Defining parameters
| Level: | \( N \) | \(=\) | \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1900.o (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1900, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1824 | 1152 | 672 |
| Cusp forms | 1776 | 1128 | 648 |
| Eisenstein series | 48 | 24 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 2}\)