Defining parameters
Level: | \( N \) | = | \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(216000\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1900))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2641 | 739 | 1902 |
Cusp forms | 121 | 43 | 78 |
Eisenstein series | 2520 | 696 | 1824 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 39 | 0 | 4 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1900))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1900))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(1900)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(475))\)\(^{\oplus 3}\)