Properties

Label 1900.2.l.d.493.7
Level $1900$
Weight $2$
Character 1900.493
Analytic conductor $15.172$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,2,Mod(493,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1900.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1715763840\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 493.7
Character \(\chi\) \(=\) 1900.493
Dual form 1900.2.l.d.1557.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.814717 - 0.814717i) q^{3} +(-1.28987 + 1.28987i) q^{7} +1.67247i q^{9} -0.814579 q^{11} +(2.02624 - 2.02624i) q^{13} +(-1.28987 + 1.28987i) q^{17} +(-4.09740 + 1.48705i) q^{19} +2.10176i q^{21} +(1.75613 + 1.75613i) q^{23} +(3.80674 + 3.80674i) q^{27} +1.12978 q^{29} +4.96326i q^{31} +(-0.663651 + 0.663651i) q^{33} +(3.80674 + 3.80674i) q^{37} -3.30163i q^{39} +5.22718i q^{41} +(-1.22474 - 1.22474i) q^{43} +(-4.40100 + 4.40100i) q^{47} +3.67247i q^{49} +2.10176i q^{51} +(5.41508 - 5.41508i) q^{53} +(-2.12670 + 4.54975i) q^{57} -3.99128 q^{59} -6.46115 q^{61} +(-2.15727 - 2.15727i) q^{63} +(6.22979 + 6.22979i) q^{67} +2.86150 q^{69} +13.0519i q^{71} +(-0.985576 - 0.985576i) q^{73} +(1.05070 - 1.05070i) q^{77} -6.19916 q^{79} +1.18542 q^{81} +(5.56062 + 5.56062i) q^{83} +(0.920451 - 0.920451i) q^{87} +2.10176 q^{89} +5.22718i q^{91} +(4.04365 + 4.04365i) q^{93} +(3.65568 + 3.65568i) q^{97} -1.36236i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{11} + 24 q^{61} + 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.814717 0.814717i 0.470377 0.470377i −0.431659 0.902037i \(-0.642072\pi\)
0.902037 + 0.431659i \(0.142072\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.28987 + 1.28987i −0.487525 + 0.487525i −0.907524 0.419999i \(-0.862030\pi\)
0.419999 + 0.907524i \(0.362030\pi\)
\(8\) 0 0
\(9\) 1.67247i 0.557491i
\(10\) 0 0
\(11\) −0.814579 −0.245605 −0.122802 0.992431i \(-0.539188\pi\)
−0.122802 + 0.992431i \(0.539188\pi\)
\(12\) 0 0
\(13\) 2.02624 2.02624i 0.561979 0.561979i −0.367890 0.929869i \(-0.619920\pi\)
0.929869 + 0.367890i \(0.119920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.28987 + 1.28987i −0.312839 + 0.312839i −0.846009 0.533169i \(-0.821001\pi\)
0.533169 + 0.846009i \(0.321001\pi\)
\(18\) 0 0
\(19\) −4.09740 + 1.48705i −0.940008 + 0.341153i
\(20\) 0 0
\(21\) 2.10176i 0.458641i
\(22\) 0 0
\(23\) 1.75613 + 1.75613i 0.366179 + 0.366179i 0.866082 0.499903i \(-0.166631\pi\)
−0.499903 + 0.866082i \(0.666631\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.80674 + 3.80674i 0.732608 + 0.732608i
\(28\) 0 0
\(29\) 1.12978 0.209795 0.104897 0.994483i \(-0.466549\pi\)
0.104897 + 0.994483i \(0.466549\pi\)
\(30\) 0 0
\(31\) 4.96326i 0.891428i 0.895175 + 0.445714i \(0.147050\pi\)
−0.895175 + 0.445714i \(0.852950\pi\)
\(32\) 0 0
\(33\) −0.663651 + 0.663651i −0.115527 + 0.115527i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.80674 + 3.80674i 0.625825 + 0.625825i 0.947015 0.321190i \(-0.104083\pi\)
−0.321190 + 0.947015i \(0.604083\pi\)
\(38\) 0 0
\(39\) 3.30163i 0.528684i
\(40\) 0 0
\(41\) 5.22718i 0.816348i 0.912904 + 0.408174i \(0.133834\pi\)
−0.912904 + 0.408174i \(0.866166\pi\)
\(42\) 0 0
\(43\) −1.22474 1.22474i −0.186772 0.186772i 0.607527 0.794299i \(-0.292162\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.40100 + 4.40100i −0.641951 + 0.641951i −0.951035 0.309083i \(-0.899978\pi\)
0.309083 + 0.951035i \(0.399978\pi\)
\(48\) 0 0
\(49\) 3.67247i 0.524639i
\(50\) 0 0
\(51\) 2.10176i 0.294305i
\(52\) 0 0
\(53\) 5.41508 5.41508i 0.743818 0.743818i −0.229492 0.973310i \(-0.573707\pi\)
0.973310 + 0.229492i \(0.0737066\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.12670 + 4.54975i −0.281688 + 0.602629i
\(58\) 0 0
\(59\) −3.99128 −0.519621 −0.259810 0.965660i \(-0.583660\pi\)
−0.259810 + 0.965660i \(0.583660\pi\)
\(60\) 0 0
\(61\) −6.46115 −0.827266 −0.413633 0.910444i \(-0.635740\pi\)
−0.413633 + 0.910444i \(0.635740\pi\)
\(62\) 0 0
\(63\) −2.15727 2.15727i −0.271791 0.271791i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.22979 + 6.22979i 0.761091 + 0.761091i 0.976520 0.215429i \(-0.0691150\pi\)
−0.215429 + 0.976520i \(0.569115\pi\)
\(68\) 0 0
\(69\) 2.86150 0.344484
\(70\) 0 0
\(71\) 13.0519i 1.54898i 0.632586 + 0.774490i \(0.281994\pi\)
−0.632586 + 0.774490i \(0.718006\pi\)
\(72\) 0 0
\(73\) −0.985576 0.985576i −0.115353 0.115353i 0.647074 0.762427i \(-0.275992\pi\)
−0.762427 + 0.647074i \(0.775992\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.05070 1.05070i 0.119738 0.119738i
\(78\) 0 0
\(79\) −6.19916 −0.697460 −0.348730 0.937223i \(-0.613387\pi\)
−0.348730 + 0.937223i \(0.613387\pi\)
\(80\) 0 0
\(81\) 1.18542 0.131713
\(82\) 0 0
\(83\) 5.56062 + 5.56062i 0.610357 + 0.610357i 0.943039 0.332682i \(-0.107954\pi\)
−0.332682 + 0.943039i \(0.607954\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.920451 0.920451i 0.0986827 0.0986827i
\(88\) 0 0
\(89\) 2.10176 0.222786 0.111393 0.993776i \(-0.464469\pi\)
0.111393 + 0.993776i \(0.464469\pi\)
\(90\) 0 0
\(91\) 5.22718i 0.547957i
\(92\) 0 0
\(93\) 4.04365 + 4.04365i 0.419307 + 0.419307i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.65568 + 3.65568i 0.371178 + 0.371178i 0.867906 0.496728i \(-0.165465\pi\)
−0.496728 + 0.867906i \(0.665465\pi\)
\(98\) 0 0
\(99\) 1.36236i 0.136922i
\(100\) 0 0
\(101\) −9.47857 −0.943153 −0.471576 0.881825i \(-0.656315\pi\)
−0.471576 + 0.881825i \(0.656315\pi\)
\(102\) 0 0
\(103\) 0.0211000 0.0211000i 0.00207904 0.00207904i −0.706066 0.708146i \(-0.749532\pi\)
0.708146 + 0.706066i \(0.249532\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.57412 + 2.57412i 0.248849 + 0.248849i 0.820498 0.571649i \(-0.193696\pi\)
−0.571649 + 0.820498i \(0.693696\pi\)
\(108\) 0 0
\(109\) 6.95890 0.666542 0.333271 0.942831i \(-0.391848\pi\)
0.333271 + 0.942831i \(0.391848\pi\)
\(110\) 0 0
\(111\) 6.20284 0.588747
\(112\) 0 0
\(113\) 10.7002 10.7002i 1.00659 1.00659i 0.00661092 0.999978i \(-0.497896\pi\)
0.999978 0.00661092i \(-0.00210434\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.38883 + 3.38883i 0.313298 + 0.313298i
\(118\) 0 0
\(119\) 3.32753i 0.305034i
\(120\) 0 0
\(121\) −10.3365 −0.939678
\(122\) 0 0
\(123\) 4.25867 + 4.25867i 0.383992 + 0.383992i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.83299 + 5.83299i 0.517594 + 0.517594i 0.916843 0.399249i \(-0.130729\pi\)
−0.399249 + 0.916843i \(0.630729\pi\)
\(128\) 0 0
\(129\) −1.99564 −0.175706
\(130\) 0 0
\(131\) 0.327528 0.0286163 0.0143081 0.999898i \(-0.495445\pi\)
0.0143081 + 0.999898i \(0.495445\pi\)
\(132\) 0 0
\(133\) 3.36701 7.20321i 0.291957 0.624598i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5898 10.5898i 0.904752 0.904752i −0.0910909 0.995843i \(-0.529035\pi\)
0.995843 + 0.0910909i \(0.0290354\pi\)
\(138\) 0 0
\(139\) 21.2672i 1.80386i −0.431878 0.901932i \(-0.642149\pi\)
0.431878 0.901932i \(-0.357851\pi\)
\(140\) 0 0
\(141\) 7.17114i 0.603919i
\(142\) 0 0
\(143\) −1.65053 + 1.65053i −0.138025 + 0.138025i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.99203 + 2.99203i 0.246778 + 0.246778i
\(148\) 0 0
\(149\) 2.27573i 0.186435i 0.995646 + 0.0932176i \(0.0297152\pi\)
−0.995646 + 0.0932176i \(0.970285\pi\)
\(150\) 0 0
\(151\) 9.82041i 0.799173i −0.916695 0.399587i \(-0.869154\pi\)
0.916695 0.399587i \(-0.130846\pi\)
\(152\) 0 0
\(153\) −2.15727 2.15727i −0.174405 0.174405i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.26840 + 5.26840i −0.420464 + 0.420464i −0.885363 0.464899i \(-0.846090\pi\)
0.464899 + 0.885363i \(0.346090\pi\)
\(158\) 0 0
\(159\) 8.82351i 0.699750i
\(160\) 0 0
\(161\) −4.53037 −0.357043
\(162\) 0 0
\(163\) 0.497982 + 0.497982i 0.0390050 + 0.0390050i 0.726340 0.687335i \(-0.241220\pi\)
−0.687335 + 0.726340i \(0.741220\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.84096 + 2.84096i 0.219840 + 0.219840i 0.808431 0.588591i \(-0.200317\pi\)
−0.588591 + 0.808431i \(0.700317\pi\)
\(168\) 0 0
\(169\) 4.78868i 0.368360i
\(170\) 0 0
\(171\) −2.48705 6.85279i −0.190190 0.524046i
\(172\) 0 0
\(173\) 11.6871 11.6871i 0.888552 0.888552i −0.105832 0.994384i \(-0.533751\pi\)
0.994384 + 0.105832i \(0.0337507\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.25177 + 3.25177i −0.244418 + 0.244418i
\(178\) 0 0
\(179\) −3.12542 −0.233605 −0.116802 0.993155i \(-0.537264\pi\)
−0.116802 + 0.993155i \(0.537264\pi\)
\(180\) 0 0
\(181\) 11.1080i 0.825650i 0.910810 + 0.412825i \(0.135458\pi\)
−0.910810 + 0.412825i \(0.864542\pi\)
\(182\) 0 0
\(183\) −5.26401 + 5.26401i −0.389127 + 0.389127i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.05070 1.05070i 0.0768348 0.0768348i
\(188\) 0 0
\(189\) −9.82041 −0.714329
\(190\) 0 0
\(191\) −0.814579 −0.0589408 −0.0294704 0.999566i \(-0.509382\pi\)
−0.0294704 + 0.999566i \(0.509382\pi\)
\(192\) 0 0
\(193\) −5.30621 + 5.30621i −0.381949 + 0.381949i −0.871804 0.489855i \(-0.837050\pi\)
0.489855 + 0.871804i \(0.337050\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.08966 7.08966i 0.505117 0.505117i −0.407907 0.913024i \(-0.633741\pi\)
0.913024 + 0.407907i \(0.133741\pi\)
\(198\) 0 0
\(199\) 11.8753i 0.841818i 0.907103 + 0.420909i \(0.138289\pi\)
−0.907103 + 0.420909i \(0.861711\pi\)
\(200\) 0 0
\(201\) 10.1510 0.715999
\(202\) 0 0
\(203\) −1.45727 + 1.45727i −0.102280 + 0.102280i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.93708 + 2.93708i −0.204141 + 0.204141i
\(208\) 0 0
\(209\) 3.33765 1.21132i 0.230870 0.0837887i
\(210\) 0 0
\(211\) 7.11670i 0.489934i −0.969531 0.244967i \(-0.921223\pi\)
0.969531 0.244967i \(-0.0787771\pi\)
\(212\) 0 0
\(213\) 10.6336 + 10.6336i 0.728605 + 0.728605i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.40196 6.40196i −0.434593 0.434593i
\(218\) 0 0
\(219\) −1.60593 −0.108519
\(220\) 0 0
\(221\) 5.22718i 0.351618i
\(222\) 0 0
\(223\) −15.4938 + 15.4938i −1.03754 + 1.03754i −0.0382753 + 0.999267i \(0.512186\pi\)
−0.999267 + 0.0382753i \(0.987814\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.720040 0.720040i −0.0477908 0.0477908i 0.682808 0.730598i \(-0.260759\pi\)
−0.730598 + 0.682808i \(0.760759\pi\)
\(228\) 0 0
\(229\) 6.11621i 0.404170i −0.979368 0.202085i \(-0.935228\pi\)
0.979368 0.202085i \(-0.0647718\pi\)
\(230\) 0 0
\(231\) 1.71205i 0.112644i
\(232\) 0 0
\(233\) −11.3800 11.3800i −0.745532 0.745532i 0.228105 0.973637i \(-0.426747\pi\)
−0.973637 + 0.228105i \(0.926747\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5.05056 + 5.05056i −0.328069 + 0.328069i
\(238\) 0 0
\(239\) 20.1769i 1.30514i 0.757729 + 0.652569i \(0.226309\pi\)
−0.757729 + 0.652569i \(0.773691\pi\)
\(240\) 0 0
\(241\) 1.23590i 0.0796111i −0.999207 0.0398055i \(-0.987326\pi\)
0.999207 0.0398055i \(-0.0126738\pi\)
\(242\) 0 0
\(243\) −10.4544 + 10.4544i −0.670653 + 0.670653i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.28920 + 11.3155i −0.336544 + 0.719985i
\(248\) 0 0
\(249\) 9.06066 0.574196
\(250\) 0 0
\(251\) 2.11621 0.133574 0.0667869 0.997767i \(-0.478725\pi\)
0.0667869 + 0.997767i \(0.478725\pi\)
\(252\) 0 0
\(253\) −1.43051 1.43051i −0.0899353 0.0899353i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.9562 18.9562i −1.18246 1.18246i −0.979106 0.203351i \(-0.934817\pi\)
−0.203351 0.979106i \(-0.565183\pi\)
\(258\) 0 0
\(259\) −9.82041 −0.610210
\(260\) 0 0
\(261\) 1.88952i 0.116959i
\(262\) 0 0
\(263\) −9.75416 9.75416i −0.601468 0.601468i 0.339234 0.940702i \(-0.389832\pi\)
−0.940702 + 0.339234i \(0.889832\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.71234 1.71234i 0.104793 0.104793i
\(268\) 0 0
\(269\) 28.4696 1.73582 0.867910 0.496722i \(-0.165463\pi\)
0.867910 + 0.496722i \(0.165463\pi\)
\(270\) 0 0
\(271\) 8.47857 0.515036 0.257518 0.966273i \(-0.417095\pi\)
0.257518 + 0.966273i \(0.417095\pi\)
\(272\) 0 0
\(273\) 4.25867 + 4.25867i 0.257747 + 0.257747i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.2157 12.2157i 0.733972 0.733972i −0.237432 0.971404i \(-0.576306\pi\)
0.971404 + 0.237432i \(0.0763057\pi\)
\(278\) 0 0
\(279\) −8.30092 −0.496963
\(280\) 0 0
\(281\) 12.3983i 0.739621i −0.929107 0.369811i \(-0.879423\pi\)
0.929107 0.369811i \(-0.120577\pi\)
\(282\) 0 0
\(283\) −7.68617 7.68617i −0.456895 0.456895i 0.440740 0.897635i \(-0.354716\pi\)
−0.897635 + 0.440740i \(0.854716\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.74238 6.74238i −0.397990 0.397990i
\(288\) 0 0
\(289\) 13.6725i 0.804263i
\(290\) 0 0
\(291\) 5.95669 0.349187
\(292\) 0 0
\(293\) 13.1443 13.1443i 0.767901 0.767901i −0.209836 0.977737i \(-0.567293\pi\)
0.977737 + 0.209836i \(0.0672930\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.10089 3.10089i −0.179932 0.179932i
\(298\) 0 0
\(299\) 7.11670 0.411570
\(300\) 0 0
\(301\) 3.15952 0.182112
\(302\) 0 0
\(303\) −7.72235 + 7.72235i −0.443638 + 0.443638i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.20355 4.20355i −0.239909 0.239909i 0.576903 0.816813i \(-0.304261\pi\)
−0.816813 + 0.576903i \(0.804261\pi\)
\(308\) 0 0
\(309\) 0.0343811i 0.00195587i
\(310\) 0 0
\(311\) −9.48705 −0.537961 −0.268981 0.963146i \(-0.586687\pi\)
−0.268981 + 0.963146i \(0.586687\pi\)
\(312\) 0 0
\(313\) 2.12387 + 2.12387i 0.120048 + 0.120048i 0.764579 0.644531i \(-0.222947\pi\)
−0.644531 + 0.764579i \(0.722947\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.8775 12.8775i −0.723272 0.723272i 0.245998 0.969270i \(-0.420884\pi\)
−0.969270 + 0.245998i \(0.920884\pi\)
\(318\) 0 0
\(319\) −0.920294 −0.0515266
\(320\) 0 0
\(321\) 4.19435 0.234106
\(322\) 0 0
\(323\) 3.36701 7.20321i 0.187345 0.400797i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.66954 5.66954i 0.313526 0.313526i
\(328\) 0 0
\(329\) 11.3534i 0.625935i
\(330\) 0 0
\(331\) 32.4608i 1.78421i −0.451829 0.892105i \(-0.649228\pi\)
0.451829 0.892105i \(-0.350772\pi\)
\(332\) 0 0
\(333\) −6.36667 + 6.36667i −0.348891 + 0.348891i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.8986 12.8986i −0.702631 0.702631i 0.262343 0.964975i \(-0.415505\pi\)
−0.964975 + 0.262343i \(0.915505\pi\)
\(338\) 0 0
\(339\) 17.4353i 0.946953i
\(340\) 0 0
\(341\) 4.04297i 0.218939i
\(342\) 0 0
\(343\) −13.7661 13.7661i −0.743299 0.743299i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.86778 + 7.86778i −0.422365 + 0.422365i −0.886017 0.463652i \(-0.846539\pi\)
0.463652 + 0.886017i \(0.346539\pi\)
\(348\) 0 0
\(349\) 10.4871i 0.561359i 0.959802 + 0.280679i \(0.0905598\pi\)
−0.959802 + 0.280679i \(0.909440\pi\)
\(350\) 0 0
\(351\) 15.4268 0.823420
\(352\) 0 0
\(353\) 21.3855 + 21.3855i 1.13823 + 1.13823i 0.988767 + 0.149466i \(0.0477555\pi\)
0.149466 + 0.988767i \(0.452244\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.71099 2.71099i −0.143481 0.143481i
\(358\) 0 0
\(359\) 21.4701i 1.13315i 0.824011 + 0.566574i \(0.191731\pi\)
−0.824011 + 0.566574i \(0.808269\pi\)
\(360\) 0 0
\(361\) 14.5774 12.1861i 0.767229 0.641373i
\(362\) 0 0
\(363\) −8.42129 + 8.42129i −0.442003 + 0.442003i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.37229 + 2.37229i −0.123832 + 0.123832i −0.766307 0.642475i \(-0.777908\pi\)
0.642475 + 0.766307i \(0.277908\pi\)
\(368\) 0 0
\(369\) −8.74231 −0.455106
\(370\) 0 0
\(371\) 13.9695i 0.725260i
\(372\) 0 0
\(373\) −1.23263 + 1.23263i −0.0638229 + 0.0638229i −0.738298 0.674475i \(-0.764370\pi\)
0.674475 + 0.738298i \(0.264370\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.28921 2.28921i 0.117900 0.117900i
\(378\) 0 0
\(379\) −9.48238 −0.487077 −0.243539 0.969891i \(-0.578308\pi\)
−0.243539 + 0.969891i \(0.578308\pi\)
\(380\) 0 0
\(381\) 9.50447 0.486929
\(382\) 0 0
\(383\) −10.1734 + 10.1734i −0.519837 + 0.519837i −0.917522 0.397685i \(-0.869814\pi\)
0.397685 + 0.917522i \(0.369814\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.04835 2.04835i 0.104124 0.104124i
\(388\) 0 0
\(389\) 24.8964i 1.26230i 0.775662 + 0.631149i \(0.217416\pi\)
−0.775662 + 0.631149i \(0.782584\pi\)
\(390\) 0 0
\(391\) −4.53037 −0.229110
\(392\) 0 0
\(393\) 0.266843 0.266843i 0.0134604 0.0134604i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.59220 + 9.59220i −0.481418 + 0.481418i −0.905584 0.424166i \(-0.860567\pi\)
0.424166 + 0.905584i \(0.360567\pi\)
\(398\) 0 0
\(399\) −3.12542 8.61174i −0.156467 0.431126i
\(400\) 0 0
\(401\) 34.3504i 1.71538i −0.514171 0.857688i \(-0.671900\pi\)
0.514171 0.857688i \(-0.328100\pi\)
\(402\) 0 0
\(403\) 10.0568 + 10.0568i 0.500963 + 0.500963i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.10089 3.10089i −0.153705 0.153705i
\(408\) 0 0
\(409\) 20.5387 1.01557 0.507786 0.861483i \(-0.330464\pi\)
0.507786 + 0.861483i \(0.330464\pi\)
\(410\) 0 0
\(411\) 17.2555i 0.851149i
\(412\) 0 0
\(413\) 5.14823 5.14823i 0.253328 0.253328i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −17.3268 17.3268i −0.848497 0.848497i
\(418\) 0 0
\(419\) 3.22874i 0.157734i −0.996885 0.0788670i \(-0.974870\pi\)
0.996885 0.0788670i \(-0.0251303\pi\)
\(420\) 0 0
\(421\) 7.22282i 0.352019i 0.984388 + 0.176009i \(0.0563189\pi\)
−0.984388 + 0.176009i \(0.943681\pi\)
\(422\) 0 0
\(423\) −7.36054 7.36054i −0.357882 0.357882i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.33404 8.33404i 0.403313 0.403313i
\(428\) 0 0
\(429\) 2.68944i 0.129847i
\(430\) 0 0
\(431\) 24.9741i 1.20296i −0.798888 0.601480i \(-0.794578\pi\)
0.798888 0.601480i \(-0.205422\pi\)
\(432\) 0 0
\(433\) −12.3085 + 12.3085i −0.591510 + 0.591510i −0.938039 0.346529i \(-0.887360\pi\)
0.346529 + 0.938039i \(0.387360\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.80704 4.58412i −0.469134 0.219288i
\(438\) 0 0
\(439\) −31.2249 −1.49029 −0.745143 0.666905i \(-0.767619\pi\)
−0.745143 + 0.666905i \(0.767619\pi\)
\(440\) 0 0
\(441\) −6.14211 −0.292481
\(442\) 0 0
\(443\) −28.4510 28.4510i −1.35175 1.35175i −0.883709 0.468037i \(-0.844961\pi\)
−0.468037 0.883709i \(-0.655039\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.85408 + 1.85408i 0.0876948 + 0.0876948i
\(448\) 0 0
\(449\) 29.5477 1.39444 0.697220 0.716857i \(-0.254420\pi\)
0.697220 + 0.716857i \(0.254420\pi\)
\(450\) 0 0
\(451\) 4.25795i 0.200499i
\(452\) 0 0
\(453\) −8.00085 8.00085i −0.375913 0.375913i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.90857 9.90857i 0.463503 0.463503i −0.436299 0.899802i \(-0.643711\pi\)
0.899802 + 0.436299i \(0.143711\pi\)
\(458\) 0 0
\(459\) −9.82041 −0.458377
\(460\) 0 0
\(461\) 19.4612 0.906396 0.453198 0.891410i \(-0.350283\pi\)
0.453198 + 0.891410i \(0.350283\pi\)
\(462\) 0 0
\(463\) 0.0755138 + 0.0755138i 0.00350942 + 0.00350942i 0.708859 0.705350i \(-0.249210\pi\)
−0.705350 + 0.708859i \(0.749210\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.0440 11.0440i 0.511057 0.511057i −0.403793 0.914850i \(-0.632309\pi\)
0.914850 + 0.403793i \(0.132309\pi\)
\(468\) 0 0
\(469\) −16.0712 −0.742101
\(470\) 0 0
\(471\) 8.58451i 0.395553i
\(472\) 0 0
\(473\) 0.997651 + 0.997651i 0.0458720 + 0.0458720i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.05657 + 9.05657i 0.414672 + 0.414672i
\(478\) 0 0
\(479\) 16.3708i 0.748003i 0.927428 + 0.374001i \(0.122014\pi\)
−0.927428 + 0.374001i \(0.877986\pi\)
\(480\) 0 0
\(481\) 15.4268 0.703400
\(482\) 0 0
\(483\) −3.69097 + 3.69097i −0.167945 + 0.167945i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10.9881 10.9881i −0.497920 0.497920i 0.412870 0.910790i \(-0.364526\pi\)
−0.910790 + 0.412870i \(0.864526\pi\)
\(488\) 0 0
\(489\) 0.811429 0.0366941
\(490\) 0 0
\(491\) −5.99152 −0.270393 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(492\) 0 0
\(493\) −1.45727 + 1.45727i −0.0656321 + 0.0656321i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.8353 16.8353i −0.755167 0.755167i
\(498\) 0 0
\(499\) 24.7887i 1.10969i −0.831952 0.554847i \(-0.812777\pi\)
0.831952 0.554847i \(-0.187223\pi\)
\(500\) 0 0
\(501\) 4.62916 0.206816
\(502\) 0 0
\(503\) 19.7596 + 19.7596i 0.881036 + 0.881036i 0.993640 0.112604i \(-0.0359192\pi\)
−0.112604 + 0.993640i \(0.535919\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.90142 + 3.90142i 0.173268 + 0.173268i
\(508\) 0 0
\(509\) 35.0067 1.55165 0.775823 0.630950i \(-0.217335\pi\)
0.775823 + 0.630950i \(0.217335\pi\)
\(510\) 0 0
\(511\) 2.54253 0.112475
\(512\) 0 0
\(513\) −21.2586 9.93693i −0.938589 0.438726i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.58496 3.58496i 0.157666 0.157666i
\(518\) 0 0
\(519\) 19.0433i 0.835909i
\(520\) 0 0
\(521\) 17.9091i 0.784611i −0.919835 0.392306i \(-0.871678\pi\)
0.919835 0.392306i \(-0.128322\pi\)
\(522\) 0 0
\(523\) −27.1034 + 27.1034i −1.18515 + 1.18515i −0.206756 + 0.978392i \(0.566291\pi\)
−0.978392 + 0.206756i \(0.933709\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.40196 6.40196i −0.278874 0.278874i
\(528\) 0 0
\(529\) 16.8320i 0.731826i
\(530\) 0 0
\(531\) 6.67531i 0.289684i
\(532\) 0 0
\(533\) 10.5915 + 10.5915i 0.458770 + 0.458770i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.54633 + 2.54633i −0.109882 + 0.109882i
\(538\) 0 0
\(539\) 2.99152i 0.128854i
\(540\) 0 0
\(541\) −21.3660 −0.918598 −0.459299 0.888282i \(-0.651899\pi\)
−0.459299 + 0.888282i \(0.651899\pi\)
\(542\) 0 0
\(543\) 9.04987 + 9.04987i 0.388367 + 0.388367i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −9.86437 9.86437i −0.421770 0.421770i 0.464043 0.885813i \(-0.346398\pi\)
−0.885813 + 0.464043i \(0.846398\pi\)
\(548\) 0 0
\(549\) 10.8061i 0.461193i
\(550\) 0 0
\(551\) −4.62916 + 1.68004i −0.197209 + 0.0715721i
\(552\) 0 0
\(553\) 7.99611 7.99611i 0.340029 0.340029i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.24759 + 8.24759i −0.349462 + 0.349462i −0.859909 0.510447i \(-0.829480\pi\)
0.510447 + 0.859909i \(0.329480\pi\)
\(558\) 0 0
\(559\) −4.96326 −0.209924
\(560\) 0 0
\(561\) 1.71205i 0.0722827i
\(562\) 0 0
\(563\) 15.1284 15.1284i 0.637585 0.637585i −0.312374 0.949959i \(-0.601124\pi\)
0.949959 + 0.312374i \(0.101124\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.52904 + 1.52904i −0.0642136 + 0.0642136i
\(568\) 0 0
\(569\) 26.1039 1.09433 0.547166 0.837024i \(-0.315707\pi\)
0.547166 + 0.837024i \(0.315707\pi\)
\(570\) 0 0
\(571\) −20.6814 −0.865490 −0.432745 0.901516i \(-0.642455\pi\)
−0.432745 + 0.901516i \(0.642455\pi\)
\(572\) 0 0
\(573\) −0.663651 + 0.663651i −0.0277244 + 0.0277244i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 22.9238 22.9238i 0.954328 0.954328i −0.0446734 0.999002i \(-0.514225\pi\)
0.999002 + 0.0446734i \(0.0142247\pi\)
\(578\) 0 0
\(579\) 8.64612i 0.359321i
\(580\) 0 0
\(581\) −14.3449 −0.595129
\(582\) 0 0
\(583\) −4.41101 + 4.41101i −0.182685 + 0.182685i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.1193 19.1193i 0.789137 0.789137i −0.192216 0.981353i \(-0.561567\pi\)
0.981353 + 0.192216i \(0.0615674\pi\)
\(588\) 0 0
\(589\) −7.38062 20.3365i −0.304113 0.837949i
\(590\) 0 0
\(591\) 11.5521i 0.475191i
\(592\) 0 0
\(593\) 16.1701 + 16.1701i 0.664027 + 0.664027i 0.956327 0.292300i \(-0.0944206\pi\)
−0.292300 + 0.956327i \(0.594421\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9.67502 + 9.67502i 0.395972 + 0.395972i
\(598\) 0 0
\(599\) 23.7702 0.971225 0.485612 0.874174i \(-0.338597\pi\)
0.485612 + 0.874174i \(0.338597\pi\)
\(600\) 0 0
\(601\) 21.6168i 0.881767i −0.897564 0.440883i \(-0.854665\pi\)
0.897564 0.440883i \(-0.145335\pi\)
\(602\) 0 0
\(603\) −10.4192 + 10.4192i −0.424301 + 0.424301i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.3860 + 12.3860i 0.502733 + 0.502733i 0.912286 0.409553i \(-0.134315\pi\)
−0.409553 + 0.912286i \(0.634315\pi\)
\(608\) 0 0
\(609\) 2.37452i 0.0962205i
\(610\) 0 0
\(611\) 17.8350i 0.721526i
\(612\) 0 0
\(613\) −24.8736 24.8736i −1.00463 1.00463i −0.999989 0.00464487i \(-0.998521\pi\)
−0.00464487 0.999989i \(-0.501479\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.8558 20.8558i 0.839621 0.839621i −0.149188 0.988809i \(-0.547666\pi\)
0.988809 + 0.149188i \(0.0476659\pi\)
\(618\) 0 0
\(619\) 29.3016i 1.17773i 0.808231 + 0.588866i \(0.200425\pi\)
−0.808231 + 0.588866i \(0.799575\pi\)
\(620\) 0 0
\(621\) 13.3703i 0.536531i
\(622\) 0 0
\(623\) −2.71099 + 2.71099i −0.108614 + 0.108614i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.73236 3.70613i 0.0691838 0.148008i
\(628\) 0 0
\(629\) −9.82041 −0.391565
\(630\) 0 0
\(631\) 1.24983 0.0497550 0.0248775 0.999691i \(-0.492080\pi\)
0.0248775 + 0.999691i \(0.492080\pi\)
\(632\) 0 0
\(633\) −5.79810 5.79810i −0.230454 0.230454i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 7.44132 + 7.44132i 0.294836 + 0.294836i
\(638\) 0 0
\(639\) −21.8290 −0.863542
\(640\) 0 0
\(641\) 19.0906i 0.754031i 0.926207 + 0.377016i \(0.123050\pi\)
−0.926207 + 0.377016i \(0.876950\pi\)
\(642\) 0 0
\(643\) −10.6002 10.6002i −0.418032 0.418032i 0.466493 0.884525i \(-0.345517\pi\)
−0.884525 + 0.466493i \(0.845517\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.8150 + 18.8150i −0.739693 + 0.739693i −0.972518 0.232826i \(-0.925203\pi\)
0.232826 + 0.972518i \(0.425203\pi\)
\(648\) 0 0
\(649\) 3.25121 0.127621
\(650\) 0 0
\(651\) −10.4316 −0.408846
\(652\) 0 0
\(653\) 19.4236 + 19.4236i 0.760103 + 0.760103i 0.976341 0.216238i \(-0.0693787\pi\)
−0.216238 + 0.976341i \(0.569379\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.64835 1.64835i 0.0643082 0.0643082i
\(658\) 0 0
\(659\) 42.5996 1.65944 0.829722 0.558176i \(-0.188499\pi\)
0.829722 + 0.558176i \(0.188499\pi\)
\(660\) 0 0
\(661\) 32.4608i 1.26258i 0.775547 + 0.631290i \(0.217474\pi\)
−0.775547 + 0.631290i \(0.782526\pi\)
\(662\) 0 0
\(663\) 4.25867 + 4.25867i 0.165393 + 0.165393i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.98404 + 1.98404i 0.0768224 + 0.0768224i
\(668\) 0 0
\(669\) 25.2462i 0.976073i
\(670\) 0 0
\(671\) 5.26312 0.203180
\(672\) 0 0
\(673\) 12.3929 12.3929i 0.477712 0.477712i −0.426687 0.904399i \(-0.640319\pi\)
0.904399 + 0.426687i \(0.140319\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.09185 + 5.09185i 0.195696 + 0.195696i 0.798152 0.602456i \(-0.205811\pi\)
−0.602456 + 0.798152i \(0.705811\pi\)
\(678\) 0 0
\(679\) −9.43069 −0.361917
\(680\) 0 0
\(681\) −1.17326 −0.0449594
\(682\) 0 0
\(683\) 10.3598 10.3598i 0.396406 0.396406i −0.480558 0.876963i \(-0.659566\pi\)
0.876963 + 0.480558i \(0.159566\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.98298 4.98298i −0.190113 0.190113i
\(688\) 0 0
\(689\) 21.9445i 0.836020i
\(690\) 0 0
\(691\) 6.40567 0.243683 0.121842 0.992550i \(-0.461120\pi\)
0.121842 + 0.992550i \(0.461120\pi\)
\(692\) 0 0
\(693\) 1.75727 + 1.75727i 0.0667531 + 0.0667531i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −6.74238 6.74238i −0.255386 0.255386i
\(698\) 0 0
\(699\) −18.5430 −0.701362
\(700\) 0 0
\(701\) 1.59958 0.0604152 0.0302076 0.999544i \(-0.490383\pi\)
0.0302076 + 0.999544i \(0.490383\pi\)
\(702\) 0 0
\(703\) −21.2586 9.93693i −0.801782 0.374778i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.2261 12.2261i 0.459811 0.459811i
\(708\) 0 0
\(709\) 27.8579i 1.04623i −0.852264 0.523113i \(-0.824771\pi\)
0.852264 0.523113i \(-0.175229\pi\)
\(710\) 0 0
\(711\) 10.3679i 0.388827i
\(712\) 0 0
\(713\) −8.71615 + 8.71615i −0.326422 + 0.326422i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.4385 + 16.4385i 0.613907 + 0.613907i
\(718\) 0 0
\(719\) 16.7972i 0.626428i −0.949682 0.313214i \(-0.898594\pi\)
0.949682 0.313214i \(-0.101406\pi\)
\(720\) 0 0
\(721\) 0.0544325i 0.00202717i
\(722\) 0 0
\(723\) −1.00691 1.00691i −0.0374472 0.0374472i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −23.0113 + 23.0113i −0.853443 + 0.853443i −0.990556 0.137112i \(-0.956218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(728\) 0 0
\(729\) 20.5911i 0.762633i
\(730\) 0 0
\(731\) 3.15952 0.116859
\(732\) 0 0
\(733\) 32.3085 + 32.3085i 1.19334 + 1.19334i 0.976123 + 0.217219i \(0.0696984\pi\)
0.217219 + 0.976123i \(0.430302\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.07466 5.07466i −0.186927 0.186927i
\(738\) 0 0
\(739\) 2.71947i 0.100037i −0.998748 0.0500186i \(-0.984072\pi\)
0.998748 0.0500186i \(-0.0159281\pi\)
\(740\) 0 0
\(741\) 4.90969 + 13.5281i 0.180362 + 0.496967i
\(742\) 0 0
\(743\) 36.7784 36.7784i 1.34927 1.34927i 0.462814 0.886456i \(-0.346840\pi\)
0.886456 0.462814i \(-0.153160\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9.29998 + 9.29998i −0.340268 + 0.340268i
\(748\) 0 0
\(749\) −6.64055 −0.242640
\(750\) 0 0
\(751\) 10.0843i 0.367982i 0.982928 + 0.183991i \(0.0589018\pi\)
−0.982928 + 0.183991i \(0.941098\pi\)
\(752\) 0 0
\(753\) 1.72411 1.72411i 0.0628301 0.0628301i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.0571 + 34.0571i −1.23782 + 1.23782i −0.276937 + 0.960888i \(0.589319\pi\)
−0.960888 + 0.276937i \(0.910681\pi\)
\(758\) 0 0
\(759\) −2.33092 −0.0846070
\(760\) 0 0
\(761\) 25.9397 0.940314 0.470157 0.882583i \(-0.344197\pi\)
0.470157 + 0.882583i \(0.344197\pi\)
\(762\) 0 0
\(763\) −8.97608 + 8.97608i −0.324956 + 0.324956i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.08731 + 8.08731i −0.292016 + 0.292016i
\(768\) 0 0
\(769\) 3.36191i 0.121234i 0.998161 + 0.0606168i \(0.0193068\pi\)
−0.998161 + 0.0606168i \(0.980693\pi\)
\(770\) 0 0
\(771\) −30.8879 −1.11240
\(772\) 0 0
\(773\) 26.7419 26.7419i 0.961838 0.961838i −0.0374597 0.999298i \(-0.511927\pi\)
0.999298 + 0.0374597i \(0.0119266\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.00085 + 8.00085i −0.287029 + 0.287029i
\(778\) 0 0
\(779\) −7.77308 21.4178i −0.278499 0.767374i
\(780\) 0 0
\(781\) 10.6318i 0.380437i
\(782\) 0 0
\(783\) 4.30078 + 4.30078i 0.153697 + 0.153697i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 20.7014 + 20.7014i 0.737927 + 0.737927i 0.972176 0.234250i \(-0.0752634\pi\)
−0.234250 + 0.972176i \(0.575263\pi\)
\(788\) 0 0
\(789\) −15.8938 −0.565833
\(790\) 0 0
\(791\) 27.6037i 0.981475i
\(792\) 0 0
\(793\) −13.0919 + 13.0919i −0.464906 + 0.464906i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.6541 + 22.6541i 0.802449 + 0.802449i 0.983478 0.181028i \(-0.0579426\pi\)
−0.181028 + 0.983478i \(0.557943\pi\)
\(798\) 0 0
\(799\) 11.3534i 0.401655i
\(800\) 0 0
\(801\) 3.51513i 0.124201i
\(802\) 0 0
\(803\) 0.802829 + 0.802829i 0.0283312 + 0.0283312i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 23.1946 23.1946i 0.816490 0.816490i
\(808\) 0 0
\(809\) 45.6677i 1.60559i 0.596255 + 0.802795i \(0.296655\pi\)
−0.596255 + 0.802795i \(0.703345\pi\)
\(810\) 0 0
\(811\) 0.421719i 0.0148085i −0.999973 0.00740427i \(-0.997643\pi\)
0.999973 0.00740427i \(-0.00235687\pi\)
\(812\) 0 0
\(813\) 6.90763 6.90763i 0.242261 0.242261i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.83953 + 3.19701i 0.239285 + 0.111849i
\(818\) 0 0
\(819\) −8.74231 −0.305481
\(820\) 0 0
\(821\) −3.24983 −0.113420 −0.0567100 0.998391i \(-0.518061\pi\)
−0.0567100 + 0.998391i \(0.518061\pi\)
\(822\) 0 0
\(823\) −28.5795 28.5795i −0.996220 0.996220i 0.00377327 0.999993i \(-0.498799\pi\)
−0.999993 + 0.00377327i \(0.998799\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.78457 2.78457i −0.0968290 0.0968290i 0.657033 0.753862i \(-0.271811\pi\)
−0.753862 + 0.657033i \(0.771811\pi\)
\(828\) 0 0
\(829\) −28.2601 −0.981513 −0.490757 0.871297i \(-0.663280\pi\)
−0.490757 + 0.871297i \(0.663280\pi\)
\(830\) 0 0
\(831\) 19.9047i 0.690487i
\(832\) 0 0
\(833\) −4.73701 4.73701i −0.164128 0.164128i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −18.8939 + 18.8939i −0.653067 + 0.653067i
\(838\) 0 0
\(839\) 4.75103 0.164024 0.0820118 0.996631i \(-0.473865\pi\)
0.0820118 + 0.996631i \(0.473865\pi\)
\(840\) 0 0
\(841\) −27.7236 −0.955986
\(842\) 0 0
\(843\) −10.1011 10.1011i −0.347901 0.347901i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 13.3327 13.3327i 0.458117 0.458117i
\(848\) 0 0
\(849\) −12.5241 −0.429826
\(850\) 0 0
\(851\) 13.3703i 0.458328i
\(852\) 0 0
\(853\) 7.41359 + 7.41359i 0.253837 + 0.253837i 0.822542 0.568705i \(-0.192555\pi\)
−0.568705 + 0.822542i \(0.692555\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.2874 12.2874i −0.419730 0.419730i 0.465380 0.885111i \(-0.345918\pi\)
−0.885111 + 0.465380i \(0.845918\pi\)
\(858\) 0 0
\(859\) 33.0174i 1.12654i 0.826273 + 0.563270i \(0.190457\pi\)
−0.826273 + 0.563270i \(0.809543\pi\)
\(860\) 0 0
\(861\) −10.9863 −0.374411
\(862\) 0 0
\(863\) 19.5463 19.5463i 0.665364 0.665364i −0.291275 0.956639i \(-0.594080\pi\)
0.956639 + 0.291275i \(0.0940796\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 11.1392 + 11.1392i 0.378307 + 0.378307i
\(868\) 0 0
\(869\) 5.04970 0.171299
\(870\) 0 0
\(871\) 25.2462 0.855433
\(872\) 0 0
\(873\) −6.11402 + 6.11402i −0.206928 + 0.206928i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.0504 + 39.0504i 1.31864 + 1.31864i 0.914854 + 0.403784i \(0.132305\pi\)
0.403784 + 0.914854i \(0.367695\pi\)
\(878\) 0 0
\(879\) 21.4178i 0.722406i
\(880\) 0 0
\(881\) 22.6037 0.761538 0.380769 0.924670i \(-0.375659\pi\)
0.380769 + 0.924670i \(0.375659\pi\)
\(882\) 0 0
\(883\) 36.9728 + 36.9728i 1.24423 + 1.24423i 0.958228 + 0.286007i \(0.0923279\pi\)
0.286007 + 0.958228i \(0.407672\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.0509 + 23.0509i 0.773974 + 0.773974i 0.978799 0.204825i \(-0.0656625\pi\)
−0.204825 + 0.978799i \(0.565662\pi\)
\(888\) 0 0
\(889\) −15.0476 −0.504680
\(890\) 0 0
\(891\) −0.965619 −0.0323495
\(892\) 0 0
\(893\) 11.4881 24.5771i 0.384436 0.822443i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.79810 5.79810i 0.193593 0.193593i
\(898\) 0 0
\(899\) 5.60739i 0.187017i
\(900\) 0 0
\(901\) 13.9695i 0.465391i
\(902\) 0 0
\(903\) 2.57412 2.57412i 0.0856613 0.0856613i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 15.0759 + 15.0759i 0.500587 + 0.500587i 0.911620 0.411033i \(-0.134832\pi\)
−0.411033 + 0.911620i \(0.634832\pi\)
\(908\) 0 0
\(909\) 15.8526i 0.525799i
\(910\) 0 0
\(911\) 11.6386i 0.385603i 0.981238 + 0.192802i \(0.0617573\pi\)
−0.981238 + 0.192802i \(0.938243\pi\)
\(912\) 0 0
\(913\) −4.52956 4.52956i −0.149907 0.149907i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.422468 + 0.422468i −0.0139511 + 0.0139511i
\(918\) 0 0
\(919\) 30.8409i 1.01735i 0.860959 + 0.508674i \(0.169864\pi\)
−0.860959 + 0.508674i \(0.830136\pi\)
\(920\) 0 0
\(921\) −6.84941 −0.225696
\(922\) 0 0
\(923\) 26.4464 + 26.4464i 0.870494 + 0.870494i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0.0352892 + 0.0352892i 0.00115905 + 0.00115905i
\(928\) 0 0
\(929\) 34.2070i 1.12229i −0.827716 0.561147i \(-0.810360\pi\)
0.827716 0.561147i \(-0.189640\pi\)
\(930\) 0 0
\(931\) −5.46115 15.0476i −0.178982 0.493165i
\(932\) 0 0
\(933\) −7.72926 + 7.72926i −0.253045 + 0.253045i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −38.2293 + 38.2293i −1.24890 + 1.24890i −0.292688 + 0.956208i \(0.594550\pi\)
−0.956208 + 0.292688i \(0.905450\pi\)
\(938\) 0 0
\(939\) 3.46070 0.112936
\(940\) 0 0
\(941\) 53.6559i 1.74913i 0.484906 + 0.874566i \(0.338854\pi\)
−0.484906 + 0.874566i \(0.661146\pi\)
\(942\) 0 0
\(943\) −9.17962 + 9.17962i −0.298930 + 0.298930i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.6170 + 27.6170i −0.897431 + 0.897431i −0.995208 0.0977775i \(-0.968827\pi\)
0.0977775 + 0.995208i \(0.468827\pi\)
\(948\) 0 0
\(949\) −3.99403 −0.129652
\(950\) 0 0
\(951\) −20.9830 −0.680422
\(952\) 0 0
\(953\) 1.51366 1.51366i 0.0490322 0.0490322i −0.682166 0.731198i \(-0.738962\pi\)
0.731198 + 0.682166i \(0.238962\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.749780 + 0.749780i −0.0242369 + 0.0242369i
\(958\) 0 0
\(959\) 27.3190i 0.882178i
\(960\) 0 0
\(961\) 6.36604 0.205356
\(962\) 0 0
\(963\) −4.30514 + 4.30514i −0.138731 + 0.138731i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.5200 12.5200i 0.402617 0.402617i −0.476537 0.879154i \(-0.658108\pi\)
0.879154 + 0.476537i \(0.158108\pi\)
\(968\) 0 0
\(969\) −3.12542 8.61174i −0.100403 0.276649i
\(970\) 0 0
\(971\) 46.1692i 1.48164i 0.671704 + 0.740819i \(0.265563\pi\)
−0.671704 + 0.740819i \(0.734437\pi\)
\(972\) 0 0
\(973\) 27.4320 + 27.4320i 0.879429 + 0.879429i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.8919 25.8919i −0.828354 0.828354i 0.158935 0.987289i \(-0.449194\pi\)
−0.987289 + 0.158935i \(0.949194\pi\)
\(978\) 0 0
\(979\) −1.71205 −0.0547173
\(980\) 0 0
\(981\) 11.6386i 0.371591i
\(982\) 0 0
\(983\) 31.9637 31.9637i 1.01948 1.01948i 0.0196770 0.999806i \(-0.493736\pi\)
0.999806 0.0196770i \(-0.00626377\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9.24983 9.24983i −0.294425 0.294425i
\(988\) 0 0
\(989\) 4.30163i 0.136784i
\(990\) 0 0
\(991\) 38.9980i 1.23881i 0.785070 + 0.619407i \(0.212627\pi\)
−0.785070 + 0.619407i \(0.787373\pi\)
\(992\) 0 0
\(993\) −26.4464 26.4464i −0.839251 0.839251i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.08045 9.08045i 0.287581 0.287581i −0.548542 0.836123i \(-0.684817\pi\)
0.836123 + 0.548542i \(0.184817\pi\)
\(998\) 0 0
\(999\) 28.9826i 0.916968i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.2.l.d.493.7 yes 24
5.2 odd 4 inner 1900.2.l.d.1557.5 yes 24
5.3 odd 4 inner 1900.2.l.d.1557.8 yes 24
5.4 even 2 inner 1900.2.l.d.493.6 yes 24
19.18 odd 2 inner 1900.2.l.d.493.5 24
95.18 even 4 inner 1900.2.l.d.1557.6 yes 24
95.37 even 4 inner 1900.2.l.d.1557.7 yes 24
95.94 odd 2 inner 1900.2.l.d.493.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1900.2.l.d.493.5 24 19.18 odd 2 inner
1900.2.l.d.493.6 yes 24 5.4 even 2 inner
1900.2.l.d.493.7 yes 24 1.1 even 1 trivial
1900.2.l.d.493.8 yes 24 95.94 odd 2 inner
1900.2.l.d.1557.5 yes 24 5.2 odd 4 inner
1900.2.l.d.1557.6 yes 24 95.18 even 4 inner
1900.2.l.d.1557.7 yes 24 95.37 even 4 inner
1900.2.l.d.1557.8 yes 24 5.3 odd 4 inner