Properties

Label 1900.1.w
Level $1900$
Weight $1$
Character orbit 1900.w
Rep. character $\chi_{1900}(189,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $1$
Sturm bound $300$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1900.w (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 475 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(300\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1900, [\chi])\).

Total New Old
Modular forms 44 8 36
Cusp forms 20 8 12
Eisenstein series 24 0 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + q^{5} + 2 q^{9} + 3 q^{11} - 5 q^{17} - 2 q^{19} - 10 q^{23} + q^{25} - 2 q^{35} - q^{45} - 6 q^{49} + q^{55} - 2 q^{61} + 5 q^{63} - 2 q^{81} + 10 q^{83} + 2 q^{85} + q^{95} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1900.1.w.a 1900.w 475.m $8$ $0.948$ \(\Q(\zeta_{15})\) $D_{30}$ \(\Q(\sqrt{-19}) \) None 1900.1.w.a \(0\) \(0\) \(1\) \(0\) \(q+\zeta_{30}^{8}q^{5}+(\zeta_{30}^{2}+\zeta_{30}^{13})q^{7}+\zeta_{30}^{3}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1900, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1900, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 3}\)