Properties

Label 1900.4.z
Level $1900$
Weight $4$
Character orbit 1900.z
Rep. character $\chi_{1900}(229,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $536$
Sturm bound $1200$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.z (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1900, [\chi])\).

Total New Old
Modular forms 3624 536 3088
Cusp forms 3576 536 3040
Eisenstein series 48 0 48

Trace form

\( 536 q - 16 q^{5} + 1106 q^{9} + 2 q^{11} + 156 q^{15} + 160 q^{17} - 38 q^{19} - 70 q^{23} - 732 q^{25} - 540 q^{27} + 272 q^{29} + 756 q^{31} + 1600 q^{33} + 242 q^{35} - 1360 q^{37} + 280 q^{39} + 400 q^{41}+ \cdots + 3972 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)