Properties

Label 1900.4.o
Level $1900$
Weight $4$
Character orbit 1900.o
Rep. character $\chi_{1900}(1551,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $1128$
Sturm bound $1200$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1900, [\chi])\).

Total New Old
Modular forms 1824 1152 672
Cusp forms 1776 1128 648
Eisenstein series 48 24 24

Trace form

\( 1128 q + 3 q^{2} - 5 q^{4} - 25 q^{6} - 4976 q^{9} + 114 q^{13} + 174 q^{14} + 63 q^{16} + 78 q^{17} - 360 q^{21} - 21 q^{22} - 29 q^{24} - 8 q^{26} - 32 q^{28} + 6 q^{29} - 357 q^{32} + 246 q^{33} + 420 q^{34}+ \cdots + 1815 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 2}\)