752\pi\)
0.877443 0.479681i \(-0.159248\pi\)
\(354\) 0 0
\(355\) 17.1928 0.912499
\(356\) 0 0
\(357\) 6.07295 + 3.72022i 0.321415 + 0.196895i
\(358\) 0 0
\(359\) 4.43692i 0.234172i −0.993122 0.117086i \(-0.962645\pi\)
0.993122 0.117086i \(-0.0373553\pi\)
\(360\) 0 0
\(361\) 22.6618 1.19272
\(362\) 0 0
\(363\) −4.53825 −0.238196
\(364\) 0 0
\(365\) −2.17690 −0.113944
\(366\) 0 0
\(367\) −17.8725 −0.932937 −0.466469 0.884538i \(-0.654474\pi\)
−0.466469 + 0.884538i \(0.654474\pi\)
\(368\) 0 0
\(369\) 17.0915i 0.889746i
\(370\) 0 0
\(371\) 0.719806 1.17502i 0.0373704 0.0610042i
\(372\) 0 0
\(373\) −19.2353 −0.995967 −0.497983 0.867187i \(-0.665926\pi\)
−0.497983 + 0.867187i \(0.665926\pi\)
\(374\) 0 0
\(375\) 29.7498i 1.53628i
\(376\) 0 0
\(377\) 19.1357i 0.985538i
\(378\) 0 0
\(379\) 10.2704i 0.527556i −0.964583 0.263778i \(-0.915031\pi\)
0.964583 0.263778i \(-0.0849686\pi\)
\(380\) 0 0
\(381\) 23.0546i 1.18112i
\(382\) 0 0
\(383\) −0.00772947 −0.000394958 −0.000197479 1.00000i \(-0.500063\pi\)
−0.000197479 1.00000i \(0.500063\pi\)
\(384\) 0 0
\(385\) 5.70567 9.31405i 0.290788 0.474688i
\(386\) 0 0
\(387\) 26.4573i 1.34490i
\(388\) 0 0
\(389\) 25.4132 1.28850 0.644250 0.764815i \(-0.277170\pi\)
0.644250 + 0.764815i \(0.277170\pi\)
\(390\) 0 0
\(391\) −9.21870 −0.466209
\(392\) 0 0
\(393\) 27.4190 1.38311
\(394\) 0 0
\(395\) 13.9088 0.699826
\(396\) 0 0
\(397\) 6.38504i 0.320456i 0.987080 + 0.160228i \(0.0512230\pi\)
−0.987080 + 0.160228i \(0.948777\pi\)
\(398\) 0 0
\(399\) 24.0125 39.1984i 1.20213 1.96238i
\(400\) 0 0
\(401\) 27.4417 1.37037 0.685187 0.728367i \(-0.259721\pi\)
0.685187 + 0.728367i \(0.259721\pi\)
\(402\) 0 0
\(403\) 16.1169i 0.802841i
\(404\) 0 0
\(405\) 5.01927i 0.249409i
\(406\) 0 0
\(407\) 5.66240i 0.280675i
\(408\) 0 0
\(409\) 3.77313i 0.186570i 0.995639 + 0.0932848i \(0.0297367\pi\)
−0.995639 + 0.0932848i \(0.970263\pi\)
\(410\) 0 0
\(411\) 14.1867 0.699779
\(412\) 0 0
\(413\) −15.2166 + 24.8399i −0.748762 + 1.22229i
\(414\) 0 0
\(415\) 1.63389i 0.0802047i
\(416\) 0 0
\(417\) 22.7754 1.11532
\(418\) 0 0
\(419\) 33.3561 1.62955 0.814777 0.579774i \(-0.196859\pi\)
0.814777 + 0.579774i \(0.196859\pi\)
\(420\) 0 0
\(421\) 18.7223 0.912468 0.456234 0.889860i \(-0.349198\pi\)
0.456234 + 0.889860i \(0.349198\pi\)
\(422\) 0 0
\(423\) −6.20010 −0.301459
\(424\) 0 0
\(425\) 3.17010i 0.153773i
\(426\) 0 0
\(427\) −23.7276 14.5352i −1.14826 0.703408i
\(428\) 0 0
\(429\) −15.5519 −0.750853
\(430\) 0 0
\(431\) 7.90301i 0.380674i −0.981719 0.190337i \(-0.939042\pi\)
0.981719 0.190337i \(-0.0609581\pi\)
\(432\) 0 0
\(433\) 20.8841i 1.00363i 0.864976 + 0.501814i \(0.167334\pi\)
−0.864976 + 0.501814i \(0.832666\pi\)
\(434\) 0 0
\(435\) 36.8070i 1.76476i
\(436\) 0 0
\(437\) 59.5029i 2.84641i
\(438\) 0 0
\(439\) −7.65077 −0.365151 −0.182576 0.983192i \(-0.558443\pi\)
−0.182576 + 0.983192i \(0.558443\pi\)
\(440\) 0 0
\(441\) −13.5012 26.4772i −0.642912 1.26082i
\(442\) 0 0
\(443\) 0.700477i 0.0332807i −0.999862 0.0166403i \(-0.994703\pi\)
0.999862 0.0166403i \(-0.00529703\pi\)
\(444\) 0 0
\(445\) −22.4816 −1.06573
\(446\) 0 0
\(447\) 43.1935 2.04298
\(448\) 0 0
\(449\) −6.77949 −0.319944 −0.159972 0.987122i \(-0.551140\pi\)
−0.159972 + 0.987122i \(0.551140\pi\)
\(450\) 0 0
\(451\) −12.2853 −0.578494
\(452\) 0 0
\(453\) 56.3386i 2.64702i
\(454\) 0 0
\(455\) −3.53922 + 5.77750i −0.165921 + 0.270853i
\(456\) 0 0
\(457\) 3.05801 0.143048 0.0715238 0.997439i \(-0.477214\pi\)
0.0715238 + 0.997439i \(0.477214\pi\)
\(458\) 0 0
\(459\) 3.35352i 0.156529i
\(460\) 0 0
\(461\) 16.3370i 0.760890i −0.924804 0.380445i \(-0.875771\pi\)
0.924804 0.380445i \(-0.124229\pi\)
\(462\) 0 0
\(463\) 5.70202i 0.264995i 0.991183 + 0.132498i \(0.0422997\pi\)
−0.991183 + 0.132498i \(0.957700\pi\)
\(464\) 0 0
\(465\) 31.0005i 1.43761i
\(466\) 0 0
\(467\) 13.1500 0.608511 0.304255 0.952590i \(-0.401592\pi\)
0.304255 + 0.952590i \(0.401592\pi\)
\(468\) 0 0
\(469\) −22.5998 13.8444i −1.04356 0.639274i
\(470\) 0 0
\(471\) 13.4227i 0.618485i
\(472\) 0 0
\(473\) 19.0175 0.874424
\(474\) 0 0
\(475\) 20.4617 0.938848
\(476\) 0 0
\(477\) −2.21133 −0.101250
\(478\) 0 0
\(479\) −3.69837 −0.168983 −0.0844915 0.996424i \(-0.526927\pi\)
−0.0844915 + 0.996424i \(0.526927\pi\)
\(480\) 0 0
\(481\) 3.51238i 0.160151i
\(482\) 0 0
\(483\) 55.9847 + 34.2955i 2.54739 + 1.56050i
\(484\) 0 0
\(485\) −14.6267 −0.664166
\(486\) 0 0
\(487\) 10.6055i 0.480581i 0.970701 + 0.240291i \(0.0772428\pi\)
−0.970701 + 0.240291i \(0.922757\pi\)
\(488\) 0 0
\(489\) 38.5630i 1.74388i
\(490\) 0 0
\(491\) 41.1786i 1.85837i −0.369620 0.929183i \(-0.620512\pi\)
0.369620 0.929183i \(-0.379488\pi\)
\(492\) 0 0
\(493\) 10.1082i 0.455250i
\(494\) 0 0
\(495\) −17.5285 −0.787847
\(496\) 0 0
\(497\) 28.6741 + 17.5654i 1.28621 + 0.787915i
\(498\) 0 0
\(499\) 5.38220i 0.240940i −0.992717 0.120470i \(-0.961560\pi\)
0.992717 0.120470i \(-0.0384402\pi\)
\(500\) 0 0
\(501\) −28.7208 −1.28315
\(502\) 0 0
\(503\) −21.5148 −0.959297 −0.479648 0.877461i \(-0.659236\pi\)
−0.479648 + 0.877461i \(0.659236\pi\)
\(504\) 0 0
\(505\) 2.99646 0.133341
\(506\) 0 0
\(507\) −25.3467 −1.12568
\(508\) 0 0
\(509\) 23.8277i 1.05615i 0.849199 + 0.528073i \(0.177085\pi\)
−0.849199 + 0.528073i \(0.822915\pi\)
\(510\) 0 0
\(511\) −3.63062 2.22407i −0.160609 0.0983872i
\(512\) 0 0
\(513\) −21.6456 −0.955676
\(514\) 0 0
\(515\) 22.9143i 1.00973i
\(516\) 0 0
\(517\) 4.45663i 0.196002i
\(518\) 0 0
\(519\) 56.9241i 2.49869i
\(520\) 0 0
\(521\) 1.98790i 0.0870914i 0.999051 + 0.0435457i \(0.0138654\pi\)
−0.999051 + 0.0435457i \(0.986135\pi\)
\(522\) 0 0
\(523\) −3.01620 −0.131889 −0.0659447 0.997823i \(-0.521006\pi\)
−0.0659447 + 0.997823i \(0.521006\pi\)
\(524\) 0 0
\(525\) 11.7935 19.2519i 0.514709 0.840221i
\(526\) 0 0
\(527\) 8.51357i 0.370857i
\(528\) 0 0
\(529\) −61.9844 −2.69497
\(530\) 0 0
\(531\) 46.7473 2.02866
\(532\) 0 0
\(533\) 7.62058 0.330084
\(534\) 0 0
\(535\) −12.6556 −0.547150
\(536\) 0 0
\(537\) 4.29503i 0.185344i
\(538\) 0 0
\(539\) 19.0318 9.70461i 0.819757 0.418007i
\(540\) 0 0
\(541\) −27.6065 −1.18690 −0.593449 0.804872i \(-0.702234\pi\)
−0.593449 + 0.804872i \(0.702234\pi\)
\(542\) 0 0
\(543\) 46.3290i 1.98817i
\(544\) 0 0
\(545\) 8.62946i 0.369645i
\(546\) 0 0
\(547\) 8.71443i 0.372602i 0.982493 + 0.186301i \(0.0596500\pi\)
−0.982493 + 0.186301i \(0.940350\pi\)
\(548\) 0 0
\(549\) 44.6539i 1.90578i
\(550\) 0 0
\(551\) 65.2443 2.77950
\(552\) 0 0
\(553\) 23.1970 + 14.2102i 0.986436 + 0.604278i
\(554\) 0 0
\(555\) 6.75599i 0.286776i
\(556\) 0 0
\(557\) −38.7779 −1.64307 −0.821537 0.570156i \(-0.806883\pi\)
−0.821537 + 0.570156i \(0.806883\pi\)
\(558\) 0 0
\(559\) −11.7965 −0.498940
\(560\) 0 0
\(561\) 8.21511 0.346842
\(562\) 0 0
\(563\) 10.2349 0.431351 0.215675 0.976465i \(-0.430805\pi\)
0.215675 + 0.976465i \(0.430805\pi\)
\(564\) 0 0
\(565\) 22.8465i 0.961159i
\(566\) 0 0
\(567\) 5.12804 8.37111i 0.215357 0.351554i
\(568\) 0 0
\(569\) −13.5851 −0.569516 −0.284758 0.958599i \(-0.591913\pi\)
−0.284758 + 0.958599i \(0.591913\pi\)
\(570\) 0 0
\(571\) 22.2164i 0.929728i −0.885382 0.464864i \(-0.846103\pi\)
0.885382 0.464864i \(-0.153897\pi\)
\(572\) 0 0
\(573\) 20.1790i 0.842991i
\(574\) 0 0
\(575\) 29.2242i 1.21873i
\(576\) 0 0
\(577\) 10.8984i 0.453705i 0.973929 + 0.226852i \(0.0728435\pi\)
−0.973929 + 0.226852i \(0.927157\pi\)
\(578\) 0 0
\(579\) −32.6113 −1.35528
\(580\) 0 0
\(581\) −1.66930 + 2.72500i −0.0692543 + 0.113052i
\(582\) 0 0
\(583\) 1.58950i 0.0658303i
\(584\) 0 0
\(585\) 10.8729 0.449539
\(586\) 0 0
\(587\) 27.1918 1.12233 0.561163 0.827705i \(-0.310354\pi\)
0.561163 + 0.827705i \(0.310354\pi\)
\(588\) 0 0
\(589\) −54.9516 −2.26424
\(590\) 0 0
\(591\) 10.1243 0.416460
\(592\) 0 0
\(593\) 24.9911i 1.02626i −0.858311 0.513130i \(-0.828486\pi\)
0.858311 0.513130i \(-0.171514\pi\)
\(594\) 0 0
\(595\) 1.86955 3.05189i 0.0766442 0.125115i
\(596\) 0 0
\(597\) −22.0023 −0.900492
\(598\) 0 0
\(599\) 22.9381i 0.937225i 0.883404 + 0.468613i \(0.155246\pi\)
−0.883404 + 0.468613i \(0.844754\pi\)
\(600\) 0 0
\(601\) 4.31687i 0.176089i −0.996117 0.0880445i \(-0.971938\pi\)
0.996117 0.0880445i \(-0.0280618\pi\)
\(602\) 0 0
\(603\) 42.5316i 1.73202i
\(604\) 0 0
\(605\) 2.28064i 0.0927213i
\(606\) 0 0
\(607\) −18.5595 −0.753306 −0.376653 0.926354i \(-0.622925\pi\)
−0.376653 + 0.926354i \(0.622925\pi\)
\(608\) 0 0
\(609\) 37.6047 61.3866i 1.52382 2.48751i
\(610\) 0 0
\(611\) 2.76444i 0.111837i
\(612\) 0 0
\(613\) −43.8859 −1.77254 −0.886268 0.463173i \(-0.846711\pi\)
−0.886268 + 0.463173i \(0.846711\pi\)
\(614\) 0 0
\(615\) 14.6580 0.591067
\(616\) 0 0
\(617\) 21.2429 0.855208 0.427604 0.903966i \(-0.359358\pi\)
0.427604 + 0.903966i \(0.359358\pi\)
\(618\) 0 0
\(619\) −40.5663 −1.63050 −0.815249 0.579110i \(-0.803400\pi\)
−0.815249 + 0.579110i \(0.803400\pi\)
\(620\) 0 0
\(621\) 30.9150i 1.24058i
\(622\) 0 0
\(623\) −37.4948 22.9688i −1.50220 0.920227i
\(624\) 0 0
\(625\) 0.900070 0.0360028
\(626\) 0 0
\(627\) 53.0252i 2.11762i
\(628\) 0 0
\(629\) 1.85537i 0.0739786i
\(630\) 0 0
\(631\) 17.0673i 0.679439i −0.940527 0.339720i \(-0.889668\pi\)
0.940527 0.339720i \(-0.110332\pi\)
\(632\) 0 0
\(633\) 41.5044i 1.64965i
\(634\) 0 0
\(635\) −11.5858 −0.459769
\(636\) 0 0
\(637\) −11.8054 + 6.01976i −0.467747 + 0.238512i
\(638\) 0 0
\(639\) 53.9629i 2.13474i
\(640\) 0 0
\(641\) 43.4525 1.71627 0.858135 0.513424i \(-0.171623\pi\)
0.858135 + 0.513424i \(0.171623\pi\)
\(642\) 0 0
\(643\) 0.217686 0.00858472 0.00429236 0.999991i \(-0.498634\pi\)
0.00429236 + 0.999991i \(0.498634\pi\)
\(644\) 0 0
\(645\) −22.6903 −0.893431
\(646\) 0 0
\(647\) 16.1546 0.635104 0.317552 0.948241i \(-0.397139\pi\)
0.317552 + 0.948241i \(0.397139\pi\)
\(648\) 0 0
\(649\) 33.6019i 1.31899i
\(650\) 0 0
\(651\) −31.6723 + 51.7025i −1.24134 + 2.02638i
\(652\) 0 0
\(653\) −12.5307 −0.490364 −0.245182 0.969477i \(-0.578848\pi\)
−0.245182 + 0.969477i \(0.578848\pi\)
\(654\) 0 0
\(655\) 13.7791i 0.538395i
\(656\) 0 0
\(657\) 6.83261i 0.266566i
\(658\) 0 0
\(659\) 11.7139i 0.456309i 0.973625 + 0.228155i \(0.0732692\pi\)
−0.973625 + 0.228155i \(0.926731\pi\)
\(660\) 0 0
\(661\) 0.827718i 0.0321945i −0.999870 0.0160972i \(-0.994876\pi\)
0.999870 0.0160972i \(-0.00512413\pi\)
\(662\) 0 0
\(663\) −5.09582 −0.197905
\(664\) 0 0
\(665\) −19.6987 12.0672i −0.763884 0.467946i
\(666\) 0 0
\(667\) 93.1844i 3.60811i
\(668\) 0 0
\(669\) −2.75843 −0.106647
\(670\) 0 0
\(671\) −32.0971 −1.23910
\(672\) 0 0
\(673\) 3.76740 0.145222 0.0726112 0.997360i \(-0.476867\pi\)
0.0726112 + 0.997360i \(0.476867\pi\)
\(674\) 0 0
\(675\) −10.6310 −0.409187
\(676\) 0 0
\(677\) 40.2594i 1.54729i 0.633618 + 0.773646i \(0.281569\pi\)
−0.633618 + 0.773646i \(0.718431\pi\)
\(678\) 0 0
\(679\) −24.3944 14.9437i −0.936171 0.573487i
\(680\) 0 0
\(681\) −22.9309 −0.878713
\(682\) 0 0
\(683\) 14.6864i 0.561958i 0.959714 + 0.280979i \(0.0906591\pi\)
−0.959714 + 0.280979i \(0.909341\pi\)
\(684\) 0 0
\(685\) 7.12937i 0.272399i
\(686\) 0 0
\(687\) 54.4825i 2.07864i
\(688\) 0 0
\(689\) 0.985965i 0.0375623i
\(690\) 0 0
\(691\) −10.2903 −0.391462 −0.195731 0.980658i \(-0.562708\pi\)
−0.195731 + 0.980658i \(0.562708\pi\)
\(692\) 0 0
\(693\) −29.2339 17.9083i −1.11051 0.680282i
\(694\) 0 0
\(695\) 11.4455i 0.434153i
\(696\) 0 0
\(697\) −4.02548 −0.152476
\(698\) 0 0
\(699\) 4.86238 0.183912
\(700\) 0 0
\(701\) −19.9181 −0.752296 −0.376148 0.926560i \(-0.622752\pi\)
−0.376148 + 0.926560i \(0.622752\pi\)
\(702\) 0 0
\(703\) −11.9757 −0.451672
\(704\) 0 0
\(705\) 5.31734i 0.200262i
\(706\) 0 0
\(707\) 4.99748 + 3.06139i 0.187949 + 0.115136i
\(708\) 0 0
\(709\) 45.8787 1.72301 0.861505 0.507749i \(-0.169522\pi\)
0.861505 + 0.507749i \(0.169522\pi\)
\(710\) 0 0
\(711\) 43.6553i 1.63720i
\(712\) 0 0
\(713\) 78.4840i 2.93925i
\(714\) 0 0
\(715\) 7.81543i 0.292281i
\(716\) 0 0
\(717\) 41.0655i 1.53362i
\(718\) 0 0
\(719\) −13.5152 −0.504033 −0.252017 0.967723i \(-0.581094\pi\)
−0.252017 + 0.967723i \(0.581094\pi\)
\(720\) 0 0
\(721\) 23.4109 38.2164i 0.871867 1.42325i
\(722\) 0 0
\(723\) 65.0023i 2.41746i
\(724\) 0 0
\(725\) 32.0440 1.19008
\(726\) 0 0
\(727\) 29.4777 1.09327 0.546634 0.837371i \(-0.315909\pi\)
0.546634 + 0.837371i \(0.315909\pi\)
\(728\) 0 0
\(729\) −42.8350 −1.58648
\(730\) 0 0
\(731\) 6.23137 0.230476
\(732\) 0 0
\(733\) 23.3329i 0.861822i 0.902395 + 0.430911i \(0.141808\pi\)
−0.902395 + 0.430911i \(0.858192\pi\)
\(734\) 0 0
\(735\) −22.7074 + 11.5789i −0.837575 + 0.427093i
\(736\) 0 0
\(737\) −30.5716 −1.12612
\(738\) 0 0
\(739\) 17.8344i 0.656049i −0.944669 0.328025i \(-0.893617\pi\)
0.944669 0.328025i \(-0.106383\pi\)
\(740\) 0 0
\(741\) 32.8915i 1.20830i
\(742\) 0 0
\(743\) 42.9431i 1.57543i −0.616041 0.787714i \(-0.711264\pi\)
0.616041 0.787714i \(-0.288736\pi\)
\(744\) 0 0
\(745\) 21.7064i 0.795261i
\(746\) 0 0
\(747\) 5.12829 0.187634
\(748\) 0 0
\(749\) −21.1070 12.9299i −0.771232 0.472447i
\(750\) 0 0
\(751\) 41.4068i 1.51096i 0.655174 + 0.755478i \(0.272596\pi\)
−0.655174 + 0.755478i \(0.727404\pi\)
\(752\) 0 0
\(753\) −30.3479 −1.10594
\(754\) 0 0
\(755\) −28.3123 −1.03039
\(756\) 0 0
\(757\) 35.7665 1.29995 0.649977 0.759954i \(-0.274778\pi\)
0.649977 + 0.759954i \(0.274778\pi\)
\(758\) 0 0
\(759\) 75.7326 2.74892
\(760\) 0 0
\(761\) 13.6918i 0.496329i −0.968718 0.248164i \(-0.920173\pi\)
0.968718 0.248164i \(-0.0798273\pi\)
\(762\) 0 0
\(763\) 8.81646 14.3922i 0.319177 0.521031i
\(764\) 0 0
\(765\) −5.74348 −0.207656
\(766\) 0 0
\(767\) 20.8432i 0.752606i
\(768\) 0 0
\(769\) 39.0000i 1.40638i 0.711004 + 0.703188i \(0.248241\pi\)
−0.711004 + 0.703188i \(0.751759\pi\)
\(770\) 0 0
\(771\) 23.8753i 0.859849i
\(772\) 0 0
\(773\) 31.2203i 1.12292i 0.827505 + 0.561458i \(0.189760\pi\)
−0.827505 + 0.561458i \(0.810240\pi\)
\(774\) 0 0
\(775\) −26.9889 −0.969470
\(776\) 0 0
\(777\) −6.90239 + 11.2676i −0.247622 + 0.404223i
\(778\) 0 0
\(779\) 25.9828i 0.930931i
\(780\) 0 0
\(781\) 38.7885 1.38796
\(782\) 0 0
\(783\) −33.8980 −1.21142
\(784\) 0 0
\(785\) −6.74542 −0.240754
\(786\) 0 0
\(787\) 3.80226 0.135536 0.0677680 0.997701i \(-0.478412\pi\)
0.0677680 + 0.997701i \(0.478412\pi\)
\(788\) 0 0
\(789\) 10.2753i 0.365809i
\(790\) 0 0
\(791\) 23.3416 38.1033i 0.829932 1.35480i
\(792\) 0 0
\(793\) 19.9098 0.707019
\(794\) 0 0
\(795\) 1.89648i 0.0672612i
\(796\) 0 0
\(797\) 11.6361i 0.412173i 0.978534 + 0.206087i \(0.0660729\pi\)
−0.978534 + 0.206087i \(0.933927\pi\)
\(798\) 0 0
\(799\) 1.46028i 0.0516611i
\(800\) 0 0
\(801\) 70.5629i 2.49322i
\(802\) 0 0
\(803\) −4.91127 −0.173315
\(804\) 0 0
\(805\) 17.2348 28.1345i 0.607448 0.991610i
\(806\) 0 0
\(807\) 24.0358i 0.846102i
\(808\) 0 0
\(809\) 15.4899 0.544597 0.272299 0.962213i \(-0.412216\pi\)
0.272299 + 0.962213i \(0.412216\pi\)
\(810\) 0 0
\(811\) −33.2013 −1.16586 −0.582928 0.812524i \(-0.698093\pi\)
−0.582928 + 0.812524i \(0.698093\pi\)
\(812\) 0 0
\(813\) 54.1449 1.89895
\(814\) 0 0
\(815\) 19.3794 0.678830
\(816\) 0 0
\(817\) 40.2210i 1.40715i
\(818\) 0 0
\(819\) 18.1338 + 11.1085i 0.633646 + 0.388164i
\(820\) 0 0
\(821\) 3.18895 0.111295 0.0556476 0.998450i \(-0.482278\pi\)
0.0556476 + 0.998450i \(0.482278\pi\)
\(822\) 0 0
\(823\) 47.1640i 1.64403i 0.569463 + 0.822017i \(0.307151\pi\)
−0.569463 + 0.822017i \(0.692849\pi\)
\(824\) 0 0
\(825\) 26.0427i 0.906692i
\(826\) 0 0
\(827\) 21.0568i 0.732218i 0.930572 + 0.366109i \(0.119310\pi\)
−0.930572 + 0.366109i \(0.880690\pi\)
\(828\) 0 0
\(829\) 43.4789i 1.51009i −0.655676 0.755043i \(-0.727616\pi\)
0.655676 0.755043i \(-0.272384\pi\)
\(830\) 0 0
\(831\) −9.49981 −0.329545
\(832\) 0 0
\(833\) 6.23606 3.17987i 0.216067 0.110176i
\(834\) 0 0
\(835\) 14.4333i 0.499485i
\(836\) 0 0
\(837\) 28.5504 0.986846
\(838\) 0 0
\(839\) −12.4982 −0.431487 −0.215743 0.976450i \(-0.569217\pi\)
−0.215743 + 0.976450i \(0.569217\pi\)
\(840\) 0 0
\(841\) 73.1756 2.52330
\(842\) 0 0
\(843\) −11.4941 −0.395878
\(844\) 0 0
\(845\) 12.7377i 0.438189i
\(846\) 0 0
\(847\) −2.33007 + 3.80365i −0.0800620 + 0.130695i
\(848\) 0 0
\(849\) 16.9579 0.581993
\(850\) 0 0
\(851\) 17.1041i 0.586322i
\(852\) 0 0
\(853\) 30.6440i 1.04923i 0.851339 + 0.524616i \(0.175791\pi\)
−0.851339 + 0.524616i \(0.824209\pi\)
\(854\) 0 0
\(855\) 37.0718i 1.26783i
\(856\) 0 0
\(857\) 40.3156i 1.37715i 0.725163 + 0.688577i \(0.241764\pi\)
−0.725163 + 0.688577i \(0.758236\pi\)
\(858\) 0 0
\(859\) 20.4629 0.698184 0.349092 0.937089i \(-0.386490\pi\)
0.349092 + 0.937089i \(0.386490\pi\)
\(860\) 0 0
\(861\) 24.4465 + 14.9756i 0.833136 + 0.510369i
\(862\) 0 0
\(863\) 2.80969i 0.0956428i 0.998856 + 0.0478214i \(0.0152278\pi\)
−0.998856 + 0.0478214i \(0.984772\pi\)
\(864\) 0 0
\(865\) 28.6066 0.972652
\(866\) 0 0
\(867\) 2.69181 0.0914185
\(868\) 0 0
\(869\) 31.3794 1.06447
\(870\) 0 0
\(871\) 18.9636 0.642556
\(872\) 0 0
\(873\) 45.9088i 1.55378i
\(874\) 0 0
\(875\) −24.9343 15.2744i −0.842933 0.516370i
\(876\) 0 0
\(877\) 21.4369 0.723873 0.361936 0.932203i \(-0.382116\pi\)
0.361936 + 0.932203i \(0.382116\pi\)
\(878\) 0 0
\(879\) 51.8989i 1.75051i
\(880\) 0 0
\(881\) 8.49388i 0.286166i −0.989711 0.143083i \(-0.954298\pi\)
0.989711 0.143083i \(-0.0457016\pi\)
\(882\) 0 0
\(883\) 22.9524i 0.772411i 0.922413 + 0.386206i \(0.126214\pi\)
−0.922413 + 0.386206i \(0.873786\pi\)
\(884\) 0 0
\(885\) 40.0915i 1.34766i
\(886\) 0 0
\(887\) 49.2403 1.65333 0.826663 0.562697i \(-0.190236\pi\)
0.826663 + 0.562697i \(0.190236\pi\)
\(888\) 0 0
\(889\) −19.3228 11.8369i −0.648064 0.396996i
\(890\) 0 0
\(891\) 11.3239i 0.379365i
\(892\) 0 0
\(893\) −9.42553 −0.315413
\(894\) 0 0
\(895\) 2.15842 0.0721480
\(896\) 0 0
\(897\) −46.9768 −1.56851
\(898\) 0 0
\(899\) −86.0568 −2.87015
\(900\) 0 0
\(901\) 0.520824i 0.0173512i
\(902\) 0 0
\(903\) −37.8428 23.1820i −1.25933 0.771450i
\(904\) 0 0
\(905\) 23.2821 0.773923
\(906\) 0 0
\(907\) 26.8663i 0.892081i −0.895013 0.446040i \(-0.852834\pi\)
0.895013 0.446040i \(-0.147166\pi\)
\(908\) 0 0
\(909\) 9.40495i 0.311943i
\(910\) 0 0
\(911\) 37.7912i 1.25208i 0.779791 + 0.626040i \(0.215325\pi\)
−0.779791 + 0.626040i \(0.784675\pi\)
\(912\) 0 0
\(913\) 3.68621i 0.121996i
\(914\) 0 0
\(915\) 38.2961 1.26603
\(916\) 0 0
\(917\) 14.0777 22.9808i 0.464888 0.758892i
\(918\) 0 0
\(919\) 41.5090i 1.36926i 0.728893 + 0.684628i \(0.240035\pi\)
−0.728893 + 0.684628i \(0.759965\pi\)
\(920\) 0 0
\(921\) −12.3974 −0.408510
\(922\) 0 0
\(923\) −24.0605 −0.791960
\(924\) 0 0
\(925\) −5.88173 −0.193390
\(926\) 0 0
\(927\) −71.9210 −2.36219
\(928\) 0 0
\(929\) 0.950505i 0.0311851i −0.999878 0.0155925i \(-0.995037\pi\)
0.999878 0.0155925i \(-0.00496346\pi\)
\(930\) 0 0
\(931\) −20.5247 40.2512i −0.672671 1.31918i
\(932\) 0 0
\(933\) −9.69276 −0.317327
\(934\) 0 0
\(935\) 4.12841i 0.135013i
\(936\) 0 0
\(937\) 30.6491i 1.00126i −0.865661 0.500631i \(-0.833101\pi\)
0.865661 0.500631i \(-0.166899\pi\)
\(938\) 0 0
\(939\) 61.7476i 2.01506i
\(940\) 0 0
\(941\) 3.75169i 0.122302i 0.998129 + 0.0611508i \(0.0194771\pi\)
−0.998129 + 0.0611508i \(0.980523\pi\)
\(942\) 0 0
\(943\) −37.1097 −1.20846
\(944\) 0 0
\(945\) 10.2346 + 6.26957i 0.332931 + 0.203949i
\(946\) 0 0
\(947\) 15.0583i 0.489327i 0.969608 + 0.244664i \(0.0786776\pi\)
−0.969608 + 0.244664i \(0.921322\pi\)
\(948\) 0 0
\(949\) 3.04646 0.0988923
\(950\) 0 0
\(951\) 27.1771 0.881278
\(952\) 0 0
\(953\) 22.3945 0.725431 0.362715 0.931900i \(-0.381850\pi\)
0.362715 + 0.931900i \(0.381850\pi\)
\(954\) 0 0
\(955\) 10.1407 0.328147
\(956\) 0 0
\(957\) 83.0399i 2.68430i
\(958\) 0 0
\(959\) 7.28387 11.8903i 0.235208 0.383959i
\(960\) 0 0
\(961\) 41.4808 1.33809
\(962\) 0 0
\(963\) 39.7221i 1.28003i
\(964\) 0 0
\(965\) 16.3884i 0.527562i
\(966\) 0 0
\(967\) 4.50070i 0.144733i −0.997378 0.0723664i \(-0.976945\pi\)
0.997378 0.0723664i \(-0.0230551\pi\)
\(968\) 0 0
\(969\) 17.3745i 0.558150i
\(970\) 0 0
\(971\) −37.8954 −1.21612 −0.608060 0.793891i \(-0.708052\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(972\) 0 0
\(973\) 11.6936 19.0888i 0.374878 0.611958i
\(974\) 0 0
\(975\) 16.1543i 0.517351i
\(976\) 0 0
\(977\) −39.6445 −1.26834 −0.634170 0.773194i \(-0.718658\pi\)
−0.634170 + 0.773194i \(0.718658\pi\)
\(978\) 0 0
\(979\) −50.7205 −1.62104
\(980\) 0 0
\(981\) −27.0852 −0.864764
\(982\) 0 0
\(983\) −13.6688 −0.435967 −0.217984 0.975952i \(-0.569948\pi\)
−0.217984 + 0.975952i \(0.569948\pi\)
\(984\) 0 0
\(985\) 5.08788i 0.162113i
\(986\) 0 0
\(987\) −5.43257 + 8.86823i −0.172921 + 0.282279i
\(988\) 0 0
\(989\) 57.4451 1.82665
\(990\) 0 0
\(991\) 16.5321i 0.525160i 0.964910 + 0.262580i \(0.0845734\pi\)
−0.964910 + 0.262580i \(0.915427\pi\)
\(992\) 0 0
\(993\) 83.6776i 2.65543i
\(994\) 0 0
\(995\) 11.0570i 0.350530i
\(996\) 0 0
\(997\) 35.9526i 1.13863i −0.822119 0.569315i \(-0.807208\pi\)
0.822119 0.569315i \(-0.192792\pi\)
\(998\) 0 0
\(999\) 6.22203 0.196856
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1904.2.j.b.783.3 24
4.3 odd 2 inner 1904.2.j.b.783.21 yes 24
7.6 odd 2 inner 1904.2.j.b.783.22 yes 24
28.27 even 2 inner 1904.2.j.b.783.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1904.2.j.b.783.3 24 1.1 even 1 trivial
1904.2.j.b.783.4 yes 24 28.27 even 2 inner
1904.2.j.b.783.21 yes 24 4.3 odd 2 inner
1904.2.j.b.783.22 yes 24 7.6 odd 2 inner