Newspace parameters
| Level: | \( N \) | \(=\) | \( 1904 = 2^{4} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1904.j (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(15.2035165449\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 783.1 | 0 | −3.03955 | 0 | 3.73768i | 0 | 2.48011 | − | 0.921434i | 0 | 6.23886 | 0 | ||||||||||||||||
| 783.2 | 0 | −3.03955 | 0 | − | 3.73768i | 0 | 2.48011 | + | 0.921434i | 0 | 6.23886 | 0 | |||||||||||||||
| 783.3 | 0 | −2.69181 | 0 | 1.35274i | 0 | −1.38205 | + | 2.25609i | 0 | 4.24582 | 0 | ||||||||||||||||
| 783.4 | 0 | −2.69181 | 0 | − | 1.35274i | 0 | −1.38205 | − | 2.25609i | 0 | 4.24582 | 0 | |||||||||||||||
| 783.5 | 0 | −2.58390 | 0 | − | 2.47104i | 0 | −2.13370 | + | 1.56439i | 0 | 3.67656 | 0 | |||||||||||||||
| 783.6 | 0 | −2.58390 | 0 | 2.47104i | 0 | −2.13370 | − | 1.56439i | 0 | 3.67656 | 0 | ||||||||||||||||
| 783.7 | 0 | −1.30773 | 0 | 0.506686i | 0 | 2.04991 | + | 1.67268i | 0 | −1.28984 | 0 | ||||||||||||||||
| 783.8 | 0 | −1.30773 | 0 | − | 0.506686i | 0 | 2.04991 | − | 1.67268i | 0 | −1.28984 | 0 | |||||||||||||||
| 783.9 | 0 | −0.779152 | 0 | 1.55185i | 0 | 0.732964 | + | 2.54220i | 0 | −2.39292 | 0 | ||||||||||||||||
| 783.10 | 0 | −0.779152 | 0 | − | 1.55185i | 0 | 0.732964 | − | 2.54220i | 0 | −2.39292 | 0 | |||||||||||||||
| 783.11 | 0 | −0.722167 | 0 | 3.66454i | 0 | −2.15567 | + | 1.53397i | 0 | −2.47847 | 0 | ||||||||||||||||
| 783.12 | 0 | −0.722167 | 0 | − | 3.66454i | 0 | −2.15567 | − | 1.53397i | 0 | −2.47847 | 0 | |||||||||||||||
| 783.13 | 0 | 0.722167 | 0 | 3.66454i | 0 | 2.15567 | − | 1.53397i | 0 | −2.47847 | 0 | ||||||||||||||||
| 783.14 | 0 | 0.722167 | 0 | − | 3.66454i | 0 | 2.15567 | + | 1.53397i | 0 | −2.47847 | 0 | |||||||||||||||
| 783.15 | 0 | 0.779152 | 0 | 1.55185i | 0 | −0.732964 | − | 2.54220i | 0 | −2.39292 | 0 | ||||||||||||||||
| 783.16 | 0 | 0.779152 | 0 | − | 1.55185i | 0 | −0.732964 | + | 2.54220i | 0 | −2.39292 | 0 | |||||||||||||||
| 783.17 | 0 | 1.30773 | 0 | 0.506686i | 0 | −2.04991 | − | 1.67268i | 0 | −1.28984 | 0 | ||||||||||||||||
| 783.18 | 0 | 1.30773 | 0 | − | 0.506686i | 0 | −2.04991 | + | 1.67268i | 0 | −1.28984 | 0 | |||||||||||||||
| 783.19 | 0 | 2.58390 | 0 | − | 2.47104i | 0 | 2.13370 | − | 1.56439i | 0 | 3.67656 | 0 | |||||||||||||||
| 783.20 | 0 | 2.58390 | 0 | 2.47104i | 0 | 2.13370 | + | 1.56439i | 0 | 3.67656 | 0 | ||||||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 28.d | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1904.2.j.b | ✓ | 24 |
| 4.b | odd | 2 | 1 | inner | 1904.2.j.b | ✓ | 24 |
| 7.b | odd | 2 | 1 | inner | 1904.2.j.b | ✓ | 24 |
| 28.d | even | 2 | 1 | inner | 1904.2.j.b | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1904.2.j.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 1904.2.j.b | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
| 1904.2.j.b | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
| 1904.2.j.b | ✓ | 24 | 28.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} - 26T_{3}^{10} + 245T_{3}^{8} - 1002T_{3}^{6} + 1679T_{3}^{4} - 1100T_{3}^{2} + 242 \)
acting on \(S_{2}^{\mathrm{new}}(1904, [\chi])\).