Properties

Label 1900.4.bg
Level $1900$
Weight $4$
Character orbit 1900.bg
Rep. character $\chi_{1900}(293,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $360$
Sturm bound $1200$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.bg (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1900, [\chi])\).

Total New Old
Modular forms 3672 360 3312
Cusp forms 3528 360 3168
Eisenstein series 144 0 144

Trace form

\( 360 q + 8 q^{7} - 112 q^{11} - 16 q^{17} - 144 q^{21} + 12 q^{23} - 36 q^{33} + 888 q^{41} + 980 q^{43} + 860 q^{47} + 1596 q^{51} + 936 q^{53} - 1144 q^{57} + 432 q^{61} + 1744 q^{63} - 1464 q^{67} + 1392 q^{73}+ \cdots - 3312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)