Properties

Label 1890.2.bi.b.719.11
Level $1890$
Weight $2$
Character 1890.719
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 719.11
Character \(\chi\) \(=\) 1890.719
Dual form 1890.2.bi.b.899.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-0.796362 - 2.08945i) q^{5} +(-2.55753 - 0.677517i) q^{7} +1.00000 q^{8} +(-0.796362 - 2.08945i) q^{10} +(2.46056 + 1.42061i) q^{11} +(2.51471 - 4.35560i) q^{13} +(-2.55753 - 0.677517i) q^{14} +1.00000 q^{16} +(-3.91852 + 2.26236i) q^{17} +(-3.40172 - 1.96399i) q^{19} +(-0.796362 - 2.08945i) q^{20} +(2.46056 + 1.42061i) q^{22} +(-3.21075 - 5.56118i) q^{23} +(-3.73162 + 3.32792i) q^{25} +(2.51471 - 4.35560i) q^{26} +(-2.55753 - 0.677517i) q^{28} +(-3.16363 + 1.82652i) q^{29} -2.04291i q^{31} +1.00000 q^{32} +(-3.91852 + 2.26236i) q^{34} +(0.621082 + 5.88339i) q^{35} +(-0.925584 - 0.534386i) q^{37} +(-3.40172 - 1.96399i) q^{38} +(-0.796362 - 2.08945i) q^{40} +(-2.85368 + 4.94272i) q^{41} +(6.76731 - 3.90711i) q^{43} +(2.46056 + 1.42061i) q^{44} +(-3.21075 - 5.56118i) q^{46} -2.23938i q^{47} +(6.08194 + 3.46554i) q^{49} +(-3.73162 + 3.32792i) q^{50} +(2.51471 - 4.35560i) q^{52} +(-2.88164 - 4.99115i) q^{53} +(1.00879 - 6.27254i) q^{55} +(-2.55753 - 0.677517i) q^{56} +(-3.16363 + 1.82652i) q^{58} -12.8102 q^{59} -10.4338i q^{61} -2.04291i q^{62} +1.00000 q^{64} +(-11.1034 - 1.78572i) q^{65} +5.99972i q^{67} +(-3.91852 + 2.26236i) q^{68} +(0.621082 + 5.88339i) q^{70} +7.81664i q^{71} +(-7.04158 - 12.1964i) q^{73} +(-0.925584 - 0.534386i) q^{74} +(-3.40172 - 1.96399i) q^{76} +(-5.33048 - 5.30032i) q^{77} +4.51074 q^{79} +(-0.796362 - 2.08945i) q^{80} +(-2.85368 + 4.94272i) q^{82} +(-10.9918 + 6.34613i) q^{83} +(7.84765 + 6.38590i) q^{85} +(6.76731 - 3.90711i) q^{86} +(2.46056 + 1.42061i) q^{88} +(5.33519 - 9.24081i) q^{89} +(-9.38244 + 9.43583i) q^{91} +(-3.21075 - 5.56118i) q^{92} -2.23938i q^{94} +(-1.39465 + 8.67178i) q^{95} +(-8.91744 - 15.4455i) q^{97} +(6.08194 + 3.46554i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{2} + 48 q^{4} - 3 q^{7} + 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} - 6 q^{22} + 3 q^{23} + 18 q^{25} - 3 q^{28} + 3 q^{29} + 48 q^{32} + 18 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.796362 2.08945i −0.356144 0.934431i
\(6\) 0 0
\(7\) −2.55753 0.677517i −0.966656 0.256077i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.796362 2.08945i −0.251832 0.660743i
\(11\) 2.46056 + 1.42061i 0.741887 + 0.428329i 0.822755 0.568396i \(-0.192436\pi\)
−0.0808677 + 0.996725i \(0.525769\pi\)
\(12\) 0 0
\(13\) 2.51471 4.35560i 0.697455 1.20803i −0.271892 0.962328i \(-0.587649\pi\)
0.969346 0.245699i \(-0.0790174\pi\)
\(14\) −2.55753 0.677517i −0.683529 0.181074i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.91852 + 2.26236i −0.950381 + 0.548703i −0.893199 0.449661i \(-0.851545\pi\)
−0.0571816 + 0.998364i \(0.518211\pi\)
\(18\) 0 0
\(19\) −3.40172 1.96399i −0.780409 0.450569i 0.0561661 0.998421i \(-0.482112\pi\)
−0.836575 + 0.547852i \(0.815446\pi\)
\(20\) −0.796362 2.08945i −0.178072 0.467216i
\(21\) 0 0
\(22\) 2.46056 + 1.42061i 0.524594 + 0.302874i
\(23\) −3.21075 5.56118i −0.669487 1.15959i −0.978048 0.208381i \(-0.933181\pi\)
0.308560 0.951205i \(-0.400153\pi\)
\(24\) 0 0
\(25\) −3.73162 + 3.32792i −0.746323 + 0.665584i
\(26\) 2.51471 4.35560i 0.493175 0.854204i
\(27\) 0 0
\(28\) −2.55753 0.677517i −0.483328 0.128039i
\(29\) −3.16363 + 1.82652i −0.587472 + 0.339177i −0.764097 0.645101i \(-0.776815\pi\)
0.176626 + 0.984278i \(0.443482\pi\)
\(30\) 0 0
\(31\) 2.04291i 0.366917i −0.983027 0.183459i \(-0.941271\pi\)
0.983027 0.183459i \(-0.0587294\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.91852 + 2.26236i −0.672021 + 0.387991i
\(35\) 0.621082 + 5.88339i 0.104982 + 0.994474i
\(36\) 0 0
\(37\) −0.925584 0.534386i −0.152165 0.0878526i 0.421984 0.906603i \(-0.361334\pi\)
−0.574149 + 0.818751i \(0.694667\pi\)
\(38\) −3.40172 1.96399i −0.551833 0.318601i
\(39\) 0 0
\(40\) −0.796362 2.08945i −0.125916 0.330371i
\(41\) −2.85368 + 4.94272i −0.445670 + 0.771923i −0.998099 0.0616375i \(-0.980368\pi\)
0.552429 + 0.833560i \(0.313701\pi\)
\(42\) 0 0
\(43\) 6.76731 3.90711i 1.03201 0.595829i 0.114447 0.993429i \(-0.463490\pi\)
0.917559 + 0.397601i \(0.130157\pi\)
\(44\) 2.46056 + 1.42061i 0.370944 + 0.214164i
\(45\) 0 0
\(46\) −3.21075 5.56118i −0.473399 0.819951i
\(47\) 2.23938i 0.326647i −0.986573 0.163323i \(-0.947779\pi\)
0.986573 0.163323i \(-0.0522213\pi\)
\(48\) 0 0
\(49\) 6.08194 + 3.46554i 0.868849 + 0.495078i
\(50\) −3.73162 + 3.32792i −0.527730 + 0.470639i
\(51\) 0 0
\(52\) 2.51471 4.35560i 0.348727 0.604013i
\(53\) −2.88164 4.99115i −0.395824 0.685587i 0.597382 0.801957i \(-0.296208\pi\)
−0.993206 + 0.116370i \(0.962874\pi\)
\(54\) 0 0
\(55\) 1.00879 6.27254i 0.136025 0.845789i
\(56\) −2.55753 0.677517i −0.341765 0.0905371i
\(57\) 0 0
\(58\) −3.16363 + 1.82652i −0.415405 + 0.239834i
\(59\) −12.8102 −1.66775 −0.833875 0.551953i \(-0.813883\pi\)
−0.833875 + 0.551953i \(0.813883\pi\)
\(60\) 0 0
\(61\) 10.4338i 1.33592i −0.744199 0.667958i \(-0.767169\pi\)
0.744199 0.667958i \(-0.232831\pi\)
\(62\) 2.04291i 0.259450i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −11.1034 1.78572i −1.37721 0.221492i
\(66\) 0 0
\(67\) 5.99972i 0.732982i 0.930422 + 0.366491i \(0.119441\pi\)
−0.930422 + 0.366491i \(0.880559\pi\)
\(68\) −3.91852 + 2.26236i −0.475190 + 0.274351i
\(69\) 0 0
\(70\) 0.621082 + 5.88339i 0.0742335 + 0.703199i
\(71\) 7.81664i 0.927664i 0.885923 + 0.463832i \(0.153526\pi\)
−0.885923 + 0.463832i \(0.846474\pi\)
\(72\) 0 0
\(73\) −7.04158 12.1964i −0.824154 1.42748i −0.902564 0.430556i \(-0.858318\pi\)
0.0784100 0.996921i \(-0.475016\pi\)
\(74\) −0.925584 0.534386i −0.107597 0.0621212i
\(75\) 0 0
\(76\) −3.40172 1.96399i −0.390205 0.225285i
\(77\) −5.33048 5.30032i −0.607465 0.604028i
\(78\) 0 0
\(79\) 4.51074 0.507498 0.253749 0.967270i \(-0.418336\pi\)
0.253749 + 0.967270i \(0.418336\pi\)
\(80\) −0.796362 2.08945i −0.0890360 0.233608i
\(81\) 0 0
\(82\) −2.85368 + 4.94272i −0.315136 + 0.545832i
\(83\) −10.9918 + 6.34613i −1.20651 + 0.696578i −0.961995 0.273068i \(-0.911962\pi\)
−0.244513 + 0.969646i \(0.578628\pi\)
\(84\) 0 0
\(85\) 7.84765 + 6.38590i 0.851197 + 0.692648i
\(86\) 6.76731 3.90711i 0.729738 0.421315i
\(87\) 0 0
\(88\) 2.46056 + 1.42061i 0.262297 + 0.151437i
\(89\) 5.33519 9.24081i 0.565529 0.979524i −0.431472 0.902127i \(-0.642005\pi\)
0.997000 0.0773979i \(-0.0246612\pi\)
\(90\) 0 0
\(91\) −9.38244 + 9.43583i −0.983547 + 0.989144i
\(92\) −3.21075 5.56118i −0.334744 0.579793i
\(93\) 0 0
\(94\) 2.23938i 0.230974i
\(95\) −1.39465 + 8.67178i −0.143088 + 0.889706i
\(96\) 0 0
\(97\) −8.91744 15.4455i −0.905429 1.56825i −0.820341 0.571875i \(-0.806216\pi\)
−0.0850876 0.996373i \(-0.527117\pi\)
\(98\) 6.08194 + 3.46554i 0.614369 + 0.350073i
\(99\) 0 0
\(100\) −3.73162 + 3.32792i −0.373162 + 0.332792i
\(101\) 5.04091 8.73112i 0.501590 0.868779i −0.498409 0.866942i \(-0.666082\pi\)
0.999998 0.00183643i \(-0.000584554\pi\)
\(102\) 0 0
\(103\) −1.03484 1.79239i −0.101965 0.176609i 0.810529 0.585699i \(-0.199180\pi\)
−0.912494 + 0.409089i \(0.865846\pi\)
\(104\) 2.51471 4.35560i 0.246587 0.427102i
\(105\) 0 0
\(106\) −2.88164 4.99115i −0.279890 0.484783i
\(107\) −1.27205 + 2.20325i −0.122973 + 0.212996i −0.920939 0.389707i \(-0.872576\pi\)
0.797966 + 0.602703i \(0.205910\pi\)
\(108\) 0 0
\(109\) 5.96532 + 10.3322i 0.571374 + 0.989649i 0.996425 + 0.0844800i \(0.0269229\pi\)
−0.425051 + 0.905170i \(0.639744\pi\)
\(110\) 1.00879 6.27254i 0.0961843 0.598063i
\(111\) 0 0
\(112\) −2.55753 0.677517i −0.241664 0.0640194i
\(113\) 4.09453 7.09194i 0.385181 0.667153i −0.606613 0.794997i \(-0.707472\pi\)
0.991794 + 0.127844i \(0.0408056\pi\)
\(114\) 0 0
\(115\) −9.06290 + 11.1374i −0.845119 + 1.03857i
\(116\) −3.16363 + 1.82652i −0.293736 + 0.169588i
\(117\) 0 0
\(118\) −12.8102 −1.17928
\(119\) 11.5545 3.13119i 1.05920 0.287036i
\(120\) 0 0
\(121\) −1.46376 2.53530i −0.133069 0.230482i
\(122\) 10.4338i 0.944635i
\(123\) 0 0
\(124\) 2.04291i 0.183459i
\(125\) 9.92524 + 5.14680i 0.887741 + 0.460344i
\(126\) 0 0
\(127\) 18.1709i 1.61240i −0.591641 0.806202i \(-0.701520\pi\)
0.591641 0.806202i \(-0.298480\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −11.1034 1.78572i −0.973836 0.156618i
\(131\) 8.55442 + 14.8167i 0.747403 + 1.29454i 0.949064 + 0.315084i \(0.102033\pi\)
−0.201661 + 0.979455i \(0.564634\pi\)
\(132\) 0 0
\(133\) 7.36938 + 7.32769i 0.639007 + 0.635391i
\(134\) 5.99972i 0.518296i
\(135\) 0 0
\(136\) −3.91852 + 2.26236i −0.336010 + 0.193996i
\(137\) −3.10008 + 5.36950i −0.264858 + 0.458747i −0.967526 0.252770i \(-0.918658\pi\)
0.702668 + 0.711517i \(0.251992\pi\)
\(138\) 0 0
\(139\) 13.0131 + 7.51311i 1.10376 + 0.637253i 0.937205 0.348780i \(-0.113404\pi\)
0.166550 + 0.986033i \(0.446737\pi\)
\(140\) 0.621082 + 5.88339i 0.0524910 + 0.497237i
\(141\) 0 0
\(142\) 7.81664i 0.655958i
\(143\) 12.3752 7.14482i 1.03487 0.597480i
\(144\) 0 0
\(145\) 6.33583 + 5.15568i 0.526162 + 0.428156i
\(146\) −7.04158 12.1964i −0.582765 1.00938i
\(147\) 0 0
\(148\) −0.925584 0.534386i −0.0760826 0.0439263i
\(149\) 1.97748 1.14170i 0.162001 0.0935314i −0.416808 0.908995i \(-0.636851\pi\)
0.578809 + 0.815463i \(0.303518\pi\)
\(150\) 0 0
\(151\) −6.59525 + 11.4233i −0.536714 + 0.929616i 0.462365 + 0.886690i \(0.347001\pi\)
−0.999078 + 0.0429256i \(0.986332\pi\)
\(152\) −3.40172 1.96399i −0.275916 0.159300i
\(153\) 0 0
\(154\) −5.33048 5.30032i −0.429542 0.427112i
\(155\) −4.26856 + 1.62690i −0.342859 + 0.130675i
\(156\) 0 0
\(157\) 17.9261 1.43066 0.715330 0.698786i \(-0.246276\pi\)
0.715330 + 0.698786i \(0.246276\pi\)
\(158\) 4.51074 0.358855
\(159\) 0 0
\(160\) −0.796362 2.08945i −0.0629579 0.165186i
\(161\) 4.44380 + 16.3982i 0.350220 + 1.29236i
\(162\) 0 0
\(163\) 3.27021 + 1.88806i 0.256143 + 0.147884i 0.622574 0.782561i \(-0.286087\pi\)
−0.366431 + 0.930445i \(0.619420\pi\)
\(164\) −2.85368 + 4.94272i −0.222835 + 0.385961i
\(165\) 0 0
\(166\) −10.9918 + 6.34613i −0.853130 + 0.492555i
\(167\) 20.8655 + 12.0467i 1.61462 + 0.932201i 0.988280 + 0.152651i \(0.0487811\pi\)
0.626340 + 0.779550i \(0.284552\pi\)
\(168\) 0 0
\(169\) −6.14752 10.6478i −0.472886 0.819062i
\(170\) 7.84765 + 6.38590i 0.601887 + 0.489776i
\(171\) 0 0
\(172\) 6.76731 3.90711i 0.516003 0.297914i
\(173\) 12.1734i 0.925523i −0.886483 0.462762i \(-0.846859\pi\)
0.886483 0.462762i \(-0.153141\pi\)
\(174\) 0 0
\(175\) 11.7984 5.98303i 0.891879 0.452274i
\(176\) 2.46056 + 1.42061i 0.185472 + 0.107082i
\(177\) 0 0
\(178\) 5.33519 9.24081i 0.399889 0.692628i
\(179\) 3.16979 1.83008i 0.236921 0.136786i −0.376840 0.926278i \(-0.622989\pi\)
0.613761 + 0.789492i \(0.289656\pi\)
\(180\) 0 0
\(181\) 11.5653i 0.859645i 0.902914 + 0.429822i \(0.141424\pi\)
−0.902914 + 0.429822i \(0.858576\pi\)
\(182\) −9.38244 + 9.43583i −0.695473 + 0.699431i
\(183\) 0 0
\(184\) −3.21075 5.56118i −0.236700 0.409976i
\(185\) −0.379474 + 2.35953i −0.0278995 + 0.173476i
\(186\) 0 0
\(187\) −12.8557 −0.940101
\(188\) 2.23938i 0.163323i
\(189\) 0 0
\(190\) −1.39465 + 8.67178i −0.101179 + 0.629117i
\(191\) 9.43103i 0.682405i 0.939990 + 0.341203i \(0.110834\pi\)
−0.939990 + 0.341203i \(0.889166\pi\)
\(192\) 0 0
\(193\) 1.48521i 0.106908i 0.998570 + 0.0534540i \(0.0170230\pi\)
−0.998570 + 0.0534540i \(0.982977\pi\)
\(194\) −8.91744 15.4455i −0.640235 1.10892i
\(195\) 0 0
\(196\) 6.08194 + 3.46554i 0.434424 + 0.247539i
\(197\) −17.6493 −1.25746 −0.628729 0.777624i \(-0.716425\pi\)
−0.628729 + 0.777624i \(0.716425\pi\)
\(198\) 0 0
\(199\) 17.8938 10.3310i 1.26846 0.732344i 0.293762 0.955879i \(-0.405093\pi\)
0.974696 + 0.223534i \(0.0717595\pi\)
\(200\) −3.73162 + 3.32792i −0.263865 + 0.235319i
\(201\) 0 0
\(202\) 5.04091 8.73112i 0.354677 0.614319i
\(203\) 9.32859 2.52798i 0.654739 0.177429i
\(204\) 0 0
\(205\) 12.6001 + 2.02643i 0.880031 + 0.141532i
\(206\) −1.03484 1.79239i −0.0721004 0.124882i
\(207\) 0 0
\(208\) 2.51471 4.35560i 0.174364 0.302007i
\(209\) −5.58010 9.66502i −0.385984 0.668544i
\(210\) 0 0
\(211\) 5.63953 9.76796i 0.388241 0.672454i −0.603972 0.797006i \(-0.706416\pi\)
0.992213 + 0.124552i \(0.0397493\pi\)
\(212\) −2.88164 4.99115i −0.197912 0.342793i
\(213\) 0 0
\(214\) −1.27205 + 2.20325i −0.0869553 + 0.150611i
\(215\) −13.5529 11.0285i −0.924303 0.752137i
\(216\) 0 0
\(217\) −1.38411 + 5.22481i −0.0939593 + 0.354683i
\(218\) 5.96532 + 10.3322i 0.404023 + 0.699788i
\(219\) 0 0
\(220\) 1.00879 6.27254i 0.0680126 0.422895i
\(221\) 22.7567i 1.53078i
\(222\) 0 0
\(223\) −6.07248 10.5178i −0.406643 0.704327i 0.587868 0.808957i \(-0.299968\pi\)
−0.994511 + 0.104630i \(0.966634\pi\)
\(224\) −2.55753 0.677517i −0.170882 0.0452685i
\(225\) 0 0
\(226\) 4.09453 7.09194i 0.272364 0.471749i
\(227\) 20.5863 + 11.8855i 1.36636 + 0.788868i 0.990461 0.137793i \(-0.0440010\pi\)
0.375898 + 0.926661i \(0.377334\pi\)
\(228\) 0 0
\(229\) 9.88508 5.70716i 0.653225 0.377139i −0.136466 0.990645i \(-0.543574\pi\)
0.789691 + 0.613505i \(0.210241\pi\)
\(230\) −9.06290 + 11.1374i −0.597590 + 0.734379i
\(231\) 0 0
\(232\) −3.16363 + 1.82652i −0.207703 + 0.119917i
\(233\) 4.16132 7.20762i 0.272617 0.472187i −0.696914 0.717155i \(-0.745444\pi\)
0.969531 + 0.244968i \(0.0787775\pi\)
\(234\) 0 0
\(235\) −4.67907 + 1.78335i −0.305229 + 0.116333i
\(236\) −12.8102 −0.833875
\(237\) 0 0
\(238\) 11.5545 3.13119i 0.748969 0.202965i
\(239\) 6.41684 + 3.70476i 0.415071 + 0.239641i 0.692966 0.720970i \(-0.256304\pi\)
−0.277895 + 0.960611i \(0.589637\pi\)
\(240\) 0 0
\(241\) −7.50748 4.33445i −0.483599 0.279206i 0.238316 0.971188i \(-0.423405\pi\)
−0.721915 + 0.691981i \(0.756738\pi\)
\(242\) −1.46376 2.53530i −0.0940937 0.162975i
\(243\) 0 0
\(244\) 10.4338i 0.667958i
\(245\) 2.39766 15.4677i 0.153181 0.988198i
\(246\) 0 0
\(247\) −17.1087 + 9.87771i −1.08860 + 0.628503i
\(248\) 2.04291i 0.129725i
\(249\) 0 0
\(250\) 9.92524 + 5.14680i 0.627727 + 0.325512i
\(251\) 15.4449 0.974871 0.487436 0.873159i \(-0.337932\pi\)
0.487436 + 0.873159i \(0.337932\pi\)
\(252\) 0 0
\(253\) 18.2448i 1.14704i
\(254\) 18.1709i 1.14014i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.03816 + 2.90878i −0.314272 + 0.181445i −0.648836 0.760928i \(-0.724744\pi\)
0.334565 + 0.942373i \(0.391411\pi\)
\(258\) 0 0
\(259\) 2.00516 + 1.99381i 0.124594 + 0.123889i
\(260\) −11.1034 1.78572i −0.688606 0.110746i
\(261\) 0 0
\(262\) 8.55442 + 14.8167i 0.528494 + 0.915378i
\(263\) 1.08784 1.88419i 0.0670790 0.116184i −0.830535 0.556966i \(-0.811965\pi\)
0.897614 + 0.440782i \(0.145299\pi\)
\(264\) 0 0
\(265\) −8.13393 + 9.99581i −0.499663 + 0.614037i
\(266\) 7.36938 + 7.32769i 0.451846 + 0.449289i
\(267\) 0 0
\(268\) 5.99972i 0.366491i
\(269\) −1.75606 3.04158i −0.107069 0.185449i 0.807513 0.589850i \(-0.200813\pi\)
−0.914582 + 0.404401i \(0.867480\pi\)
\(270\) 0 0
\(271\) 1.39309 + 0.804303i 0.0846244 + 0.0488579i 0.541715 0.840562i \(-0.317775\pi\)
−0.457091 + 0.889420i \(0.651109\pi\)
\(272\) −3.91852 + 2.26236i −0.237595 + 0.137176i
\(273\) 0 0
\(274\) −3.10008 + 5.36950i −0.187283 + 0.324383i
\(275\) −13.9095 + 2.88740i −0.838777 + 0.174117i
\(276\) 0 0
\(277\) 3.87815 + 2.23905i 0.233015 + 0.134531i 0.611962 0.790887i \(-0.290380\pi\)
−0.378947 + 0.925418i \(0.623714\pi\)
\(278\) 13.0131 + 7.51311i 0.780473 + 0.450606i
\(279\) 0 0
\(280\) 0.621082 + 5.88339i 0.0371167 + 0.351600i
\(281\) 9.04334 5.22117i 0.539480 0.311469i −0.205388 0.978681i \(-0.565846\pi\)
0.744868 + 0.667211i \(0.232512\pi\)
\(282\) 0 0
\(283\) −18.5038 −1.09994 −0.549969 0.835185i \(-0.685360\pi\)
−0.549969 + 0.835185i \(0.685360\pi\)
\(284\) 7.81664i 0.463832i
\(285\) 0 0
\(286\) 12.3752 7.14482i 0.731761 0.422482i
\(287\) 10.6471 10.7077i 0.628481 0.632058i
\(288\) 0 0
\(289\) 1.73653 3.00776i 0.102149 0.176927i
\(290\) 6.33583 + 5.15568i 0.372053 + 0.302752i
\(291\) 0 0
\(292\) −7.04158 12.1964i −0.412077 0.713738i
\(293\) 0.317382 + 0.183240i 0.0185416 + 0.0107050i 0.509242 0.860623i \(-0.329926\pi\)
−0.490701 + 0.871328i \(0.663259\pi\)
\(294\) 0 0
\(295\) 10.2016 + 26.7664i 0.593959 + 1.55840i
\(296\) −0.925584 0.534386i −0.0537985 0.0310606i
\(297\) 0 0
\(298\) 1.97748 1.14170i 0.114552 0.0661367i
\(299\) −32.2964 −1.86775
\(300\) 0 0
\(301\) −19.9548 + 5.40759i −1.15017 + 0.311688i
\(302\) −6.59525 + 11.4233i −0.379514 + 0.657337i
\(303\) 0 0
\(304\) −3.40172 1.96399i −0.195102 0.112642i
\(305\) −21.8010 + 8.30911i −1.24832 + 0.475778i
\(306\) 0 0
\(307\) 24.9894 1.42622 0.713110 0.701053i \(-0.247286\pi\)
0.713110 + 0.701053i \(0.247286\pi\)
\(308\) −5.33048 5.30032i −0.303732 0.302014i
\(309\) 0 0
\(310\) −4.26856 + 1.62690i −0.242438 + 0.0924015i
\(311\) −24.0318 −1.36272 −0.681358 0.731950i \(-0.738610\pi\)
−0.681358 + 0.731950i \(0.738610\pi\)
\(312\) 0 0
\(313\) −6.50477 −0.367671 −0.183836 0.982957i \(-0.558851\pi\)
−0.183836 + 0.982957i \(0.558851\pi\)
\(314\) 17.9261 1.01163
\(315\) 0 0
\(316\) 4.51074 0.253749
\(317\) 7.38882 0.414997 0.207499 0.978235i \(-0.433468\pi\)
0.207499 + 0.978235i \(0.433468\pi\)
\(318\) 0 0
\(319\) −10.3791 −0.581117
\(320\) −0.796362 2.08945i −0.0445180 0.116804i
\(321\) 0 0
\(322\) 4.44380 + 16.3982i 0.247643 + 0.913838i
\(323\) 17.7730 0.988914
\(324\) 0 0
\(325\) 5.11117 + 24.6222i 0.283517 + 1.36579i
\(326\) 3.27021 + 1.88806i 0.181120 + 0.104570i
\(327\) 0 0
\(328\) −2.85368 + 4.94272i −0.157568 + 0.272916i
\(329\) −1.51722 + 5.72727i −0.0836468 + 0.315755i
\(330\) 0 0
\(331\) 26.3139 1.44634 0.723171 0.690669i \(-0.242684\pi\)
0.723171 + 0.690669i \(0.242684\pi\)
\(332\) −10.9918 + 6.34613i −0.603254 + 0.348289i
\(333\) 0 0
\(334\) 20.8655 + 12.0467i 1.14171 + 0.659166i
\(335\) 12.5361 4.77795i 0.684921 0.261047i
\(336\) 0 0
\(337\) 5.78970 + 3.34269i 0.315385 + 0.182088i 0.649334 0.760504i \(-0.275048\pi\)
−0.333949 + 0.942591i \(0.608381\pi\)
\(338\) −6.14752 10.6478i −0.334381 0.579164i
\(339\) 0 0
\(340\) 7.84765 + 6.38590i 0.425599 + 0.346324i
\(341\) 2.90217 5.02671i 0.157161 0.272211i
\(342\) 0 0
\(343\) −13.2068 12.9839i −0.713100 0.701063i
\(344\) 6.76731 3.90711i 0.364869 0.210657i
\(345\) 0 0
\(346\) 12.1734i 0.654444i
\(347\) 2.41396 0.129588 0.0647940 0.997899i \(-0.479361\pi\)
0.0647940 + 0.997899i \(0.479361\pi\)
\(348\) 0 0
\(349\) −0.654664 + 0.377971i −0.0350434 + 0.0202323i −0.517419 0.855732i \(-0.673107\pi\)
0.482376 + 0.875964i \(0.339774\pi\)
\(350\) 11.7984 5.98303i 0.630654 0.319806i
\(351\) 0 0
\(352\) 2.46056 + 1.42061i 0.131148 + 0.0757186i
\(353\) 8.10821 + 4.68128i 0.431557 + 0.249159i 0.700010 0.714133i \(-0.253179\pi\)
−0.268453 + 0.963293i \(0.586512\pi\)
\(354\) 0 0
\(355\) 16.3325 6.22487i 0.866838 0.330382i
\(356\) 5.33519 9.24081i 0.282764 0.489762i
\(357\) 0 0
\(358\) 3.16979 1.83008i 0.167529 0.0967227i
\(359\) 20.7136 + 11.9590i 1.09322 + 0.631172i 0.934433 0.356140i \(-0.115907\pi\)
0.158790 + 0.987312i \(0.449241\pi\)
\(360\) 0 0
\(361\) −1.78551 3.09260i −0.0939744 0.162768i
\(362\) 11.5653i 0.607860i
\(363\) 0 0
\(364\) −9.38244 + 9.43583i −0.491774 + 0.494572i
\(365\) −19.8761 + 24.4258i −1.04036 + 1.27850i
\(366\) 0 0
\(367\) −2.63628 + 4.56616i −0.137612 + 0.238352i −0.926592 0.376067i \(-0.877276\pi\)
0.788980 + 0.614419i \(0.210610\pi\)
\(368\) −3.21075 5.56118i −0.167372 0.289896i
\(369\) 0 0
\(370\) −0.379474 + 2.35953i −0.0197279 + 0.122666i
\(371\) 3.98830 + 14.7174i 0.207062 + 0.764088i
\(372\) 0 0
\(373\) −6.37029 + 3.67789i −0.329841 + 0.190434i −0.655770 0.754960i \(-0.727656\pi\)
0.325930 + 0.945394i \(0.394323\pi\)
\(374\) −12.8557 −0.664752
\(375\) 0 0
\(376\) 2.23938i 0.115487i
\(377\) 18.3727i 0.946242i
\(378\) 0 0
\(379\) −6.48462 −0.333092 −0.166546 0.986034i \(-0.553261\pi\)
−0.166546 + 0.986034i \(0.553261\pi\)
\(380\) −1.39465 + 8.67178i −0.0715441 + 0.444853i
\(381\) 0 0
\(382\) 9.43103i 0.482534i
\(383\) −8.50872 + 4.91251i −0.434775 + 0.251018i −0.701379 0.712789i \(-0.747432\pi\)
0.266604 + 0.963806i \(0.414099\pi\)
\(384\) 0 0
\(385\) −6.82977 + 15.3588i −0.348077 + 0.782755i
\(386\) 1.48521i 0.0755953i
\(387\) 0 0
\(388\) −8.91744 15.4455i −0.452714 0.784124i
\(389\) −7.18549 4.14854i −0.364319 0.210340i 0.306655 0.951821i \(-0.400790\pi\)
−0.670974 + 0.741481i \(0.734124\pi\)
\(390\) 0 0
\(391\) 25.1628 + 14.5277i 1.27254 + 0.734699i
\(392\) 6.08194 + 3.46554i 0.307184 + 0.175036i
\(393\) 0 0
\(394\) −17.6493 −0.889158
\(395\) −3.59218 9.42498i −0.180742 0.474222i
\(396\) 0 0
\(397\) −6.65037 + 11.5188i −0.333772 + 0.578111i −0.983248 0.182272i \(-0.941655\pi\)
0.649476 + 0.760382i \(0.274988\pi\)
\(398\) 17.8938 10.3310i 0.896935 0.517846i
\(399\) 0 0
\(400\) −3.73162 + 3.32792i −0.186581 + 0.166396i
\(401\) −18.0899 + 10.4442i −0.903367 + 0.521559i −0.878291 0.478126i \(-0.841316\pi\)
−0.0250758 + 0.999686i \(0.507983\pi\)
\(402\) 0 0
\(403\) −8.89810 5.13732i −0.443246 0.255908i
\(404\) 5.04091 8.73112i 0.250795 0.434389i
\(405\) 0 0
\(406\) 9.32859 2.52798i 0.462970 0.125461i
\(407\) −1.51831 2.62978i −0.0752596 0.130353i
\(408\) 0 0
\(409\) 28.3129i 1.39998i −0.714151 0.699992i \(-0.753187\pi\)
0.714151 0.699992i \(-0.246813\pi\)
\(410\) 12.6001 + 2.02643i 0.622276 + 0.100078i
\(411\) 0 0
\(412\) −1.03484 1.79239i −0.0509827 0.0883046i
\(413\) 32.7626 + 8.67915i 1.61214 + 0.427073i
\(414\) 0 0
\(415\) 22.0134 + 17.9130i 1.08059 + 0.879317i
\(416\) 2.51471 4.35560i 0.123294 0.213551i
\(417\) 0 0
\(418\) −5.58010 9.66502i −0.272932 0.472732i
\(419\) 7.85403 13.6036i 0.383695 0.664578i −0.607893 0.794019i \(-0.707985\pi\)
0.991587 + 0.129441i \(0.0413182\pi\)
\(420\) 0 0
\(421\) −13.2658 22.9771i −0.646537 1.11983i −0.983944 0.178476i \(-0.942883\pi\)
0.337408 0.941359i \(-0.390450\pi\)
\(422\) 5.63953 9.76796i 0.274528 0.475497i
\(423\) 0 0
\(424\) −2.88164 4.99115i −0.139945 0.242391i
\(425\) 7.09346 21.4828i 0.344083 1.04207i
\(426\) 0 0
\(427\) −7.06910 + 26.6849i −0.342098 + 1.29137i
\(428\) −1.27205 + 2.20325i −0.0614867 + 0.106498i
\(429\) 0 0
\(430\) −13.5529 11.0285i −0.653581 0.531841i
\(431\) 14.0479 8.11059i 0.676666 0.390673i −0.121932 0.992538i \(-0.538909\pi\)
0.798598 + 0.601865i \(0.205576\pi\)
\(432\) 0 0
\(433\) 19.7268 0.948010 0.474005 0.880522i \(-0.342808\pi\)
0.474005 + 0.880522i \(0.342808\pi\)
\(434\) −1.38411 + 5.22481i −0.0664392 + 0.250799i
\(435\) 0 0
\(436\) 5.96532 + 10.3322i 0.285687 + 0.494825i
\(437\) 25.2235i 1.20660i
\(438\) 0 0
\(439\) 13.1264i 0.626488i −0.949673 0.313244i \(-0.898584\pi\)
0.949673 0.313244i \(-0.101416\pi\)
\(440\) 1.00879 6.27254i 0.0480922 0.299032i
\(441\) 0 0
\(442\) 22.7567i 1.08243i
\(443\) 8.62000 0.409548 0.204774 0.978809i \(-0.434354\pi\)
0.204774 + 0.978809i \(0.434354\pi\)
\(444\) 0 0
\(445\) −23.5570 3.78858i −1.11671 0.179596i
\(446\) −6.07248 10.5178i −0.287540 0.498034i
\(447\) 0 0
\(448\) −2.55753 0.677517i −0.120832 0.0320097i
\(449\) 37.2222i 1.75663i −0.478086 0.878313i \(-0.658669\pi\)
0.478086 0.878313i \(-0.341331\pi\)
\(450\) 0 0
\(451\) −14.0433 + 8.10791i −0.661274 + 0.381786i
\(452\) 4.09453 7.09194i 0.192591 0.333577i
\(453\) 0 0
\(454\) 20.5863 + 11.8855i 0.966162 + 0.557814i
\(455\) 27.1875 + 12.0898i 1.27457 + 0.566780i
\(456\) 0 0
\(457\) 40.5035i 1.89467i 0.320238 + 0.947337i \(0.396237\pi\)
−0.320238 + 0.947337i \(0.603763\pi\)
\(458\) 9.88508 5.70716i 0.461900 0.266678i
\(459\) 0 0
\(460\) −9.06290 + 11.1374i −0.422560 + 0.519285i
\(461\) −16.8755 29.2292i −0.785971 1.36134i −0.928417 0.371539i \(-0.878830\pi\)
0.142446 0.989803i \(-0.454503\pi\)
\(462\) 0 0
\(463\) 23.0998 + 13.3367i 1.07354 + 0.619809i 0.929147 0.369712i \(-0.120543\pi\)
0.144394 + 0.989520i \(0.453877\pi\)
\(464\) −3.16363 + 1.82652i −0.146868 + 0.0847942i
\(465\) 0 0
\(466\) 4.16132 7.20762i 0.192769 0.333886i
\(467\) −4.89263 2.82476i −0.226404 0.130714i 0.382508 0.923952i \(-0.375060\pi\)
−0.608912 + 0.793238i \(0.708394\pi\)
\(468\) 0 0
\(469\) 4.06491 15.3445i 0.187700 0.708542i
\(470\) −4.67907 + 1.78335i −0.215829 + 0.0822600i
\(471\) 0 0
\(472\) −12.8102 −0.589639
\(473\) 22.2019 1.02084
\(474\) 0 0
\(475\) 19.2299 3.99182i 0.882329 0.183157i
\(476\) 11.5545 3.13119i 0.529601 0.143518i
\(477\) 0 0
\(478\) 6.41684 + 3.70476i 0.293499 + 0.169452i
\(479\) −0.136929 + 0.237168i −0.00625644 + 0.0108365i −0.869137 0.494572i \(-0.835325\pi\)
0.862880 + 0.505408i \(0.168658\pi\)
\(480\) 0 0
\(481\) −4.65515 + 2.68765i −0.212257 + 0.122546i
\(482\) −7.50748 4.33445i −0.341956 0.197429i
\(483\) 0 0
\(484\) −1.46376 2.53530i −0.0665343 0.115241i
\(485\) −25.1710 + 30.9327i −1.14296 + 1.40458i
\(486\) 0 0
\(487\) −12.4072 + 7.16329i −0.562223 + 0.324600i −0.754037 0.656832i \(-0.771896\pi\)
0.191814 + 0.981431i \(0.438563\pi\)
\(488\) 10.4338i 0.472317i
\(489\) 0 0
\(490\) 2.39766 15.4677i 0.108315 0.698762i
\(491\) −31.8165 18.3692i −1.43586 0.828992i −0.438298 0.898830i \(-0.644419\pi\)
−0.997558 + 0.0698374i \(0.977752\pi\)
\(492\) 0 0
\(493\) 8.26450 14.3145i 0.372214 0.644694i
\(494\) −17.1087 + 9.87771i −0.769756 + 0.444419i
\(495\) 0 0
\(496\) 2.04291i 0.0917294i
\(497\) 5.29591 19.9913i 0.237554 0.896733i
\(498\) 0 0
\(499\) 16.0396 + 27.7814i 0.718032 + 1.24367i 0.961778 + 0.273829i \(0.0882902\pi\)
−0.243746 + 0.969839i \(0.578376\pi\)
\(500\) 9.92524 + 5.14680i 0.443870 + 0.230172i
\(501\) 0 0
\(502\) 15.4449 0.689338
\(503\) 35.1778i 1.56850i −0.620445 0.784250i \(-0.713048\pi\)
0.620445 0.784250i \(-0.286952\pi\)
\(504\) 0 0
\(505\) −22.2576 3.57961i −0.990452 0.159291i
\(506\) 18.2448i 0.811082i
\(507\) 0 0
\(508\) 18.1709i 0.806202i
\(509\) 11.7471 + 20.3465i 0.520679 + 0.901843i 0.999711 + 0.0240450i \(0.00765451\pi\)
−0.479032 + 0.877798i \(0.659012\pi\)
\(510\) 0 0
\(511\) 9.74581 + 35.9634i 0.431129 + 1.59093i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −5.03816 + 2.90878i −0.222224 + 0.128301i
\(515\) −2.92100 + 3.58963i −0.128715 + 0.158178i
\(516\) 0 0
\(517\) 3.18127 5.51012i 0.139912 0.242335i
\(518\) 2.00516 + 1.99381i 0.0881015 + 0.0876030i
\(519\) 0 0
\(520\) −11.1034 1.78572i −0.486918 0.0783092i
\(521\) 0.581200 + 1.00667i 0.0254628 + 0.0441029i 0.878476 0.477786i \(-0.158561\pi\)
−0.853013 + 0.521889i \(0.825227\pi\)
\(522\) 0 0
\(523\) −1.24452 + 2.15558i −0.0544191 + 0.0942567i −0.891952 0.452131i \(-0.850664\pi\)
0.837533 + 0.546387i \(0.183997\pi\)
\(524\) 8.55442 + 14.8167i 0.373701 + 0.647270i
\(525\) 0 0
\(526\) 1.08784 1.88419i 0.0474320 0.0821547i
\(527\) 4.62179 + 8.00518i 0.201329 + 0.348711i
\(528\) 0 0
\(529\) −9.11781 + 15.7925i −0.396426 + 0.686631i
\(530\) −8.13393 + 9.99581i −0.353315 + 0.434190i
\(531\) 0 0
\(532\) 7.36938 + 7.32769i 0.319503 + 0.317695i
\(533\) 14.3523 + 24.8590i 0.621669 + 1.07676i
\(534\) 0 0
\(535\) 5.61659 + 0.903296i 0.242827 + 0.0390529i
\(536\) 5.99972i 0.259148i
\(537\) 0 0
\(538\) −1.75606 3.04158i −0.0757091 0.131132i
\(539\) 10.0418 + 17.1672i 0.432532 + 0.739445i
\(540\) 0 0
\(541\) −10.4582 + 18.1142i −0.449634 + 0.778789i −0.998362 0.0572120i \(-0.981779\pi\)
0.548728 + 0.836001i \(0.315112\pi\)
\(542\) 1.39309 + 0.804303i 0.0598385 + 0.0345478i
\(543\) 0 0
\(544\) −3.91852 + 2.26236i −0.168005 + 0.0969978i
\(545\) 16.8382 20.6925i 0.721268 0.886368i
\(546\) 0 0
\(547\) 0.150888 0.0871155i 0.00645152 0.00372479i −0.496771 0.867882i \(-0.665481\pi\)
0.503222 + 0.864157i \(0.332148\pi\)
\(548\) −3.10008 + 5.36950i −0.132429 + 0.229374i
\(549\) 0 0
\(550\) −13.9095 + 2.88740i −0.593105 + 0.123119i
\(551\) 14.3491 0.611291
\(552\) 0 0
\(553\) −11.5364 3.05611i −0.490576 0.129959i
\(554\) 3.87815 + 2.23905i 0.164767 + 0.0951281i
\(555\) 0 0
\(556\) 13.0131 + 7.51311i 0.551878 + 0.318627i
\(557\) −10.1509 17.5819i −0.430109 0.744971i 0.566773 0.823874i \(-0.308192\pi\)
−0.996882 + 0.0789031i \(0.974858\pi\)
\(558\) 0 0
\(559\) 39.3010i 1.66225i
\(560\) 0.621082 + 5.88339i 0.0262455 + 0.248619i
\(561\) 0 0
\(562\) 9.04334 5.22117i 0.381470 0.220242i
\(563\) 12.0047i 0.505938i −0.967474 0.252969i \(-0.918593\pi\)
0.967474 0.252969i \(-0.0814070\pi\)
\(564\) 0 0
\(565\) −18.0790 2.90758i −0.760589 0.122323i
\(566\) −18.5038 −0.777773
\(567\) 0 0
\(568\) 7.81664i 0.327979i
\(569\) 32.3222i 1.35502i −0.735515 0.677509i \(-0.763060\pi\)
0.735515 0.677509i \(-0.236940\pi\)
\(570\) 0 0
\(571\) −39.7878 −1.66507 −0.832535 0.553973i \(-0.813111\pi\)
−0.832535 + 0.553973i \(0.813111\pi\)
\(572\) 12.3752 7.14482i 0.517433 0.298740i
\(573\) 0 0
\(574\) 10.6471 10.7077i 0.444403 0.446932i
\(575\) 30.4884 + 10.0671i 1.27146 + 0.419826i
\(576\) 0 0
\(577\) 5.59098 + 9.68386i 0.232756 + 0.403144i 0.958618 0.284695i \(-0.0918925\pi\)
−0.725862 + 0.687840i \(0.758559\pi\)
\(578\) 1.73653 3.00776i 0.0722303 0.125107i
\(579\) 0 0
\(580\) 6.33583 + 5.15568i 0.263081 + 0.214078i
\(581\) 32.4115 8.78328i 1.34466 0.364392i
\(582\) 0 0
\(583\) 16.3747i 0.678171i
\(584\) −7.04158 12.1964i −0.291382 0.504689i
\(585\) 0 0
\(586\) 0.317382 + 0.183240i 0.0131109 + 0.00756959i
\(587\) −2.92497 + 1.68873i −0.120726 + 0.0697015i −0.559147 0.829068i \(-0.688871\pi\)
0.438421 + 0.898770i \(0.355538\pi\)
\(588\) 0 0
\(589\) −4.01225 + 6.94942i −0.165322 + 0.286346i
\(590\) 10.2016 + 26.7664i 0.419992 + 1.10195i
\(591\) 0 0
\(592\) −0.925584 0.534386i −0.0380413 0.0219631i
\(593\) 28.6406 + 16.5357i 1.17613 + 0.679039i 0.955116 0.296232i \(-0.0957301\pi\)
0.221014 + 0.975271i \(0.429063\pi\)
\(594\) 0 0
\(595\) −15.7441 21.6491i −0.645443 0.887525i
\(596\) 1.97748 1.14170i 0.0810005 0.0467657i
\(597\) 0 0
\(598\) −32.2964 −1.32070
\(599\) 15.0631i 0.615461i 0.951474 + 0.307730i \(0.0995695\pi\)
−0.951474 + 0.307730i \(0.900431\pi\)
\(600\) 0 0
\(601\) −38.2212 + 22.0670i −1.55908 + 0.900133i −0.561730 + 0.827321i \(0.689864\pi\)
−0.997346 + 0.0728123i \(0.976803\pi\)
\(602\) −19.9548 + 5.40759i −0.813295 + 0.220397i
\(603\) 0 0
\(604\) −6.59525 + 11.4233i −0.268357 + 0.464808i
\(605\) −4.13170 + 5.07746i −0.167978 + 0.206428i
\(606\) 0 0
\(607\) −9.73116 16.8549i −0.394976 0.684118i 0.598122 0.801405i \(-0.295914\pi\)
−0.993098 + 0.117287i \(0.962580\pi\)
\(608\) −3.40172 1.96399i −0.137958 0.0796502i
\(609\) 0 0
\(610\) −21.8010 + 8.30911i −0.882696 + 0.336426i
\(611\) −9.75383 5.63138i −0.394598 0.227821i
\(612\) 0 0
\(613\) 26.5030 15.3015i 1.07045 0.618023i 0.142144 0.989846i \(-0.454600\pi\)
0.928304 + 0.371823i \(0.121267\pi\)
\(614\) 24.9894 1.00849
\(615\) 0 0
\(616\) −5.33048 5.30032i −0.214771 0.213556i
\(617\) 18.9195 32.7695i 0.761671 1.31925i −0.180318 0.983608i \(-0.557713\pi\)
0.941989 0.335644i \(-0.108954\pi\)
\(618\) 0 0
\(619\) −42.1495 24.3350i −1.69413 0.978107i −0.951116 0.308833i \(-0.900062\pi\)
−0.743015 0.669274i \(-0.766605\pi\)
\(620\) −4.26856 + 1.62690i −0.171430 + 0.0653377i
\(621\) 0 0
\(622\) −24.0318 −0.963586
\(623\) −19.9057 + 20.0190i −0.797506 + 0.802044i
\(624\) 0 0
\(625\) 2.84990 24.8370i 0.113996 0.993481i
\(626\) −6.50477 −0.259983
\(627\) 0 0
\(628\) 17.9261 0.715330
\(629\) 4.83590 0.192820
\(630\) 0 0
\(631\) 40.7671 1.62291 0.811456 0.584414i \(-0.198675\pi\)
0.811456 + 0.584414i \(0.198675\pi\)
\(632\) 4.51074 0.179428
\(633\) 0 0
\(634\) 7.38882 0.293447
\(635\) −37.9671 + 14.4706i −1.50668 + 0.574248i
\(636\) 0 0
\(637\) 30.3888 17.7757i 1.20405 0.704298i
\(638\) −10.3791 −0.410912
\(639\) 0 0
\(640\) −0.796362 2.08945i −0.0314790 0.0825928i
\(641\) 16.8354 + 9.71990i 0.664957 + 0.383913i 0.794163 0.607705i \(-0.207910\pi\)
−0.129206 + 0.991618i \(0.541243\pi\)
\(642\) 0 0
\(643\) −3.29651 + 5.70972i −0.130002 + 0.225169i −0.923677 0.383172i \(-0.874832\pi\)
0.793675 + 0.608342i \(0.208165\pi\)
\(644\) 4.44380 + 16.3982i 0.175110 + 0.646181i
\(645\) 0 0
\(646\) 17.7730 0.699268
\(647\) −34.2506 + 19.7746i −1.34653 + 0.777419i −0.987756 0.156006i \(-0.950138\pi\)
−0.358773 + 0.933425i \(0.616805\pi\)
\(648\) 0 0
\(649\) −31.5204 18.1983i −1.23728 0.714346i
\(650\) 5.11117 + 24.6222i 0.200477 + 0.965761i
\(651\) 0 0
\(652\) 3.27021 + 1.88806i 0.128071 + 0.0739421i
\(653\) −10.3809 17.9803i −0.406236 0.703622i 0.588228 0.808695i \(-0.299826\pi\)
−0.994464 + 0.105073i \(0.966492\pi\)
\(654\) 0 0
\(655\) 24.1463 29.6735i 0.943475 1.15944i
\(656\) −2.85368 + 4.94272i −0.111417 + 0.192981i
\(657\) 0 0
\(658\) −1.51722 + 5.72727i −0.0591472 + 0.223272i
\(659\) −4.81761 + 2.78145i −0.187667 + 0.108350i −0.590890 0.806752i \(-0.701223\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(660\) 0 0
\(661\) 43.2382i 1.68177i −0.541214 0.840885i \(-0.682035\pi\)
0.541214 0.840885i \(-0.317965\pi\)
\(662\) 26.3139 1.02272
\(663\) 0 0
\(664\) −10.9918 + 6.34613i −0.426565 + 0.246277i
\(665\) 9.44215 21.2335i 0.366151 0.823398i
\(666\) 0 0
\(667\) 20.3152 + 11.7290i 0.786609 + 0.454149i
\(668\) 20.8655 + 12.0467i 0.807310 + 0.466101i
\(669\) 0 0
\(670\) 12.5361 4.77795i 0.484312 0.184588i
\(671\) 14.8224 25.6731i 0.572211 0.991099i
\(672\) 0 0
\(673\) −11.8398 + 6.83568i −0.456389 + 0.263496i −0.710525 0.703672i \(-0.751542\pi\)
0.254136 + 0.967169i \(0.418209\pi\)
\(674\) 5.78970 + 3.34269i 0.223011 + 0.128755i
\(675\) 0 0
\(676\) −6.14752 10.6478i −0.236443 0.409531i
\(677\) 8.29461i 0.318788i 0.987215 + 0.159394i \(0.0509540\pi\)
−0.987215 + 0.159394i \(0.949046\pi\)
\(678\) 0 0
\(679\) 12.3421 + 45.5440i 0.473645 + 1.74782i
\(680\) 7.84765 + 6.38590i 0.300944 + 0.244888i
\(681\) 0 0
\(682\) 2.90217 5.02671i 0.111130 0.192483i
\(683\) −20.1186 34.8465i −0.769817 1.33336i −0.937662 0.347549i \(-0.887014\pi\)
0.167845 0.985813i \(-0.446319\pi\)
\(684\) 0 0
\(685\) 13.6881 + 2.20141i 0.522995 + 0.0841114i
\(686\) −13.2068 12.9839i −0.504238 0.495726i
\(687\) 0 0
\(688\) 6.76731 3.90711i 0.258001 0.148957i
\(689\) −28.9859 −1.10428
\(690\) 0 0
\(691\) 7.62789i 0.290179i 0.989419 + 0.145089i \(0.0463470\pi\)
−0.989419 + 0.145089i \(0.953653\pi\)
\(692\) 12.1734i 0.462762i
\(693\) 0 0
\(694\) 2.41396 0.0916325
\(695\) 5.33515 33.1734i 0.202374 1.25834i
\(696\) 0 0
\(697\) 25.8242i 0.978160i
\(698\) −0.654664 + 0.377971i −0.0247794 + 0.0143064i
\(699\) 0 0
\(700\) 11.7984 5.98303i 0.445939 0.226137i
\(701\) 31.4440i 1.18762i −0.804604 0.593812i \(-0.797622\pi\)
0.804604 0.593812i \(-0.202378\pi\)
\(702\) 0 0
\(703\) 2.09906 + 3.63567i 0.0791674 + 0.137122i
\(704\) 2.46056 + 1.42061i 0.0927359 + 0.0535411i
\(705\) 0 0
\(706\) 8.10821 + 4.68128i 0.305157 + 0.176182i
\(707\) −18.8078 + 18.9148i −0.707339 + 0.711364i
\(708\) 0 0
\(709\) −20.1317 −0.756061 −0.378030 0.925793i \(-0.623398\pi\)
−0.378030 + 0.925793i \(0.623398\pi\)
\(710\) 16.3325 6.22487i 0.612947 0.233615i
\(711\) 0 0
\(712\) 5.33519 9.24081i 0.199945 0.346314i
\(713\) −11.3610 + 6.55927i −0.425472 + 0.245647i
\(714\) 0 0
\(715\) −24.7839 20.1675i −0.926865 0.754222i
\(716\) 3.16979 1.83008i 0.118461 0.0683932i
\(717\) 0 0
\(718\) 20.7136 + 11.9590i 0.773025 + 0.446306i
\(719\) −12.4736 + 21.6049i −0.465187 + 0.805728i −0.999210 0.0397421i \(-0.987346\pi\)
0.534023 + 0.845470i \(0.320680\pi\)
\(720\) 0 0
\(721\) 1.43225 + 5.28521i 0.0533398 + 0.196831i
\(722\) −1.78551 3.09260i −0.0664499 0.115095i
\(723\) 0 0
\(724\) 11.5653i 0.429822i
\(725\) 5.72693 17.3442i 0.212693 0.644147i
\(726\) 0 0
\(727\) 0.756579 + 1.31043i 0.0280600 + 0.0486013i 0.879714 0.475502i \(-0.157734\pi\)
−0.851654 + 0.524104i \(0.824400\pi\)
\(728\) −9.38244 + 9.43583i −0.347736 + 0.349715i
\(729\) 0 0
\(730\) −19.8761 + 24.4258i −0.735646 + 0.904038i
\(731\) −17.6786 + 30.6202i −0.653866 + 1.13253i
\(732\) 0 0
\(733\) 4.96247 + 8.59526i 0.183293 + 0.317473i 0.943000 0.332793i \(-0.107991\pi\)
−0.759707 + 0.650266i \(0.774658\pi\)
\(734\) −2.63628 + 4.56616i −0.0973067 + 0.168540i
\(735\) 0 0
\(736\) −3.21075 5.56118i −0.118350 0.204988i
\(737\) −8.52323 + 14.7627i −0.313957 + 0.543790i
\(738\) 0 0
\(739\) 7.69829 + 13.3338i 0.283186 + 0.490493i 0.972168 0.234286i \(-0.0752752\pi\)
−0.688981 + 0.724779i \(0.741942\pi\)
\(740\) −0.379474 + 2.35953i −0.0139498 + 0.0867380i
\(741\) 0 0
\(742\) 3.98830 + 14.7174i 0.146415 + 0.540292i
\(743\) 22.7782 39.4530i 0.835651 1.44739i −0.0578475 0.998325i \(-0.518424\pi\)
0.893499 0.449065i \(-0.148243\pi\)
\(744\) 0 0
\(745\) −3.96030 3.22264i −0.145094 0.118068i
\(746\) −6.37029 + 3.67789i −0.233233 + 0.134657i
\(747\) 0 0
\(748\) −12.8557 −0.470050
\(749\) 4.74604 4.77305i 0.173417 0.174403i
\(750\) 0 0
\(751\) −0.490251 0.849139i −0.0178895 0.0309855i 0.856942 0.515413i \(-0.172361\pi\)
−0.874832 + 0.484427i \(0.839028\pi\)
\(752\) 2.23938i 0.0816616i
\(753\) 0 0
\(754\) 18.3727i 0.669094i
\(755\) 29.1207 + 4.68337i 1.05981 + 0.170445i
\(756\) 0 0
\(757\) 16.9068i 0.614489i −0.951631 0.307245i \(-0.900593\pi\)
0.951631 0.307245i \(-0.0994070\pi\)
\(758\) −6.48462 −0.235532
\(759\) 0 0
\(760\) −1.39465 + 8.67178i −0.0505893 + 0.314559i
\(761\) −16.0830 27.8566i −0.583010 1.00980i −0.995120 0.0986685i \(-0.968542\pi\)
0.412111 0.911134i \(-0.364792\pi\)
\(762\) 0 0
\(763\) −8.25623 30.4667i −0.298896 1.10297i
\(764\) 9.43103i 0.341203i
\(765\) 0 0
\(766\) −8.50872 + 4.91251i −0.307432 + 0.177496i
\(767\) −32.2140 + 55.7963i −1.16318 + 2.01469i
\(768\) 0 0
\(769\) 44.2257 + 25.5337i 1.59482 + 0.920770i 0.992463 + 0.122545i \(0.0391054\pi\)
0.602358 + 0.798226i \(0.294228\pi\)
\(770\) −6.82977 + 15.3588i −0.246128 + 0.553491i
\(771\) 0 0
\(772\) 1.48521i 0.0534540i
\(773\) −21.9215 + 12.6564i −0.788463 + 0.455219i −0.839421 0.543482i \(-0.817106\pi\)
0.0509584 + 0.998701i \(0.483772\pi\)
\(774\) 0 0
\(775\) 6.79864 + 7.62335i 0.244214 + 0.273839i
\(776\) −8.91744 15.4455i −0.320117 0.554459i
\(777\) 0 0
\(778\) −7.18549 4.14854i −0.257612 0.148733i
\(779\) 19.4149 11.2092i 0.695609 0.401610i
\(780\) 0 0
\(781\) −11.1044 + 19.2333i −0.397345 + 0.688223i
\(782\) 25.1628 + 14.5277i 0.899819 + 0.519511i
\(783\) 0 0
\(784\) 6.08194 + 3.46554i 0.217212 + 0.123769i
\(785\) −14.2757 37.4558i −0.509521 1.33685i
\(786\) 0 0
\(787\) 25.7571 0.918141 0.459071 0.888400i \(-0.348182\pi\)
0.459071 + 0.888400i \(0.348182\pi\)
\(788\) −17.6493 −0.628729
\(789\) 0 0
\(790\) −3.59218 9.42498i −0.127804 0.335326i
\(791\) −15.2768 + 15.3637i −0.543181 + 0.546272i
\(792\) 0 0
\(793\) −45.4456 26.2380i −1.61382 0.931740i
\(794\) −6.65037 + 11.5188i −0.236013 + 0.408786i
\(795\) 0 0
\(796\) 17.8938 10.3310i 0.634229 0.366172i
\(797\) −42.2492 24.3926i −1.49655 0.864031i −0.496553 0.868006i \(-0.665401\pi\)
−0.999992 + 0.00397561i \(0.998735\pi\)
\(798\) 0 0
\(799\) 5.06627 + 8.77504i 0.179232 + 0.310439i
\(800\) −3.73162 + 3.32792i −0.131933 + 0.117660i
\(801\) 0 0
\(802\) −18.0899 + 10.4442i −0.638777 + 0.368798i
\(803\) 40.0132i 1.41204i
\(804\) 0 0
\(805\) 30.7244 22.3440i 1.08289 0.787523i
\(806\) −8.89810 5.13732i −0.313422 0.180954i
\(807\) 0 0
\(808\) 5.04091 8.73112i 0.177339 0.307160i
\(809\) −19.3683 + 11.1823i −0.680953 + 0.393148i −0.800214 0.599715i \(-0.795281\pi\)
0.119261 + 0.992863i \(0.461947\pi\)
\(810\) 0 0
\(811\) 0.819585i 0.0287795i −0.999896 0.0143898i \(-0.995419\pi\)
0.999896 0.0143898i \(-0.00458056\pi\)
\(812\) 9.32859 2.52798i 0.327369 0.0887146i
\(813\) 0 0
\(814\) −1.51831 2.62978i −0.0532166 0.0921738i
\(815\) 1.34073 8.33653i 0.0469638 0.292016i
\(816\) 0 0
\(817\) −30.6940 −1.07385
\(818\) 28.3129i 0.989938i
\(819\) 0 0
\(820\) 12.6001 + 2.02643i 0.440016 + 0.0707661i
\(821\) 53.8484i 1.87932i 0.342108 + 0.939661i \(0.388859\pi\)
−0.342108 + 0.939661i \(0.611141\pi\)
\(822\) 0 0
\(823\) 44.7612i 1.56028i 0.625608 + 0.780138i \(0.284851\pi\)
−0.625608 + 0.780138i \(0.715149\pi\)
\(824\) −1.03484 1.79239i −0.0360502 0.0624408i
\(825\) 0 0
\(826\) 32.7626 + 8.67915i 1.13996 + 0.301986i
\(827\) −14.5517 −0.506014 −0.253007 0.967464i \(-0.581420\pi\)
−0.253007 + 0.967464i \(0.581420\pi\)
\(828\) 0 0
\(829\) 29.5474 17.0592i 1.02623 0.592491i 0.110324 0.993896i \(-0.464811\pi\)
0.915901 + 0.401404i \(0.131478\pi\)
\(830\) 22.0134 + 17.9130i 0.764096 + 0.621771i
\(831\) 0 0
\(832\) 2.51471 4.35560i 0.0871818 0.151003i
\(833\) −31.6725 + 0.179725i −1.09739 + 0.00622710i
\(834\) 0 0
\(835\) 8.55450 53.1910i 0.296041 1.84075i
\(836\) −5.58010 9.66502i −0.192992 0.334272i
\(837\) 0 0
\(838\) 7.85403 13.6036i 0.271313 0.469928i
\(839\) 23.2722 + 40.3087i 0.803446 + 1.39161i 0.917335 + 0.398116i \(0.130336\pi\)
−0.113889 + 0.993493i \(0.536331\pi\)
\(840\) 0 0
\(841\) −7.82763 + 13.5578i −0.269918 + 0.467512i
\(842\) −13.2658 22.9771i −0.457171 0.791843i
\(843\) 0 0
\(844\) 5.63953 9.76796i 0.194121 0.336227i
\(845\) −17.3524 + 21.3244i −0.596942 + 0.733583i
\(846\) 0 0
\(847\) 2.02589 + 7.47583i 0.0696105 + 0.256872i
\(848\) −2.88164 4.99115i −0.0989559 0.171397i
\(849\) 0 0
\(850\) 7.09346 21.4828i 0.243304 0.736853i
\(851\) 6.86312i 0.235265i
\(852\) 0 0
\(853\) 19.2187 + 33.2878i 0.658037 + 1.13975i 0.981123 + 0.193384i \(0.0619462\pi\)
−0.323086 + 0.946369i \(0.604720\pi\)
\(854\) −7.06910 + 26.6849i −0.241900 + 0.913137i
\(855\) 0 0
\(856\) −1.27205 + 2.20325i −0.0434777 + 0.0753055i
\(857\) −23.5713 13.6089i −0.805180 0.464871i 0.0400992 0.999196i \(-0.487233\pi\)
−0.845279 + 0.534325i \(0.820566\pi\)
\(858\) 0 0
\(859\) −27.7376 + 16.0143i −0.946395 + 0.546402i −0.891959 0.452116i \(-0.850669\pi\)
−0.0544359 + 0.998517i \(0.517336\pi\)
\(860\) −13.5529 11.0285i −0.462152 0.376069i
\(861\) 0 0
\(862\) 14.0479 8.11059i 0.478475 0.276248i
\(863\) −14.0979 + 24.4183i −0.479898 + 0.831208i −0.999734 0.0230584i \(-0.992660\pi\)
0.519836 + 0.854266i \(0.325993\pi\)
\(864\) 0 0
\(865\) −25.4356 + 9.69440i −0.864838 + 0.329620i
\(866\) 19.7268 0.670344
\(867\) 0 0
\(868\) −1.38411 + 5.22481i −0.0469796 + 0.177342i
\(869\) 11.0990 + 6.40799i 0.376507 + 0.217376i
\(870\) 0 0
\(871\) 26.1324 + 15.0875i 0.885462 + 0.511222i
\(872\) 5.96532 + 10.3322i 0.202011 + 0.349894i
\(873\) 0 0
\(874\) 25.2235i 0.853196i
\(875\) −21.8971 19.8876i −0.740256 0.672325i
\(876\) 0 0
\(877\) −20.2119 + 11.6694i −0.682508 + 0.394046i −0.800799 0.598933i \(-0.795592\pi\)
0.118291 + 0.992979i \(0.462258\pi\)
\(878\) 13.1264i 0.442994i
\(879\) 0 0
\(880\) 1.00879 6.27254i 0.0340063 0.211447i
\(881\) −18.3044 −0.616690 −0.308345 0.951275i \(-0.599775\pi\)
−0.308345 + 0.951275i \(0.599775\pi\)
\(882\) 0 0
\(883\) 7.38295i 0.248456i −0.992254 0.124228i \(-0.960355\pi\)
0.992254 0.124228i \(-0.0396454\pi\)
\(884\) 22.7567i 0.765390i
\(885\) 0 0
\(886\) 8.62000 0.289595
\(887\) 9.64775 5.57013i 0.323940 0.187027i −0.329207 0.944258i \(-0.606782\pi\)
0.653147 + 0.757231i \(0.273448\pi\)
\(888\) 0 0
\(889\) −12.3111 + 46.4726i −0.412900 + 1.55864i
\(890\) −23.5570 3.78858i −0.789632 0.126994i
\(891\) 0 0
\(892\) −6.07248 10.5178i −0.203322 0.352164i
\(893\) −4.39810 + 7.61774i −0.147177 + 0.254918i
\(894\) 0 0
\(895\) −6.34816 5.16572i −0.212196 0.172671i
\(896\) −2.55753 0.677517i −0.0854411 0.0226343i
\(897\) 0 0
\(898\) 37.2222i 1.24212i
\(899\) 3.73142 + 6.46301i 0.124450 + 0.215554i
\(900\) 0 0
\(901\) 22.5835 + 13.0386i 0.752366 + 0.434379i
\(902\) −14.0433 + 8.10791i −0.467591 + 0.269964i
\(903\) 0 0
\(904\) 4.09453 7.09194i 0.136182 0.235874i
\(905\) 24.1652 9.21019i 0.803279 0.306157i
\(906\) 0 0
\(907\) −21.6780 12.5158i −0.719806 0.415580i 0.0948756 0.995489i \(-0.469755\pi\)
−0.814681 + 0.579909i \(0.803088\pi\)
\(908\) 20.5863 + 11.8855i 0.683180 + 0.394434i
\(909\) 0 0
\(910\) 27.1875 + 12.0898i 0.901258 + 0.400774i
\(911\) −10.1366 + 5.85238i −0.335841 + 0.193898i −0.658431 0.752641i \(-0.728780\pi\)
0.322590 + 0.946539i \(0.395446\pi\)
\(912\) 0 0
\(913\) −36.0614 −1.19346
\(914\) 40.5035i 1.33974i
\(915\) 0 0
\(916\) 9.88508 5.70716i 0.326612 0.188570i
\(917\) −11.8396 43.6899i −0.390979 1.44277i
\(918\) 0 0
\(919\) 15.3085 26.5152i 0.504982 0.874655i −0.495001 0.868892i \(-0.664832\pi\)
0.999983 0.00576276i \(-0.00183435\pi\)
\(920\) −9.06290 + 11.1374i −0.298795 + 0.367190i
\(921\) 0 0
\(922\) −16.8755 29.2292i −0.555765 0.962614i
\(923\) 34.0462 + 19.6566i 1.12064 + 0.647004i
\(924\) 0 0
\(925\) 5.23232 1.08615i 0.172038 0.0357123i
\(926\) 23.0998 + 13.3367i 0.759108 + 0.438271i
\(927\) 0 0
\(928\) −3.16363 + 1.82652i −0.103851 + 0.0599586i
\(929\) −13.3528 −0.438093 −0.219046 0.975714i \(-0.570295\pi\)
−0.219046 + 0.975714i \(0.570295\pi\)
\(930\) 0 0
\(931\) −13.8828 23.7337i −0.454991 0.777840i
\(932\) 4.16132 7.20762i 0.136309 0.236093i
\(933\) 0 0
\(934\) −4.89263 2.82476i −0.160092 0.0924289i
\(935\) 10.2378 + 26.8613i 0.334811 + 0.878459i
\(936\) 0 0
\(937\) −32.6519 −1.06669 −0.533345 0.845898i \(-0.679065\pi\)
−0.533345 + 0.845898i \(0.679065\pi\)
\(938\) 4.06491 15.3445i 0.132724 0.501015i
\(939\) 0 0
\(940\) −4.67907 + 1.78335i −0.152614 + 0.0581666i
\(941\) −35.8078 −1.16730 −0.583650 0.812006i \(-0.698376\pi\)
−0.583650 + 0.812006i \(0.698376\pi\)
\(942\) 0 0
\(943\) 36.6498 1.19348
\(944\) −12.8102 −0.416937
\(945\) 0 0
\(946\) 22.2019 0.721845
\(947\) 34.3826 1.11729 0.558643 0.829408i \(-0.311322\pi\)
0.558643 + 0.829408i \(0.311322\pi\)
\(948\) 0 0
\(949\) −70.8300 −2.29924
\(950\) 19.2299 3.99182i 0.623901 0.129512i
\(951\) 0 0
\(952\) 11.5545 3.13119i 0.374484 0.101482i
\(953\) 44.0113 1.42566 0.712832 0.701334i \(-0.247412\pi\)
0.712832 + 0.701334i \(0.247412\pi\)
\(954\) 0 0
\(955\) 19.7057 7.51051i 0.637661 0.243035i
\(956\) 6.41684 + 3.70476i 0.207535 + 0.119821i
\(957\) 0 0
\(958\) −0.136929 + 0.237168i −0.00442397 + 0.00766254i
\(959\) 11.5665 11.6323i 0.373501 0.375627i
\(960\) 0 0
\(961\) 26.8265 0.865372
\(962\) −4.65515 + 2.68765i −0.150088 + 0.0866534i
\(963\) 0 0
\(964\) −7.50748 4.33445i −0.241800 0.139603i
\(965\) 3.10328 1.18277i 0.0998981 0.0380746i
\(966\) 0 0
\(967\) −6.03415 3.48382i −0.194045 0.112032i 0.399830 0.916589i \(-0.369069\pi\)
−0.593875 + 0.804557i \(0.702403\pi\)
\(968\) −1.46376 2.53530i −0.0470469 0.0814876i
\(969\) 0 0
\(970\) −25.1710 + 30.9327i −0.808193 + 0.993190i
\(971\) 12.3672 21.4206i 0.396883 0.687421i −0.596457 0.802645i \(-0.703425\pi\)
0.993340 + 0.115224i \(0.0367586\pi\)
\(972\) 0 0
\(973\) −28.1911 28.0316i −0.903766 0.898652i
\(974\) −12.4072 + 7.16329i −0.397552 + 0.229527i
\(975\) 0 0
\(976\) 10.4338i 0.333979i
\(977\) 45.1109 1.44323 0.721613 0.692296i \(-0.243401\pi\)
0.721613 + 0.692296i \(0.243401\pi\)
\(978\) 0 0
\(979\) 26.2551 15.1584i 0.839117 0.484465i
\(980\) 2.39766 15.4677i 0.0765905 0.494099i
\(981\) 0 0
\(982\) −31.8165 18.3692i −1.01530 0.586186i
\(983\) −31.8263 18.3749i −1.01510 0.586068i −0.102419 0.994741i \(-0.532658\pi\)
−0.912681 + 0.408673i \(0.865992\pi\)
\(984\) 0 0
\(985\) 14.0552 + 36.8773i 0.447836 + 1.17501i
\(986\) 8.26450 14.3145i 0.263195 0.455868i
\(987\) 0 0
\(988\) −17.1087 + 9.87771i −0.544300 + 0.314252i
\(989\) −43.4563 25.0895i −1.38183 0.797800i
\(990\) 0 0
\(991\) 5.67076 + 9.82205i 0.180138 + 0.312008i 0.941927 0.335817i \(-0.109012\pi\)
−0.761790 + 0.647825i \(0.775679\pi\)
\(992\) 2.04291i 0.0648624i
\(993\) 0 0
\(994\) 5.29591 19.9913i 0.167976 0.634086i
\(995\) −35.8360 29.1610i −1.13608 0.924466i
\(996\) 0 0
\(997\) 4.30265 7.45242i 0.136266 0.236020i −0.789814 0.613346i \(-0.789823\pi\)
0.926081 + 0.377326i \(0.123156\pi\)
\(998\) 16.0396 + 27.7814i 0.507725 + 0.879406i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.b.719.11 48
3.2 odd 2 630.2.bi.a.509.5 yes 48
5.4 even 2 1890.2.bi.a.719.6 48
7.3 odd 6 1890.2.r.a.1529.2 48
9.2 odd 6 1890.2.r.b.89.2 48
9.7 even 3 630.2.r.a.299.20 yes 48
15.14 odd 2 630.2.bi.b.509.20 yes 48
21.17 even 6 630.2.r.b.59.5 yes 48
35.24 odd 6 1890.2.r.b.1529.2 48
45.29 odd 6 1890.2.r.a.89.2 48
45.34 even 6 630.2.r.b.299.5 yes 48
63.38 even 6 1890.2.bi.a.899.6 48
63.52 odd 6 630.2.bi.b.479.20 yes 48
105.59 even 6 630.2.r.a.59.20 48
315.164 even 6 inner 1890.2.bi.b.899.11 48
315.304 odd 6 630.2.bi.a.479.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.20 48 105.59 even 6
630.2.r.a.299.20 yes 48 9.7 even 3
630.2.r.b.59.5 yes 48 21.17 even 6
630.2.r.b.299.5 yes 48 45.34 even 6
630.2.bi.a.479.5 yes 48 315.304 odd 6
630.2.bi.a.509.5 yes 48 3.2 odd 2
630.2.bi.b.479.20 yes 48 63.52 odd 6
630.2.bi.b.509.20 yes 48 15.14 odd 2
1890.2.r.a.89.2 48 45.29 odd 6
1890.2.r.a.1529.2 48 7.3 odd 6
1890.2.r.b.89.2 48 9.2 odd 6
1890.2.r.b.1529.2 48 35.24 odd 6
1890.2.bi.a.719.6 48 5.4 even 2
1890.2.bi.a.899.6 48 63.38 even 6
1890.2.bi.b.719.11 48 1.1 even 1 trivial
1890.2.bi.b.899.11 48 315.164 even 6 inner