Properties

Label 1904.2.j.b
Level $1904$
Weight $2$
Character orbit 1904.j
Analytic conductor $15.204$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1904,2,Mod(783,1904)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1904.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1904, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1904.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2035165449\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 32 q^{9} - 32 q^{25} - 8 q^{29} + 8 q^{49} + 40 q^{53} + 8 q^{57} - 48 q^{65} - 16 q^{77} + 24 q^{81} + 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
783.1 0 −3.03955 0 3.73768i 0 2.48011 0.921434i 0 6.23886 0
783.2 0 −3.03955 0 3.73768i 0 2.48011 + 0.921434i 0 6.23886 0
783.3 0 −2.69181 0 1.35274i 0 −1.38205 + 2.25609i 0 4.24582 0
783.4 0 −2.69181 0 1.35274i 0 −1.38205 2.25609i 0 4.24582 0
783.5 0 −2.58390 0 2.47104i 0 −2.13370 + 1.56439i 0 3.67656 0
783.6 0 −2.58390 0 2.47104i 0 −2.13370 1.56439i 0 3.67656 0
783.7 0 −1.30773 0 0.506686i 0 2.04991 + 1.67268i 0 −1.28984 0
783.8 0 −1.30773 0 0.506686i 0 2.04991 1.67268i 0 −1.28984 0
783.9 0 −0.779152 0 1.55185i 0 0.732964 + 2.54220i 0 −2.39292 0
783.10 0 −0.779152 0 1.55185i 0 0.732964 2.54220i 0 −2.39292 0
783.11 0 −0.722167 0 3.66454i 0 −2.15567 + 1.53397i 0 −2.47847 0
783.12 0 −0.722167 0 3.66454i 0 −2.15567 1.53397i 0 −2.47847 0
783.13 0 0.722167 0 3.66454i 0 2.15567 1.53397i 0 −2.47847 0
783.14 0 0.722167 0 3.66454i 0 2.15567 + 1.53397i 0 −2.47847 0
783.15 0 0.779152 0 1.55185i 0 −0.732964 2.54220i 0 −2.39292 0
783.16 0 0.779152 0 1.55185i 0 −0.732964 + 2.54220i 0 −2.39292 0
783.17 0 1.30773 0 0.506686i 0 −2.04991 1.67268i 0 −1.28984 0
783.18 0 1.30773 0 0.506686i 0 −2.04991 + 1.67268i 0 −1.28984 0
783.19 0 2.58390 0 2.47104i 0 2.13370 1.56439i 0 3.67656 0
783.20 0 2.58390 0 2.47104i 0 2.13370 + 1.56439i 0 3.67656 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 783.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1904.2.j.b 24
4.b odd 2 1 inner 1904.2.j.b 24
7.b odd 2 1 inner 1904.2.j.b 24
28.d even 2 1 inner 1904.2.j.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1904.2.j.b 24 1.a even 1 1 trivial
1904.2.j.b 24 4.b odd 2 1 inner
1904.2.j.b 24 7.b odd 2 1 inner
1904.2.j.b 24 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 26T_{3}^{10} + 245T_{3}^{8} - 1002T_{3}^{6} + 1679T_{3}^{4} - 1100T_{3}^{2} + 242 \) acting on \(S_{2}^{\mathrm{new}}(1904, [\chi])\). Copy content Toggle raw display