Defining parameters
| Level: | \( N \) | \(=\) | \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1900.bg (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1900, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3672 | 360 | 3312 |
| Cusp forms | 3528 | 360 | 3168 |
| Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)