Properties

Label 1890.2.bi.a.899.5
Level $1890$
Weight $2$
Character 1890.899
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 899.5
Character \(\chi\) \(=\) 1890.899
Dual form 1890.2.bi.a.719.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-1.67933 - 1.47644i) q^{5} +(-2.41546 + 1.07960i) q^{7} -1.00000 q^{8} +(1.67933 + 1.47644i) q^{10} +(-5.13649 + 2.96556i) q^{11} +(-2.57957 - 4.46794i) q^{13} +(2.41546 - 1.07960i) q^{14} +1.00000 q^{16} +(-1.62025 - 0.935454i) q^{17} +(-1.51165 + 0.872754i) q^{19} +(-1.67933 - 1.47644i) q^{20} +(5.13649 - 2.96556i) q^{22} +(3.20885 - 5.55790i) q^{23} +(0.640274 + 4.95884i) q^{25} +(2.57957 + 4.46794i) q^{26} +(-2.41546 + 1.07960i) q^{28} +(2.16663 + 1.25090i) q^{29} -4.36743i q^{31} -1.00000 q^{32} +(1.62025 + 0.935454i) q^{34} +(5.65031 + 1.75328i) q^{35} +(-1.17895 + 0.680668i) q^{37} +(1.51165 - 0.872754i) q^{38} +(1.67933 + 1.47644i) q^{40} +(3.79398 + 6.57136i) q^{41} +(4.07460 + 2.35247i) q^{43} +(-5.13649 + 2.96556i) q^{44} +(-3.20885 + 5.55790i) q^{46} +9.74722i q^{47} +(4.66893 - 5.21547i) q^{49} +(-0.640274 - 4.95884i) q^{50} +(-2.57957 - 4.46794i) q^{52} +(-0.628956 + 1.08938i) q^{53} +(13.0043 + 2.60357i) q^{55} +(2.41546 - 1.07960i) q^{56} +(-2.16663 - 1.25090i) q^{58} +1.30033 q^{59} -11.4604i q^{61} +4.36743i q^{62} +1.00000 q^{64} +(-2.26470 + 11.3117i) q^{65} +15.0907i q^{67} +(-1.62025 - 0.935454i) q^{68} +(-5.65031 - 1.75328i) q^{70} +2.88706i q^{71} +(1.79824 - 3.11464i) q^{73} +(1.17895 - 0.680668i) q^{74} +(-1.51165 + 0.872754i) q^{76} +(9.20540 - 12.7086i) q^{77} +8.42064 q^{79} +(-1.67933 - 1.47644i) q^{80} +(-3.79398 - 6.57136i) q^{82} +(-2.43978 - 1.40861i) q^{83} +(1.33980 + 3.96313i) q^{85} +(-4.07460 - 2.35247i) q^{86} +(5.13649 - 2.96556i) q^{88} +(-8.92096 - 15.4516i) q^{89} +(11.0544 + 8.00725i) q^{91} +(3.20885 - 5.55790i) q^{92} -9.74722i q^{94} +(3.82713 + 0.766222i) q^{95} +(1.23514 - 2.13933i) q^{97} +(-4.66893 + 5.21547i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{2} + 48 q^{4} + 3 q^{7} - 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} + 6 q^{22} - 3 q^{23} - 18 q^{25} + 3 q^{28} + 3 q^{29} - 48 q^{32} + 12 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.67933 1.47644i −0.751018 0.660282i
\(6\) 0 0
\(7\) −2.41546 + 1.07960i −0.912959 + 0.408050i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.67933 + 1.47644i 0.531050 + 0.466890i
\(11\) −5.13649 + 2.96556i −1.54871 + 0.894149i −0.550471 + 0.834854i \(0.685552\pi\)
−0.998241 + 0.0592945i \(0.981115\pi\)
\(12\) 0 0
\(13\) −2.57957 4.46794i −0.715444 1.23918i −0.962788 0.270257i \(-0.912891\pi\)
0.247344 0.968928i \(-0.420442\pi\)
\(14\) 2.41546 1.07960i 0.645560 0.288535i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.62025 0.935454i −0.392969 0.226881i 0.290477 0.956882i \(-0.406186\pi\)
−0.683446 + 0.730001i \(0.739519\pi\)
\(18\) 0 0
\(19\) −1.51165 + 0.872754i −0.346797 + 0.200224i −0.663274 0.748377i \(-0.730833\pi\)
0.316476 + 0.948600i \(0.397500\pi\)
\(20\) −1.67933 1.47644i −0.375509 0.330141i
\(21\) 0 0
\(22\) 5.13649 2.96556i 1.09510 0.632259i
\(23\) 3.20885 5.55790i 0.669092 1.15890i −0.309066 0.951041i \(-0.600016\pi\)
0.978158 0.207861i \(-0.0666503\pi\)
\(24\) 0 0
\(25\) 0.640274 + 4.95884i 0.128055 + 0.991767i
\(26\) 2.57957 + 4.46794i 0.505895 + 0.876236i
\(27\) 0 0
\(28\) −2.41546 + 1.07960i −0.456480 + 0.204025i
\(29\) 2.16663 + 1.25090i 0.402333 + 0.232287i 0.687490 0.726194i \(-0.258712\pi\)
−0.285157 + 0.958481i \(0.592046\pi\)
\(30\) 0 0
\(31\) 4.36743i 0.784413i −0.919877 0.392207i \(-0.871712\pi\)
0.919877 0.392207i \(-0.128288\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.62025 + 0.935454i 0.277871 + 0.160429i
\(35\) 5.65031 + 1.75328i 0.955077 + 0.296358i
\(36\) 0 0
\(37\) −1.17895 + 0.680668i −0.193818 + 0.111901i −0.593769 0.804636i \(-0.702361\pi\)
0.399950 + 0.916537i \(0.369027\pi\)
\(38\) 1.51165 0.872754i 0.245223 0.141579i
\(39\) 0 0
\(40\) 1.67933 + 1.47644i 0.265525 + 0.233445i
\(41\) 3.79398 + 6.57136i 0.592520 + 1.02627i 0.993892 + 0.110359i \(0.0352002\pi\)
−0.401372 + 0.915915i \(0.631467\pi\)
\(42\) 0 0
\(43\) 4.07460 + 2.35247i 0.621370 + 0.358748i 0.777402 0.629004i \(-0.216537\pi\)
−0.156032 + 0.987752i \(0.549870\pi\)
\(44\) −5.13649 + 2.96556i −0.774356 + 0.447074i
\(45\) 0 0
\(46\) −3.20885 + 5.55790i −0.473120 + 0.819467i
\(47\) 9.74722i 1.42178i 0.703304 + 0.710889i \(0.251707\pi\)
−0.703304 + 0.710889i \(0.748293\pi\)
\(48\) 0 0
\(49\) 4.66893 5.21547i 0.666990 0.745067i
\(50\) −0.640274 4.95884i −0.0905484 0.701285i
\(51\) 0 0
\(52\) −2.57957 4.46794i −0.357722 0.619592i
\(53\) −0.628956 + 1.08938i −0.0863938 + 0.149638i −0.905984 0.423311i \(-0.860868\pi\)
0.819591 + 0.572950i \(0.194201\pi\)
\(54\) 0 0
\(55\) 13.0043 + 2.60357i 1.75350 + 0.351065i
\(56\) 2.41546 1.07960i 0.322780 0.144268i
\(57\) 0 0
\(58\) −2.16663 1.25090i −0.284492 0.164252i
\(59\) 1.30033 0.169289 0.0846443 0.996411i \(-0.473025\pi\)
0.0846443 + 0.996411i \(0.473025\pi\)
\(60\) 0 0
\(61\) 11.4604i 1.46735i −0.679499 0.733677i \(-0.737803\pi\)
0.679499 0.733677i \(-0.262197\pi\)
\(62\) 4.36743i 0.554664i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.26470 + 11.3117i −0.280901 + 1.40304i
\(66\) 0 0
\(67\) 15.0907i 1.84362i 0.387641 + 0.921810i \(0.373290\pi\)
−0.387641 + 0.921810i \(0.626710\pi\)
\(68\) −1.62025 0.935454i −0.196485 0.113440i
\(69\) 0 0
\(70\) −5.65031 1.75328i −0.675341 0.209557i
\(71\) 2.88706i 0.342631i 0.985216 + 0.171315i \(0.0548017\pi\)
−0.985216 + 0.171315i \(0.945198\pi\)
\(72\) 0 0
\(73\) 1.79824 3.11464i 0.210468 0.364541i −0.741393 0.671071i \(-0.765835\pi\)
0.951861 + 0.306530i \(0.0991680\pi\)
\(74\) 1.17895 0.680668i 0.137050 0.0791260i
\(75\) 0 0
\(76\) −1.51165 + 0.872754i −0.173399 + 0.100112i
\(77\) 9.20540 12.7086i 1.04905 1.44827i
\(78\) 0 0
\(79\) 8.42064 0.947396 0.473698 0.880687i \(-0.342919\pi\)
0.473698 + 0.880687i \(0.342919\pi\)
\(80\) −1.67933 1.47644i −0.187754 0.165071i
\(81\) 0 0
\(82\) −3.79398 6.57136i −0.418975 0.725686i
\(83\) −2.43978 1.40861i −0.267801 0.154615i 0.360087 0.932919i \(-0.382747\pi\)
−0.627888 + 0.778304i \(0.716080\pi\)
\(84\) 0 0
\(85\) 1.33980 + 3.96313i 0.145321 + 0.429862i
\(86\) −4.07460 2.35247i −0.439375 0.253673i
\(87\) 0 0
\(88\) 5.13649 2.96556i 0.547552 0.316129i
\(89\) −8.92096 15.4516i −0.945620 1.63786i −0.754506 0.656293i \(-0.772123\pi\)
−0.191113 0.981568i \(-0.561210\pi\)
\(90\) 0 0
\(91\) 11.0544 + 8.00725i 1.15882 + 0.839388i
\(92\) 3.20885 5.55790i 0.334546 0.579451i
\(93\) 0 0
\(94\) 9.74722i 1.00535i
\(95\) 3.82713 + 0.766222i 0.392655 + 0.0786127i
\(96\) 0 0
\(97\) 1.23514 2.13933i 0.125410 0.217216i −0.796483 0.604661i \(-0.793309\pi\)
0.921893 + 0.387444i \(0.126642\pi\)
\(98\) −4.66893 + 5.21547i −0.471633 + 0.526842i
\(99\) 0 0
\(100\) 0.640274 + 4.95884i 0.0640274 + 0.495884i
\(101\) 6.90957 + 11.9677i 0.687528 + 1.19083i 0.972635 + 0.232337i \(0.0746373\pi\)
−0.285108 + 0.958496i \(0.592029\pi\)
\(102\) 0 0
\(103\) −0.712859 + 1.23471i −0.0702400 + 0.121659i −0.899006 0.437935i \(-0.855710\pi\)
0.828766 + 0.559595i \(0.189043\pi\)
\(104\) 2.57957 + 4.46794i 0.252948 + 0.438118i
\(105\) 0 0
\(106\) 0.628956 1.08938i 0.0610896 0.105810i
\(107\) 1.67000 + 2.89252i 0.161445 + 0.279630i 0.935387 0.353626i \(-0.115051\pi\)
−0.773942 + 0.633256i \(0.781718\pi\)
\(108\) 0 0
\(109\) 4.42125 7.65783i 0.423479 0.733487i −0.572798 0.819696i \(-0.694142\pi\)
0.996277 + 0.0862097i \(0.0274755\pi\)
\(110\) −13.0043 2.60357i −1.23991 0.248240i
\(111\) 0 0
\(112\) −2.41546 + 1.07960i −0.228240 + 0.102013i
\(113\) 8.87845 + 15.3779i 0.835215 + 1.44663i 0.893855 + 0.448355i \(0.147990\pi\)
−0.0586408 + 0.998279i \(0.518677\pi\)
\(114\) 0 0
\(115\) −13.5946 + 4.59586i −1.26770 + 0.428566i
\(116\) 2.16663 + 1.25090i 0.201166 + 0.116143i
\(117\) 0 0
\(118\) −1.30033 −0.119705
\(119\) 4.92358 + 0.510329i 0.451344 + 0.0467817i
\(120\) 0 0
\(121\) 12.0891 20.9388i 1.09900 1.90353i
\(122\) 11.4604i 1.03758i
\(123\) 0 0
\(124\) 4.36743i 0.392207i
\(125\) 6.24617 9.27283i 0.558675 0.829387i
\(126\) 0 0
\(127\) 8.49642i 0.753936i −0.926226 0.376968i \(-0.876967\pi\)
0.926226 0.376968i \(-0.123033\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.26470 11.3117i 0.198627 0.992102i
\(131\) 1.98718 3.44190i 0.173621 0.300720i −0.766062 0.642766i \(-0.777787\pi\)
0.939683 + 0.342046i \(0.111120\pi\)
\(132\) 0 0
\(133\) 2.70912 3.74009i 0.234911 0.324307i
\(134\) 15.0907i 1.30364i
\(135\) 0 0
\(136\) 1.62025 + 0.935454i 0.138936 + 0.0802145i
\(137\) −4.85327 8.40611i −0.414643 0.718182i 0.580748 0.814083i \(-0.302760\pi\)
−0.995391 + 0.0959011i \(0.969427\pi\)
\(138\) 0 0
\(139\) −17.4411 + 10.0696i −1.47933 + 0.854092i −0.999726 0.0233924i \(-0.992553\pi\)
−0.479605 + 0.877485i \(0.659220\pi\)
\(140\) 5.65031 + 1.75328i 0.477539 + 0.148179i
\(141\) 0 0
\(142\) 2.88706i 0.242276i
\(143\) 26.4999 + 15.2997i 2.21603 + 1.27943i
\(144\) 0 0
\(145\) −1.79160 5.29956i −0.148784 0.440105i
\(146\) −1.79824 + 3.11464i −0.148823 + 0.257769i
\(147\) 0 0
\(148\) −1.17895 + 0.680668i −0.0969092 + 0.0559506i
\(149\) 2.64213 + 1.52543i 0.216452 + 0.124968i 0.604306 0.796752i \(-0.293450\pi\)
−0.387855 + 0.921721i \(0.626784\pi\)
\(150\) 0 0
\(151\) 8.45186 + 14.6390i 0.687803 + 1.19131i 0.972547 + 0.232706i \(0.0747578\pi\)
−0.284745 + 0.958603i \(0.591909\pi\)
\(152\) 1.51165 0.872754i 0.122611 0.0707897i
\(153\) 0 0
\(154\) −9.20540 + 12.7086i −0.741792 + 1.02408i
\(155\) −6.44823 + 7.33434i −0.517934 + 0.589108i
\(156\) 0 0
\(157\) −4.95836 −0.395720 −0.197860 0.980230i \(-0.563399\pi\)
−0.197860 + 0.980230i \(0.563399\pi\)
\(158\) −8.42064 −0.669910
\(159\) 0 0
\(160\) 1.67933 + 1.47644i 0.132762 + 0.116723i
\(161\) −1.75056 + 16.8892i −0.137964 + 1.33105i
\(162\) 0 0
\(163\) −5.11733 + 2.95449i −0.400820 + 0.231413i −0.686838 0.726811i \(-0.741002\pi\)
0.286018 + 0.958224i \(0.407668\pi\)
\(164\) 3.79398 + 6.57136i 0.296260 + 0.513137i
\(165\) 0 0
\(166\) 2.43978 + 1.40861i 0.189364 + 0.109329i
\(167\) 9.07327 5.23846i 0.702111 0.405364i −0.106022 0.994364i \(-0.533811\pi\)
0.808133 + 0.589000i \(0.200478\pi\)
\(168\) 0 0
\(169\) −6.80835 + 11.7924i −0.523720 + 0.907109i
\(170\) −1.33980 3.96313i −0.102758 0.303958i
\(171\) 0 0
\(172\) 4.07460 + 2.35247i 0.310685 + 0.179374i
\(173\) 8.60028i 0.653867i −0.945047 0.326933i \(-0.893985\pi\)
0.945047 0.326933i \(-0.106015\pi\)
\(174\) 0 0
\(175\) −6.90012 11.2866i −0.521600 0.853190i
\(176\) −5.13649 + 2.96556i −0.387178 + 0.223537i
\(177\) 0 0
\(178\) 8.92096 + 15.4516i 0.668654 + 1.15814i
\(179\) 2.31384 + 1.33590i 0.172945 + 0.0998497i 0.583974 0.811773i \(-0.301497\pi\)
−0.411029 + 0.911622i \(0.634830\pi\)
\(180\) 0 0
\(181\) 7.92990i 0.589425i 0.955586 + 0.294712i \(0.0952238\pi\)
−0.955586 + 0.294712i \(0.904776\pi\)
\(182\) −11.0544 8.00725i −0.819410 0.593537i
\(183\) 0 0
\(184\) −3.20885 + 5.55790i −0.236560 + 0.409734i
\(185\) 2.98481 + 0.597583i 0.219447 + 0.0439352i
\(186\) 0 0
\(187\) 11.0966 0.811461
\(188\) 9.74722i 0.710889i
\(189\) 0 0
\(190\) −3.82713 0.766222i −0.277649 0.0555876i
\(191\) 11.8760i 0.859321i −0.902991 0.429660i \(-0.858633\pi\)
0.902991 0.429660i \(-0.141367\pi\)
\(192\) 0 0
\(193\) 15.3218i 1.10288i 0.834213 + 0.551442i \(0.185922\pi\)
−0.834213 + 0.551442i \(0.814078\pi\)
\(194\) −1.23514 + 2.13933i −0.0886781 + 0.153595i
\(195\) 0 0
\(196\) 4.66893 5.21547i 0.333495 0.372534i
\(197\) −9.02678 −0.643131 −0.321566 0.946887i \(-0.604209\pi\)
−0.321566 + 0.946887i \(0.604209\pi\)
\(198\) 0 0
\(199\) 10.4835 + 6.05268i 0.743159 + 0.429063i 0.823217 0.567727i \(-0.192177\pi\)
−0.0800578 + 0.996790i \(0.525510\pi\)
\(200\) −0.640274 4.95884i −0.0452742 0.350643i
\(201\) 0 0
\(202\) −6.90957 11.9677i −0.486155 0.842046i
\(203\) −6.58389 0.682419i −0.462098 0.0478965i
\(204\) 0 0
\(205\) 3.33087 16.6370i 0.232638 1.16198i
\(206\) 0.712859 1.23471i 0.0496672 0.0860261i
\(207\) 0 0
\(208\) −2.57957 4.46794i −0.178861 0.309796i
\(209\) 5.17640 8.96579i 0.358059 0.620177i
\(210\) 0 0
\(211\) 4.28556 + 7.42280i 0.295030 + 0.511007i 0.974992 0.222241i \(-0.0713370\pi\)
−0.679962 + 0.733247i \(0.738004\pi\)
\(212\) −0.628956 + 1.08938i −0.0431969 + 0.0748192i
\(213\) 0 0
\(214\) −1.67000 2.89252i −0.114159 0.197729i
\(215\) −3.36931 9.96644i −0.229785 0.679706i
\(216\) 0 0
\(217\) 4.71508 + 10.5494i 0.320080 + 0.716138i
\(218\) −4.42125 + 7.65783i −0.299445 + 0.518653i
\(219\) 0 0
\(220\) 13.0043 + 2.60357i 0.876750 + 0.175533i
\(221\) 9.65227i 0.649282i
\(222\) 0 0
\(223\) −10.2042 + 17.6741i −0.683322 + 1.18355i 0.290639 + 0.956833i \(0.406132\pi\)
−0.973961 + 0.226716i \(0.927201\pi\)
\(224\) 2.41546 1.07960i 0.161390 0.0721338i
\(225\) 0 0
\(226\) −8.87845 15.3779i −0.590586 1.02292i
\(227\) 19.9142 11.4974i 1.32175 0.763112i 0.337741 0.941239i \(-0.390337\pi\)
0.984008 + 0.178127i \(0.0570037\pi\)
\(228\) 0 0
\(229\) −18.0144 10.4006i −1.19043 0.687292i −0.232022 0.972710i \(-0.574534\pi\)
−0.958403 + 0.285418i \(0.907868\pi\)
\(230\) 13.5946 4.59586i 0.896401 0.303042i
\(231\) 0 0
\(232\) −2.16663 1.25090i −0.142246 0.0821258i
\(233\) 13.6638 + 23.6663i 0.895143 + 1.55043i 0.833627 + 0.552327i \(0.186260\pi\)
0.0615156 + 0.998106i \(0.480407\pi\)
\(234\) 0 0
\(235\) 14.3911 16.3688i 0.938774 1.06778i
\(236\) 1.30033 0.0846443
\(237\) 0 0
\(238\) −4.92358 0.510329i −0.319148 0.0330797i
\(239\) 15.6608 9.04177i 1.01301 0.584864i 0.100941 0.994892i \(-0.467815\pi\)
0.912073 + 0.410029i \(0.134481\pi\)
\(240\) 0 0
\(241\) 2.31790 1.33824i 0.149309 0.0862037i −0.423484 0.905903i \(-0.639193\pi\)
0.572793 + 0.819700i \(0.305860\pi\)
\(242\) −12.0891 + 20.9388i −0.777114 + 1.34600i
\(243\) 0 0
\(244\) 11.4604i 0.733677i
\(245\) −15.5410 + 1.86510i −0.992875 + 0.119157i
\(246\) 0 0
\(247\) 7.79883 + 4.50266i 0.496228 + 0.286497i
\(248\) 4.36743i 0.277332i
\(249\) 0 0
\(250\) −6.24617 + 9.27283i −0.395043 + 0.586465i
\(251\) −0.220993 −0.0139490 −0.00697448 0.999976i \(-0.502220\pi\)
−0.00697448 + 0.999976i \(0.502220\pi\)
\(252\) 0 0
\(253\) 38.0642i 2.39307i
\(254\) 8.49642i 0.533113i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.7049 + 8.48987i 0.917265 + 0.529583i 0.882762 0.469821i \(-0.155682\pi\)
0.0345037 + 0.999405i \(0.489015\pi\)
\(258\) 0 0
\(259\) 2.11287 2.91692i 0.131287 0.181249i
\(260\) −2.26470 + 11.3117i −0.140450 + 0.701522i
\(261\) 0 0
\(262\) −1.98718 + 3.44190i −0.122768 + 0.212641i
\(263\) −5.28060 9.14626i −0.325615 0.563983i 0.656021 0.754742i \(-0.272238\pi\)
−0.981637 + 0.190760i \(0.938905\pi\)
\(264\) 0 0
\(265\) 2.66463 0.900818i 0.163687 0.0553368i
\(266\) −2.70912 + 3.74009i −0.166107 + 0.229319i
\(267\) 0 0
\(268\) 15.0907i 0.921810i
\(269\) −1.54717 + 2.67977i −0.0943324 + 0.163388i −0.909330 0.416076i \(-0.863405\pi\)
0.814997 + 0.579465i \(0.196738\pi\)
\(270\) 0 0
\(271\) 15.2570 8.80863i 0.926797 0.535086i 0.0409997 0.999159i \(-0.486946\pi\)
0.885797 + 0.464073i \(0.153612\pi\)
\(272\) −1.62025 0.935454i −0.0982423 0.0567202i
\(273\) 0 0
\(274\) 4.85327 + 8.40611i 0.293197 + 0.507831i
\(275\) −17.9945 23.5723i −1.08511 1.42146i
\(276\) 0 0
\(277\) −2.43071 + 1.40337i −0.146047 + 0.0843204i −0.571243 0.820781i \(-0.693539\pi\)
0.425196 + 0.905101i \(0.360205\pi\)
\(278\) 17.4411 10.0696i 1.04605 0.603934i
\(279\) 0 0
\(280\) −5.65031 1.75328i −0.337671 0.104778i
\(281\) −6.77309 3.91045i −0.404049 0.233278i 0.284181 0.958771i \(-0.408278\pi\)
−0.688229 + 0.725493i \(0.741612\pi\)
\(282\) 0 0
\(283\) 26.6702 1.58538 0.792691 0.609624i \(-0.208679\pi\)
0.792691 + 0.609624i \(0.208679\pi\)
\(284\) 2.88706i 0.171315i
\(285\) 0 0
\(286\) −26.4999 15.2997i −1.56697 0.904691i
\(287\) −16.2587 11.7769i −0.959718 0.695169i
\(288\) 0 0
\(289\) −6.74985 11.6911i −0.397050 0.687711i
\(290\) 1.79160 + 5.29956i 0.105206 + 0.311201i
\(291\) 0 0
\(292\) 1.79824 3.11464i 0.105234 0.182270i
\(293\) 28.0362 16.1867i 1.63789 0.945638i 0.656335 0.754469i \(-0.272106\pi\)
0.981557 0.191168i \(-0.0612277\pi\)
\(294\) 0 0
\(295\) −2.18368 1.91986i −0.127139 0.111778i
\(296\) 1.17895 0.680668i 0.0685252 0.0395630i
\(297\) 0 0
\(298\) −2.64213 1.52543i −0.153054 0.0883660i
\(299\) −33.1098 −1.91479
\(300\) 0 0
\(301\) −12.3818 1.28337i −0.713673 0.0739722i
\(302\) −8.45186 14.6390i −0.486350 0.842383i
\(303\) 0 0
\(304\) −1.51165 + 0.872754i −0.0866993 + 0.0500559i
\(305\) −16.9205 + 19.2457i −0.968867 + 1.10201i
\(306\) 0 0
\(307\) 1.43218 0.0817386 0.0408693 0.999165i \(-0.486987\pi\)
0.0408693 + 0.999165i \(0.486987\pi\)
\(308\) 9.20540 12.7086i 0.524526 0.724137i
\(309\) 0 0
\(310\) 6.44823 7.33434i 0.366235 0.416562i
\(311\) −10.0729 −0.571182 −0.285591 0.958352i \(-0.592190\pi\)
−0.285591 + 0.958352i \(0.592190\pi\)
\(312\) 0 0
\(313\) 15.5516 0.879031 0.439516 0.898235i \(-0.355150\pi\)
0.439516 + 0.898235i \(0.355150\pi\)
\(314\) 4.95836 0.279816
\(315\) 0 0
\(316\) 8.42064 0.473698
\(317\) −27.9352 −1.56899 −0.784497 0.620132i \(-0.787079\pi\)
−0.784497 + 0.620132i \(0.787079\pi\)
\(318\) 0 0
\(319\) −14.8385 −0.830797
\(320\) −1.67933 1.47644i −0.0938772 0.0825353i
\(321\) 0 0
\(322\) 1.75056 16.8892i 0.0975550 0.941197i
\(323\) 3.26568 0.181708
\(324\) 0 0
\(325\) 20.5042 15.6524i 1.13737 0.868237i
\(326\) 5.11733 2.95449i 0.283422 0.163634i
\(327\) 0 0
\(328\) −3.79398 6.57136i −0.209487 0.362843i
\(329\) −10.5231 23.5440i −0.580157 1.29803i
\(330\) 0 0
\(331\) −2.18531 −0.120116 −0.0600578 0.998195i \(-0.519128\pi\)
−0.0600578 + 0.998195i \(0.519128\pi\)
\(332\) −2.43978 1.40861i −0.133900 0.0773075i
\(333\) 0 0
\(334\) −9.07327 + 5.23846i −0.496467 + 0.286636i
\(335\) 22.2804 25.3422i 1.21731 1.38459i
\(336\) 0 0
\(337\) 0.212414 0.122637i 0.0115709 0.00668047i −0.494203 0.869346i \(-0.664540\pi\)
0.505774 + 0.862666i \(0.331207\pi\)
\(338\) 6.80835 11.7924i 0.370326 0.641423i
\(339\) 0 0
\(340\) 1.33980 + 3.96313i 0.0726607 + 0.214931i
\(341\) 12.9519 + 22.4333i 0.701382 + 1.21483i
\(342\) 0 0
\(343\) −5.64700 + 17.6383i −0.304909 + 0.952381i
\(344\) −4.07460 2.35247i −0.219688 0.126837i
\(345\) 0 0
\(346\) 8.60028i 0.462354i
\(347\) 6.03454 0.323951 0.161976 0.986795i \(-0.448213\pi\)
0.161976 + 0.986795i \(0.448213\pi\)
\(348\) 0 0
\(349\) 6.70174 + 3.86925i 0.358736 + 0.207116i 0.668526 0.743689i \(-0.266925\pi\)
−0.309790 + 0.950805i \(0.600259\pi\)
\(350\) 6.90012 + 11.2866i 0.368827 + 0.603297i
\(351\) 0 0
\(352\) 5.13649 2.96556i 0.273776 0.158065i
\(353\) −12.4114 + 7.16571i −0.660591 + 0.381392i −0.792502 0.609869i \(-0.791222\pi\)
0.131911 + 0.991262i \(0.457889\pi\)
\(354\) 0 0
\(355\) 4.26256 4.84831i 0.226233 0.257322i
\(356\) −8.92096 15.4516i −0.472810 0.818931i
\(357\) 0 0
\(358\) −2.31384 1.33590i −0.122290 0.0706044i
\(359\) 14.4007 8.31423i 0.760039 0.438808i −0.0692710 0.997598i \(-0.522067\pi\)
0.829310 + 0.558789i \(0.188734\pi\)
\(360\) 0 0
\(361\) −7.97660 + 13.8159i −0.419821 + 0.727151i
\(362\) 7.92990i 0.416786i
\(363\) 0 0
\(364\) 11.0544 + 8.00725i 0.579411 + 0.419694i
\(365\) −7.61839 + 2.57551i −0.398765 + 0.134808i
\(366\) 0 0
\(367\) 16.5694 + 28.6990i 0.864914 + 1.49807i 0.867133 + 0.498077i \(0.165960\pi\)
−0.00221888 + 0.999998i \(0.500706\pi\)
\(368\) 3.20885 5.55790i 0.167273 0.289725i
\(369\) 0 0
\(370\) −2.98481 0.597583i −0.155173 0.0310668i
\(371\) 0.343121 3.31039i 0.0178140 0.171867i
\(372\) 0 0
\(373\) −18.2835 10.5560i −0.946682 0.546567i −0.0546330 0.998507i \(-0.517399\pi\)
−0.892048 + 0.451940i \(0.850732\pi\)
\(374\) −11.0966 −0.573790
\(375\) 0 0
\(376\) 9.74722i 0.502674i
\(377\) 12.9072i 0.664753i
\(378\) 0 0
\(379\) −12.8226 −0.658651 −0.329325 0.944217i \(-0.606821\pi\)
−0.329325 + 0.944217i \(0.606821\pi\)
\(380\) 3.82713 + 0.766222i 0.196327 + 0.0393064i
\(381\) 0 0
\(382\) 11.8760i 0.607631i
\(383\) 14.1368 + 8.16190i 0.722358 + 0.417054i 0.815620 0.578588i \(-0.196396\pi\)
−0.0932617 + 0.995642i \(0.529729\pi\)
\(384\) 0 0
\(385\) −34.2222 + 7.75063i −1.74413 + 0.395008i
\(386\) 15.3218i 0.779857i
\(387\) 0 0
\(388\) 1.23514 2.13933i 0.0627049 0.108608i
\(389\) 9.64090 5.56618i 0.488813 0.282216i −0.235269 0.971930i \(-0.575597\pi\)
0.724082 + 0.689714i \(0.242264\pi\)
\(390\) 0 0
\(391\) −10.3983 + 6.00347i −0.525865 + 0.303608i
\(392\) −4.66893 + 5.21547i −0.235816 + 0.263421i
\(393\) 0 0
\(394\) 9.02678 0.454763
\(395\) −14.1410 12.4325i −0.711511 0.625549i
\(396\) 0 0
\(397\) −10.7572 18.6321i −0.539891 0.935118i −0.998909 0.0466914i \(-0.985132\pi\)
0.459019 0.888427i \(-0.348201\pi\)
\(398\) −10.4835 6.05268i −0.525493 0.303393i
\(399\) 0 0
\(400\) 0.640274 + 4.95884i 0.0320137 + 0.247942i
\(401\) −11.7705 6.79568i −0.587789 0.339360i 0.176434 0.984312i \(-0.443544\pi\)
−0.764223 + 0.644953i \(0.776877\pi\)
\(402\) 0 0
\(403\) −19.5134 + 11.2661i −0.972033 + 0.561204i
\(404\) 6.90957 + 11.9677i 0.343764 + 0.595416i
\(405\) 0 0
\(406\) 6.58389 + 0.682419i 0.326753 + 0.0338679i
\(407\) 4.03712 6.99249i 0.200113 0.346605i
\(408\) 0 0
\(409\) 6.31246i 0.312131i 0.987747 + 0.156066i \(0.0498811\pi\)
−0.987747 + 0.156066i \(0.950119\pi\)
\(410\) −3.33087 + 16.6370i −0.164500 + 0.821644i
\(411\) 0 0
\(412\) −0.712859 + 1.23471i −0.0351200 + 0.0608297i
\(413\) −3.14090 + 1.40384i −0.154554 + 0.0690783i
\(414\) 0 0
\(415\) 2.01747 + 5.96770i 0.0990337 + 0.292943i
\(416\) 2.57957 + 4.46794i 0.126474 + 0.219059i
\(417\) 0 0
\(418\) −5.17640 + 8.96579i −0.253186 + 0.438531i
\(419\) −10.2076 17.6802i −0.498676 0.863732i 0.501323 0.865260i \(-0.332847\pi\)
−0.999999 + 0.00152816i \(0.999514\pi\)
\(420\) 0 0
\(421\) −15.4045 + 26.6814i −0.750769 + 1.30037i 0.196681 + 0.980467i \(0.436984\pi\)
−0.947450 + 0.319903i \(0.896350\pi\)
\(422\) −4.28556 7.42280i −0.208618 0.361336i
\(423\) 0 0
\(424\) 0.628956 1.08938i 0.0305448 0.0529052i
\(425\) 3.60135 8.63352i 0.174691 0.418787i
\(426\) 0 0
\(427\) 12.3726 + 27.6822i 0.598754 + 1.33963i
\(428\) 1.67000 + 2.89252i 0.0807224 + 0.139815i
\(429\) 0 0
\(430\) 3.36931 + 9.96644i 0.162482 + 0.480625i
\(431\) −29.8217 17.2176i −1.43646 0.829342i −0.438860 0.898556i \(-0.644618\pi\)
−0.997602 + 0.0692140i \(0.977951\pi\)
\(432\) 0 0
\(433\) −5.86503 −0.281855 −0.140928 0.990020i \(-0.545008\pi\)
−0.140928 + 0.990020i \(0.545008\pi\)
\(434\) −4.71508 10.5494i −0.226331 0.506386i
\(435\) 0 0
\(436\) 4.42125 7.65783i 0.211739 0.366743i
\(437\) 11.2022i 0.535872i
\(438\) 0 0
\(439\) 0.0933769i 0.00445664i −0.999998 0.00222832i \(-0.999291\pi\)
0.999998 0.00222832i \(-0.000709296\pi\)
\(440\) −13.0043 2.60357i −0.619956 0.124120i
\(441\) 0 0
\(442\) 9.65227i 0.459112i
\(443\) −1.69982 −0.0807610 −0.0403805 0.999184i \(-0.512857\pi\)
−0.0403805 + 0.999184i \(0.512857\pi\)
\(444\) 0 0
\(445\) −7.83203 + 39.1194i −0.371274 + 1.85444i
\(446\) 10.2042 17.6741i 0.483182 0.836895i
\(447\) 0 0
\(448\) −2.41546 + 1.07960i −0.114120 + 0.0510063i
\(449\) 1.98554i 0.0937035i 0.998902 + 0.0468518i \(0.0149188\pi\)
−0.998902 + 0.0468518i \(0.985081\pi\)
\(450\) 0 0
\(451\) −38.9755 22.5025i −1.83528 1.05960i
\(452\) 8.87845 + 15.3779i 0.417607 + 0.723317i
\(453\) 0 0
\(454\) −19.9142 + 11.4974i −0.934618 + 0.539602i
\(455\) −6.74183 29.7680i −0.316062 1.39554i
\(456\) 0 0
\(457\) 24.5551i 1.14864i −0.818631 0.574320i \(-0.805266\pi\)
0.818631 0.574320i \(-0.194734\pi\)
\(458\) 18.0144 + 10.4006i 0.841758 + 0.485989i
\(459\) 0 0
\(460\) −13.5946 + 4.59586i −0.633851 + 0.214283i
\(461\) −16.3946 + 28.3963i −0.763574 + 1.32255i 0.177423 + 0.984135i \(0.443224\pi\)
−0.940997 + 0.338415i \(0.890109\pi\)
\(462\) 0 0
\(463\) 19.1444 11.0530i 0.889717 0.513678i 0.0158669 0.999874i \(-0.494949\pi\)
0.873850 + 0.486196i \(0.161616\pi\)
\(464\) 2.16663 + 1.25090i 0.100583 + 0.0580717i
\(465\) 0 0
\(466\) −13.6638 23.6663i −0.632962 1.09632i
\(467\) −30.9099 + 17.8459i −1.43034 + 0.825808i −0.997146 0.0754924i \(-0.975947\pi\)
−0.433195 + 0.901300i \(0.642614\pi\)
\(468\) 0 0
\(469\) −16.2919 36.4510i −0.752290 1.68315i
\(470\) −14.3911 + 16.3688i −0.663814 + 0.755034i
\(471\) 0 0
\(472\) −1.30033 −0.0598526
\(473\) −27.9055 −1.28310
\(474\) 0 0
\(475\) −5.29572 6.93724i −0.242984 0.318303i
\(476\) 4.92358 + 0.510329i 0.225672 + 0.0233909i
\(477\) 0 0
\(478\) −15.6608 + 9.04177i −0.716309 + 0.413561i
\(479\) 1.92319 + 3.33106i 0.0878727 + 0.152200i 0.906612 0.421966i \(-0.138660\pi\)
−0.818739 + 0.574166i \(0.805326\pi\)
\(480\) 0 0
\(481\) 6.08237 + 3.51166i 0.277332 + 0.160118i
\(482\) −2.31790 + 1.33824i −0.105578 + 0.0609552i
\(483\) 0 0
\(484\) 12.0891 20.9388i 0.549502 0.951766i
\(485\) −5.23279 + 1.76903i −0.237609 + 0.0803273i
\(486\) 0 0
\(487\) −17.1992 9.92995i −0.779369 0.449969i 0.0568378 0.998383i \(-0.481898\pi\)
−0.836207 + 0.548415i \(0.815232\pi\)
\(488\) 11.4604i 0.518788i
\(489\) 0 0
\(490\) 15.5410 1.86510i 0.702069 0.0842568i
\(491\) −7.14924 + 4.12761i −0.322641 + 0.186277i −0.652569 0.757729i \(-0.726309\pi\)
0.329928 + 0.944006i \(0.392975\pi\)
\(492\) 0 0
\(493\) −2.34032 4.05356i −0.105403 0.182563i
\(494\) −7.79883 4.50266i −0.350886 0.202584i
\(495\) 0 0
\(496\) 4.36743i 0.196103i
\(497\) −3.11687 6.97358i −0.139811 0.312808i
\(498\) 0 0
\(499\) −15.9868 + 27.6900i −0.715668 + 1.23957i 0.247033 + 0.969007i \(0.420544\pi\)
−0.962701 + 0.270567i \(0.912789\pi\)
\(500\) 6.24617 9.27283i 0.279337 0.414693i
\(501\) 0 0
\(502\) 0.220993 0.00986341
\(503\) 3.78755i 0.168878i 0.996429 + 0.0844392i \(0.0269099\pi\)
−0.996429 + 0.0844392i \(0.973090\pi\)
\(504\) 0 0
\(505\) 6.06616 30.2992i 0.269940 1.34830i
\(506\) 38.0642i 1.69216i
\(507\) 0 0
\(508\) 8.49642i 0.376968i
\(509\) 6.04054 10.4625i 0.267742 0.463743i −0.700536 0.713617i \(-0.747056\pi\)
0.968278 + 0.249874i \(0.0803891\pi\)
\(510\) 0 0
\(511\) −0.981013 + 9.46467i −0.0433974 + 0.418693i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −14.7049 8.48987i −0.648605 0.374472i
\(515\) 3.02009 1.02099i 0.133081 0.0449900i
\(516\) 0 0
\(517\) −28.9059 50.0665i −1.27128 2.20192i
\(518\) −2.11287 + 2.91692i −0.0928340 + 0.128162i
\(519\) 0 0
\(520\) 2.26470 11.3117i 0.0993135 0.496051i
\(521\) 19.2169 33.2847i 0.841910 1.45823i −0.0463687 0.998924i \(-0.514765\pi\)
0.888278 0.459306i \(-0.151902\pi\)
\(522\) 0 0
\(523\) 5.25006 + 9.09336i 0.229569 + 0.397625i 0.957680 0.287834i \(-0.0929350\pi\)
−0.728111 + 0.685459i \(0.759602\pi\)
\(524\) 1.98718 3.44190i 0.0868104 0.150360i
\(525\) 0 0
\(526\) 5.28060 + 9.14626i 0.230245 + 0.398796i
\(527\) −4.08553 + 7.07634i −0.177968 + 0.308250i
\(528\) 0 0
\(529\) −9.09349 15.7504i −0.395369 0.684799i
\(530\) −2.66463 + 0.900818i −0.115744 + 0.0391290i
\(531\) 0 0
\(532\) 2.70912 3.74009i 0.117455 0.162153i
\(533\) 19.5737 33.9026i 0.847829 1.46848i
\(534\) 0 0
\(535\) 1.46615 7.32313i 0.0633872 0.316607i
\(536\) 15.0907i 0.651818i
\(537\) 0 0
\(538\) 1.54717 2.67977i 0.0667031 0.115533i
\(539\) −8.51515 + 40.6352i −0.366773 + 1.75028i
\(540\) 0 0
\(541\) 17.0100 + 29.4622i 0.731316 + 1.26668i 0.956321 + 0.292319i \(0.0944270\pi\)
−0.225004 + 0.974358i \(0.572240\pi\)
\(542\) −15.2570 + 8.80863i −0.655344 + 0.378363i
\(543\) 0 0
\(544\) 1.62025 + 0.935454i 0.0694678 + 0.0401072i
\(545\) −18.7310 + 6.33230i −0.802348 + 0.271246i
\(546\) 0 0
\(547\) −22.5807 13.0370i −0.965482 0.557422i −0.0676264 0.997711i \(-0.521543\pi\)
−0.897856 + 0.440289i \(0.854876\pi\)
\(548\) −4.85327 8.40611i −0.207321 0.359091i
\(549\) 0 0
\(550\) 17.9945 + 23.5723i 0.767287 + 1.00512i
\(551\) −4.36692 −0.186037
\(552\) 0 0
\(553\) −20.3398 + 9.09093i −0.864934 + 0.386586i
\(554\) 2.43071 1.40337i 0.103271 0.0596235i
\(555\) 0 0
\(556\) −17.4411 + 10.0696i −0.739666 + 0.427046i
\(557\) −9.87249 + 17.0997i −0.418311 + 0.724535i −0.995770 0.0918842i \(-0.970711\pi\)
0.577459 + 0.816420i \(0.304044\pi\)
\(558\) 0 0
\(559\) 24.2734i 1.02666i
\(560\) 5.65031 + 1.75328i 0.238769 + 0.0740894i
\(561\) 0 0
\(562\) 6.77309 + 3.91045i 0.285706 + 0.164952i
\(563\) 26.5207i 1.11771i 0.829264 + 0.558857i \(0.188760\pi\)
−0.829264 + 0.558857i \(0.811240\pi\)
\(564\) 0 0
\(565\) 7.79471 38.9330i 0.327926 1.63793i
\(566\) −26.6702 −1.12103
\(567\) 0 0
\(568\) 2.88706i 0.121138i
\(569\) 4.44062i 0.186160i −0.995659 0.0930802i \(-0.970329\pi\)
0.995659 0.0930802i \(-0.0296713\pi\)
\(570\) 0 0
\(571\) 34.4566 1.44196 0.720982 0.692954i \(-0.243691\pi\)
0.720982 + 0.692954i \(0.243691\pi\)
\(572\) 26.4999 + 15.2997i 1.10802 + 0.639713i
\(573\) 0 0
\(574\) 16.2587 + 11.7769i 0.678623 + 0.491559i
\(575\) 29.6152 + 12.3536i 1.23504 + 0.515181i
\(576\) 0 0
\(577\) 10.7016 18.5357i 0.445513 0.771651i −0.552575 0.833463i \(-0.686355\pi\)
0.998088 + 0.0618122i \(0.0196880\pi\)
\(578\) 6.74985 + 11.6911i 0.280757 + 0.486285i
\(579\) 0 0
\(580\) −1.79160 5.29956i −0.0743920 0.220052i
\(581\) 7.41394 + 0.768454i 0.307582 + 0.0318809i
\(582\) 0 0
\(583\) 7.46082i 0.308996i
\(584\) −1.79824 + 3.11464i −0.0744116 + 0.128885i
\(585\) 0 0
\(586\) −28.0362 + 16.1867i −1.15816 + 0.668667i
\(587\) −4.73587 2.73426i −0.195470 0.112855i 0.399071 0.916920i \(-0.369333\pi\)
−0.594541 + 0.804065i \(0.702666\pi\)
\(588\) 0 0
\(589\) 3.81169 + 6.60204i 0.157058 + 0.272032i
\(590\) 2.18368 + 1.91986i 0.0899007 + 0.0790392i
\(591\) 0 0
\(592\) −1.17895 + 0.680668i −0.0484546 + 0.0279753i
\(593\) 5.02625 2.90190i 0.206403 0.119167i −0.393236 0.919438i \(-0.628644\pi\)
0.599639 + 0.800271i \(0.295311\pi\)
\(594\) 0 0
\(595\) −7.51483 8.12636i −0.308078 0.333148i
\(596\) 2.64213 + 1.52543i 0.108226 + 0.0624842i
\(597\) 0 0
\(598\) 33.1098 1.35396
\(599\) 18.0350i 0.736888i 0.929650 + 0.368444i \(0.120109\pi\)
−0.929650 + 0.368444i \(0.879891\pi\)
\(600\) 0 0
\(601\) 2.29768 + 1.32656i 0.0937242 + 0.0541117i 0.546130 0.837701i \(-0.316101\pi\)
−0.452405 + 0.891812i \(0.649434\pi\)
\(602\) 12.3818 + 1.28337i 0.504643 + 0.0523062i
\(603\) 0 0
\(604\) 8.45186 + 14.6390i 0.343901 + 0.595654i
\(605\) −51.2163 + 17.3145i −2.08224 + 0.703933i
\(606\) 0 0
\(607\) 4.83260 8.37031i 0.196149 0.339740i −0.751128 0.660157i \(-0.770490\pi\)
0.947277 + 0.320417i \(0.103823\pi\)
\(608\) 1.51165 0.872754i 0.0613057 0.0353949i
\(609\) 0 0
\(610\) 16.9205 19.2457i 0.685093 0.779237i
\(611\) 43.5500 25.1436i 1.76185 1.01720i
\(612\) 0 0
\(613\) −0.262890 0.151780i −0.0106180 0.00613033i 0.494682 0.869074i \(-0.335285\pi\)
−0.505300 + 0.862944i \(0.668618\pi\)
\(614\) −1.43218 −0.0577979
\(615\) 0 0
\(616\) −9.20540 + 12.7086i −0.370896 + 0.512042i
\(617\) 3.49093 + 6.04647i 0.140540 + 0.243422i 0.927700 0.373327i \(-0.121783\pi\)
−0.787160 + 0.616748i \(0.788450\pi\)
\(618\) 0 0
\(619\) 15.3880 8.88428i 0.618497 0.357089i −0.157787 0.987473i \(-0.550436\pi\)
0.776284 + 0.630384i \(0.217102\pi\)
\(620\) −6.44823 + 7.33434i −0.258967 + 0.294554i
\(621\) 0 0
\(622\) 10.0729 0.403887
\(623\) 38.2297 + 27.6916i 1.53164 + 1.10944i
\(624\) 0 0
\(625\) −24.1801 + 6.35003i −0.967204 + 0.254001i
\(626\) −15.5516 −0.621569
\(627\) 0 0
\(628\) −4.95836 −0.197860
\(629\) 2.54693 0.101553
\(630\) 0 0
\(631\) 12.0365 0.479167 0.239583 0.970876i \(-0.422989\pi\)
0.239583 + 0.970876i \(0.422989\pi\)
\(632\) −8.42064 −0.334955
\(633\) 0 0
\(634\) 27.9352 1.10945
\(635\) −12.5444 + 14.2683i −0.497810 + 0.566219i
\(636\) 0 0
\(637\) −35.3462 7.40685i −1.40047 0.293470i
\(638\) 14.8385 0.587462
\(639\) 0 0
\(640\) 1.67933 + 1.47644i 0.0663812 + 0.0583613i
\(641\) 14.6690 8.46918i 0.579392 0.334512i −0.181499 0.983391i \(-0.558095\pi\)
0.760892 + 0.648879i \(0.224762\pi\)
\(642\) 0 0
\(643\) −12.5911 21.8084i −0.496545 0.860041i 0.503447 0.864026i \(-0.332065\pi\)
−0.999992 + 0.00398491i \(0.998732\pi\)
\(644\) −1.75056 + 16.8892i −0.0689818 + 0.665527i
\(645\) 0 0
\(646\) −3.26568 −0.128487
\(647\) 21.6450 + 12.4967i 0.850951 + 0.491297i 0.860972 0.508653i \(-0.169856\pi\)
−0.0100203 + 0.999950i \(0.503190\pi\)
\(648\) 0 0
\(649\) −6.67914 + 3.85621i −0.262179 + 0.151369i
\(650\) −20.5042 + 15.6524i −0.804240 + 0.613936i
\(651\) 0 0
\(652\) −5.11733 + 2.95449i −0.200410 + 0.115707i
\(653\) −10.8541 + 18.7998i −0.424753 + 0.735694i −0.996397 0.0848077i \(-0.972972\pi\)
0.571644 + 0.820502i \(0.306306\pi\)
\(654\) 0 0
\(655\) −8.41887 + 2.84612i −0.328952 + 0.111207i
\(656\) 3.79398 + 6.57136i 0.148130 + 0.256569i
\(657\) 0 0
\(658\) 10.5231 + 23.5440i 0.410233 + 0.917842i
\(659\) 6.26940 + 3.61964i 0.244221 + 0.141001i 0.617115 0.786873i \(-0.288301\pi\)
−0.372894 + 0.927874i \(0.621635\pi\)
\(660\) 0 0
\(661\) 27.7010i 1.07744i 0.842484 + 0.538721i \(0.181092\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(662\) 2.18531 0.0849345
\(663\) 0 0
\(664\) 2.43978 + 1.40861i 0.0946820 + 0.0546646i
\(665\) −10.0715 + 2.28099i −0.390556 + 0.0884528i
\(666\) 0 0
\(667\) 13.9048 8.02793i 0.538396 0.310843i
\(668\) 9.07327 5.23846i 0.351055 0.202682i
\(669\) 0 0
\(670\) −22.2804 + 25.3422i −0.860768 + 0.979054i
\(671\) 33.9865 + 58.8663i 1.31203 + 2.27251i
\(672\) 0 0
\(673\) 40.2514 + 23.2391i 1.55158 + 0.895803i 0.998014 + 0.0629944i \(0.0200650\pi\)
0.553562 + 0.832808i \(0.313268\pi\)
\(674\) −0.212414 + 0.122637i −0.00818187 + 0.00472381i
\(675\) 0 0
\(676\) −6.80835 + 11.7924i −0.261860 + 0.453554i
\(677\) 1.40767i 0.0541012i −0.999634 0.0270506i \(-0.991388\pi\)
0.999634 0.0270506i \(-0.00861152\pi\)
\(678\) 0 0
\(679\) −0.673822 + 6.50094i −0.0258589 + 0.249483i
\(680\) −1.33980 3.96313i −0.0513789 0.151979i
\(681\) 0 0
\(682\) −12.9519 22.4333i −0.495952 0.859015i
\(683\) −18.2234 + 31.5639i −0.697300 + 1.20776i 0.272099 + 0.962269i \(0.412282\pi\)
−0.969399 + 0.245490i \(0.921051\pi\)
\(684\) 0 0
\(685\) −4.26086 + 21.2821i −0.162799 + 0.813149i
\(686\) 5.64700 17.6383i 0.215604 0.673435i
\(687\) 0 0
\(688\) 4.07460 + 2.35247i 0.155343 + 0.0896871i
\(689\) 6.48974 0.247240
\(690\) 0 0
\(691\) 41.4523i 1.57692i 0.615086 + 0.788460i \(0.289121\pi\)
−0.615086 + 0.788460i \(0.710879\pi\)
\(692\) 8.60028i 0.326933i
\(693\) 0 0
\(694\) −6.03454 −0.229068
\(695\) 44.1563 + 8.84046i 1.67495 + 0.335338i
\(696\) 0 0
\(697\) 14.1964i 0.537726i
\(698\) −6.70174 3.86925i −0.253665 0.146453i
\(699\) 0 0
\(700\) −6.90012 11.2866i −0.260800 0.426595i
\(701\) 9.85600i 0.372256i 0.982526 + 0.186128i \(0.0595939\pi\)
−0.982526 + 0.186128i \(0.940406\pi\)
\(702\) 0 0
\(703\) 1.18811 2.05787i 0.0448105 0.0776140i
\(704\) −5.13649 + 2.96556i −0.193589 + 0.111769i
\(705\) 0 0
\(706\) 12.4114 7.16571i 0.467108 0.269685i
\(707\) −29.6102 21.4480i −1.11360 0.806636i
\(708\) 0 0
\(709\) 4.54234 0.170591 0.0852957 0.996356i \(-0.472817\pi\)
0.0852957 + 0.996356i \(0.472817\pi\)
\(710\) −4.26256 + 4.84831i −0.159971 + 0.181954i
\(711\) 0 0
\(712\) 8.92096 + 15.4516i 0.334327 + 0.579071i
\(713\) −24.2737 14.0144i −0.909058 0.524845i
\(714\) 0 0
\(715\) −21.9129 64.8186i −0.819496 2.42408i
\(716\) 2.31384 + 1.33590i 0.0864724 + 0.0499248i
\(717\) 0 0
\(718\) −14.4007 + 8.31423i −0.537428 + 0.310284i
\(719\) 20.9595 + 36.3030i 0.781659 + 1.35387i 0.930975 + 0.365083i \(0.118960\pi\)
−0.149316 + 0.988790i \(0.547707\pi\)
\(720\) 0 0
\(721\) 0.388894 3.75199i 0.0144832 0.139732i
\(722\) 7.97660 13.8159i 0.296858 0.514174i
\(723\) 0 0
\(724\) 7.92990i 0.294712i
\(725\) −4.81579 + 11.5449i −0.178854 + 0.428766i
\(726\) 0 0
\(727\) 5.40633 9.36404i 0.200510 0.347293i −0.748183 0.663492i \(-0.769074\pi\)
0.948693 + 0.316199i \(0.102407\pi\)
\(728\) −11.0544 8.00725i −0.409705 0.296769i
\(729\) 0 0
\(730\) 7.61839 2.57551i 0.281969 0.0953240i
\(731\) −4.40125 7.62319i −0.162786 0.281954i
\(732\) 0 0
\(733\) 6.82458 11.8205i 0.252072 0.436601i −0.712024 0.702155i \(-0.752221\pi\)
0.964096 + 0.265554i \(0.0855548\pi\)
\(734\) −16.5694 28.6990i −0.611586 1.05930i
\(735\) 0 0
\(736\) −3.20885 + 5.55790i −0.118280 + 0.204867i
\(737\) −44.7523 77.5132i −1.64847 2.85524i
\(738\) 0 0
\(739\) 15.6035 27.0261i 0.573985 0.994171i −0.422166 0.906519i \(-0.638730\pi\)
0.996151 0.0876529i \(-0.0279366\pi\)
\(740\) 2.98481 + 0.597583i 0.109724 + 0.0219676i
\(741\) 0 0
\(742\) −0.343121 + 3.31039i −0.0125964 + 0.121528i
\(743\) 3.52550 + 6.10635i 0.129338 + 0.224020i 0.923420 0.383790i \(-0.125381\pi\)
−0.794082 + 0.607810i \(0.792048\pi\)
\(744\) 0 0
\(745\) −2.18479 6.46263i −0.0800445 0.236773i
\(746\) 18.2835 + 10.5560i 0.669405 + 0.386481i
\(747\) 0 0
\(748\) 11.0966 0.405731
\(749\) −7.15658 5.18385i −0.261496 0.189414i
\(750\) 0 0
\(751\) 16.2419 28.1318i 0.592675 1.02654i −0.401196 0.915992i \(-0.631405\pi\)
0.993871 0.110550i \(-0.0352613\pi\)
\(752\) 9.74722i 0.355444i
\(753\) 0 0
\(754\) 12.9072i 0.470051i
\(755\) 7.42019 37.0624i 0.270048 1.34884i
\(756\) 0 0
\(757\) 4.96180i 0.180340i 0.995926 + 0.0901699i \(0.0287410\pi\)
−0.995926 + 0.0901699i \(0.971259\pi\)
\(758\) 12.8226 0.465736
\(759\) 0 0
\(760\) −3.82713 0.766222i −0.138824 0.0277938i
\(761\) 14.0123 24.2700i 0.507944 0.879785i −0.492014 0.870588i \(-0.663739\pi\)
0.999958 0.00919753i \(-0.00292771\pi\)
\(762\) 0 0
\(763\) −2.41197 + 23.2704i −0.0873193 + 0.842444i
\(764\) 11.8760i 0.429660i
\(765\) 0 0
\(766\) −14.1368 8.16190i −0.510784 0.294902i
\(767\) −3.35429 5.80981i −0.121117 0.209780i
\(768\) 0 0
\(769\) 22.5043 12.9928i 0.811524 0.468534i −0.0359606 0.999353i \(-0.511449\pi\)
0.847485 + 0.530819i \(0.178116\pi\)
\(770\) 34.2222 7.75063i 1.23328 0.279313i
\(771\) 0 0
\(772\) 15.3218i 0.551442i
\(773\) 44.5726 + 25.7340i 1.60317 + 0.925589i 0.990849 + 0.134977i \(0.0430960\pi\)
0.612318 + 0.790612i \(0.290237\pi\)
\(774\) 0 0
\(775\) 21.6574 2.79635i 0.777955 0.100448i
\(776\) −1.23514 + 2.13933i −0.0443391 + 0.0767975i
\(777\) 0 0
\(778\) −9.64090 + 5.56618i −0.345643 + 0.199557i
\(779\) −11.4704 6.62242i −0.410969 0.237273i
\(780\) 0 0
\(781\) −8.56173 14.8294i −0.306363 0.530636i
\(782\) 10.3983 6.00347i 0.371843 0.214684i
\(783\) 0 0
\(784\) 4.66893 5.21547i 0.166747 0.186267i
\(785\) 8.32670 + 7.32069i 0.297193 + 0.261287i
\(786\) 0 0
\(787\) 14.4239 0.514156 0.257078 0.966391i \(-0.417240\pi\)
0.257078 + 0.966391i \(0.417240\pi\)
\(788\) −9.02678 −0.321566
\(789\) 0 0
\(790\) 14.1410 + 12.4325i 0.503115 + 0.442330i
\(791\) −38.0476 27.5597i −1.35282 0.979909i
\(792\) 0 0
\(793\) −51.2044 + 29.5629i −1.81832 + 1.04981i
\(794\) 10.7572 + 18.6321i 0.381760 + 0.661228i
\(795\) 0 0
\(796\) 10.4835 + 6.05268i 0.371580 + 0.214532i
\(797\) 18.3241 10.5794i 0.649072 0.374742i −0.139029 0.990288i \(-0.544398\pi\)
0.788101 + 0.615546i \(0.211065\pi\)
\(798\) 0 0
\(799\) 9.11807 15.7930i 0.322574 0.558715i
\(800\) −0.640274 4.95884i −0.0226371 0.175321i
\(801\) 0 0
\(802\) 11.7705 + 6.79568i 0.415629 + 0.239964i
\(803\) 21.3311i 0.752758i
\(804\) 0 0
\(805\) 27.8756 25.7779i 0.982484 0.908550i
\(806\) 19.5134 11.2661i 0.687331 0.396831i
\(807\) 0 0
\(808\) −6.90957 11.9677i −0.243078 0.421023i
\(809\) −14.1543 8.17201i −0.497640 0.287312i 0.230099 0.973167i \(-0.426095\pi\)
−0.727738 + 0.685855i \(0.759428\pi\)
\(810\) 0 0
\(811\) 2.77152i 0.0973212i 0.998815 + 0.0486606i \(0.0154953\pi\)
−0.998815 + 0.0486606i \(0.984505\pi\)
\(812\) −6.58389 0.682419i −0.231049 0.0239482i
\(813\) 0 0
\(814\) −4.03712 + 6.99249i −0.141501 + 0.245087i
\(815\) 12.9558 + 2.59385i 0.453821 + 0.0908586i
\(816\) 0 0
\(817\) −8.21251 −0.287319
\(818\) 6.31246i 0.220710i
\(819\) 0 0
\(820\) 3.33087 16.6370i 0.116319 0.580990i
\(821\) 41.5518i 1.45017i 0.688660 + 0.725085i \(0.258199\pi\)
−0.688660 + 0.725085i \(0.741801\pi\)
\(822\) 0 0
\(823\) 40.0405i 1.39572i 0.716232 + 0.697862i \(0.245865\pi\)
−0.716232 + 0.697862i \(0.754135\pi\)
\(824\) 0.712859 1.23471i 0.0248336 0.0430131i
\(825\) 0 0
\(826\) 3.14090 1.40384i 0.109286 0.0488458i
\(827\) 44.7684 1.55675 0.778376 0.627799i \(-0.216044\pi\)
0.778376 + 0.627799i \(0.216044\pi\)
\(828\) 0 0
\(829\) 12.4094 + 7.16460i 0.430998 + 0.248837i 0.699772 0.714367i \(-0.253285\pi\)
−0.268774 + 0.963203i \(0.586618\pi\)
\(830\) −2.01747 5.96770i −0.0700274 0.207142i
\(831\) 0 0
\(832\) −2.57957 4.46794i −0.0894305 0.154898i
\(833\) −12.4437 + 4.08282i −0.431148 + 0.141461i
\(834\) 0 0
\(835\) −22.9712 4.59903i −0.794952 0.159156i
\(836\) 5.17640 8.96579i 0.179030 0.310088i
\(837\) 0 0
\(838\) 10.2076 + 17.6802i 0.352617 + 0.610751i
\(839\) −6.70519 + 11.6137i −0.231489 + 0.400951i −0.958246 0.285943i \(-0.907693\pi\)
0.726758 + 0.686894i \(0.241026\pi\)
\(840\) 0 0
\(841\) −11.3705 19.6942i −0.392086 0.679112i
\(842\) 15.4045 26.6814i 0.530874 0.919501i
\(843\) 0 0
\(844\) 4.28556 + 7.42280i 0.147515 + 0.255503i
\(845\) 28.8442 9.75121i 0.992270 0.335452i
\(846\) 0 0
\(847\) −6.59508 + 63.6284i −0.226609 + 2.18630i
\(848\) −0.628956 + 1.08938i −0.0215984 + 0.0374096i
\(849\) 0 0
\(850\) −3.60135 + 8.63352i −0.123525 + 0.296127i
\(851\) 8.73666i 0.299489i
\(852\) 0 0
\(853\) −6.92038 + 11.9865i −0.236949 + 0.410408i −0.959837 0.280557i \(-0.909481\pi\)
0.722888 + 0.690965i \(0.242814\pi\)
\(854\) −12.3726 27.6822i −0.423383 0.947264i
\(855\) 0 0
\(856\) −1.67000 2.89252i −0.0570793 0.0988643i
\(857\) 9.97559 5.75941i 0.340760 0.196738i −0.319848 0.947469i \(-0.603632\pi\)
0.660608 + 0.750731i \(0.270299\pi\)
\(858\) 0 0
\(859\) 0.710391 + 0.410145i 0.0242382 + 0.0139940i 0.512070 0.858944i \(-0.328879\pi\)
−0.487832 + 0.872938i \(0.662212\pi\)
\(860\) −3.36931 9.96644i −0.114892 0.339853i
\(861\) 0 0
\(862\) 29.8217 + 17.2176i 1.01573 + 0.586433i
\(863\) 0.390428 + 0.676242i 0.0132903 + 0.0230195i 0.872594 0.488446i \(-0.162436\pi\)
−0.859304 + 0.511466i \(0.829103\pi\)
\(864\) 0 0
\(865\) −12.6978 + 14.4427i −0.431737 + 0.491066i
\(866\) 5.86503 0.199302
\(867\) 0 0
\(868\) 4.71508 + 10.5494i 0.160040 + 0.358069i
\(869\) −43.2526 + 24.9719i −1.46724 + 0.847114i
\(870\) 0 0
\(871\) 67.4244 38.9275i 2.28459 1.31901i
\(872\) −4.42125 + 7.65783i −0.149722 + 0.259327i
\(873\) 0 0
\(874\) 11.2022i 0.378919i
\(875\) −5.07646 + 29.1415i −0.171616 + 0.985164i
\(876\) 0 0
\(877\) 24.1988 + 13.9712i 0.817137 + 0.471774i 0.849428 0.527704i \(-0.176947\pi\)
−0.0322912 + 0.999479i \(0.510280\pi\)
\(878\) 0.0933769i 0.00315132i
\(879\) 0 0
\(880\) 13.0043 + 2.60357i 0.438375 + 0.0877663i
\(881\) −32.6360 −1.09953 −0.549767 0.835318i \(-0.685284\pi\)
−0.549767 + 0.835318i \(0.685284\pi\)
\(882\) 0 0
\(883\) 45.5409i 1.53257i −0.642499 0.766287i \(-0.722102\pi\)
0.642499 0.766287i \(-0.277898\pi\)
\(884\) 9.65227i 0.324641i
\(885\) 0 0
\(886\) 1.69982 0.0571066
\(887\) −15.8391 9.14469i −0.531824 0.307049i 0.209935 0.977715i \(-0.432675\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(888\) 0 0
\(889\) 9.17274 + 20.5228i 0.307644 + 0.688313i
\(890\) 7.83203 39.1194i 0.262530 1.31129i
\(891\) 0 0
\(892\) −10.2042 + 17.6741i −0.341661 + 0.591774i
\(893\) −8.50692 14.7344i −0.284673 0.493069i
\(894\) 0 0
\(895\) −1.91333 5.65965i −0.0639556 0.189181i
\(896\) 2.41546 1.07960i 0.0806950 0.0360669i
\(897\) 0 0
\(898\) 1.98554i 0.0662584i
\(899\) 5.46323 9.46260i 0.182209 0.315595i
\(900\) 0 0
\(901\) 2.03814 1.17672i 0.0679002 0.0392022i
\(902\) 38.9755 + 22.5025i 1.29774 + 0.749252i
\(903\) 0 0
\(904\) −8.87845 15.3779i −0.295293 0.511462i
\(905\) 11.7080 13.3169i 0.389187 0.442668i
\(906\) 0 0
\(907\) 25.0843 14.4825i 0.832912 0.480882i −0.0219368 0.999759i \(-0.506983\pi\)
0.854849 + 0.518877i \(0.173650\pi\)
\(908\) 19.9142 11.4974i 0.660874 0.381556i
\(909\) 0 0
\(910\) 6.74183 + 29.7680i 0.223489 + 0.986799i
\(911\) 47.8771 + 27.6419i 1.58624 + 0.915816i 0.993919 + 0.110114i \(0.0351217\pi\)
0.592321 + 0.805702i \(0.298212\pi\)
\(912\) 0 0
\(913\) 16.7092 0.552995
\(914\) 24.5551i 0.812211i
\(915\) 0 0
\(916\) −18.0144 10.4006i −0.595213 0.343646i
\(917\) −1.08409 + 10.4591i −0.0357998 + 0.345391i
\(918\) 0 0
\(919\) −5.45039 9.44036i −0.179792 0.311409i 0.762017 0.647557i \(-0.224209\pi\)
−0.941809 + 0.336148i \(0.890876\pi\)
\(920\) 13.5946 4.59586i 0.448200 0.151521i
\(921\) 0 0
\(922\) 16.3946 28.3963i 0.539929 0.935184i
\(923\) 12.8992 7.44736i 0.424583 0.245133i
\(924\) 0 0
\(925\) −4.13017 5.41041i −0.135799 0.177893i
\(926\) −19.1444 + 11.0530i −0.629125 + 0.363225i
\(927\) 0 0
\(928\) −2.16663 1.25090i −0.0711231 0.0410629i
\(929\) −28.3585 −0.930411 −0.465205 0.885203i \(-0.654020\pi\)
−0.465205 + 0.885203i \(0.654020\pi\)
\(930\) 0 0
\(931\) −2.50598 + 11.9588i −0.0821303 + 0.391934i
\(932\) 13.6638 + 23.6663i 0.447572 + 0.775217i
\(933\) 0 0
\(934\) 30.9099 17.8459i 1.01140 0.583934i
\(935\) −18.6348 16.3834i −0.609422 0.535793i
\(936\) 0 0
\(937\) −7.70498 −0.251711 −0.125855 0.992049i \(-0.540168\pi\)
−0.125855 + 0.992049i \(0.540168\pi\)
\(938\) 16.2919 + 36.4510i 0.531950 + 1.19017i
\(939\) 0 0
\(940\) 14.3911 16.3688i 0.469387 0.533890i
\(941\) 44.4748 1.44984 0.724919 0.688834i \(-0.241877\pi\)
0.724919 + 0.688834i \(0.241877\pi\)
\(942\) 0 0
\(943\) 48.6973 1.58580
\(944\) 1.30033 0.0423222
\(945\) 0 0
\(946\) 27.9055 0.907287
\(947\) 48.7565 1.58437 0.792187 0.610279i \(-0.208942\pi\)
0.792187 + 0.610279i \(0.208942\pi\)
\(948\) 0 0
\(949\) −18.5547 −0.602311
\(950\) 5.29572 + 6.93724i 0.171816 + 0.225074i
\(951\) 0 0
\(952\) −4.92358 0.510329i −0.159574 0.0165398i
\(953\) −52.5200 −1.70129 −0.850644 0.525742i \(-0.823788\pi\)
−0.850644 + 0.525742i \(0.823788\pi\)
\(954\) 0 0
\(955\) −17.5342 + 19.9438i −0.567394 + 0.645365i
\(956\) 15.6608 9.04177i 0.506507 0.292432i
\(957\) 0 0
\(958\) −1.92319 3.33106i −0.0621354 0.107622i
\(959\) 20.7981 + 15.0651i 0.671606 + 0.486476i
\(960\) 0 0
\(961\) 11.9256 0.384696
\(962\) −6.08237 3.51166i −0.196104 0.113220i
\(963\) 0 0
\(964\) 2.31790 1.33824i 0.0746546 0.0431018i
\(965\) 22.6216 25.7302i 0.728215 0.828286i
\(966\) 0 0
\(967\) −22.4676 + 12.9717i −0.722510 + 0.417141i −0.815676 0.578509i \(-0.803635\pi\)
0.0931658 + 0.995651i \(0.470301\pi\)
\(968\) −12.0891 + 20.9388i −0.388557 + 0.673000i
\(969\) 0 0
\(970\) 5.23279 1.76903i 0.168015 0.0568000i
\(971\) −22.7435 39.3929i −0.729875 1.26418i −0.956936 0.290299i \(-0.906245\pi\)
0.227061 0.973880i \(-0.427088\pi\)
\(972\) 0 0
\(973\) 31.2571 43.1521i 1.00206 1.38339i
\(974\) 17.1992 + 9.92995i 0.551097 + 0.318176i
\(975\) 0 0
\(976\) 11.4604i 0.366838i
\(977\) −46.0077 −1.47192 −0.735958 0.677027i \(-0.763268\pi\)
−0.735958 + 0.677027i \(0.763268\pi\)
\(978\) 0 0
\(979\) 91.6449 + 52.9112i 2.92898 + 1.69105i
\(980\) −15.5410 + 1.86510i −0.496438 + 0.0595785i
\(981\) 0 0
\(982\) 7.14924 4.12761i 0.228141 0.131717i
\(983\) 26.7395 15.4381i 0.852858 0.492398i −0.00875587 0.999962i \(-0.502787\pi\)
0.861614 + 0.507564i \(0.169454\pi\)
\(984\) 0 0
\(985\) 15.1589 + 13.3275i 0.483003 + 0.424648i
\(986\) 2.34032 + 4.05356i 0.0745311 + 0.129092i
\(987\) 0 0
\(988\) 7.79883 + 4.50266i 0.248114 + 0.143249i
\(989\) 26.1496 15.0975i 0.831508 0.480071i
\(990\) 0 0
\(991\) −12.4227 + 21.5168i −0.394621 + 0.683504i −0.993053 0.117670i \(-0.962457\pi\)
0.598432 + 0.801174i \(0.295791\pi\)
\(992\) 4.36743i 0.138666i
\(993\) 0 0
\(994\) 3.11687 + 6.97358i 0.0988610 + 0.221189i
\(995\) −8.66891 25.6427i −0.274823 0.812929i
\(996\) 0 0
\(997\) 14.0068 + 24.2604i 0.443599 + 0.768336i 0.997953 0.0639447i \(-0.0203681\pi\)
−0.554354 + 0.832281i \(0.687035\pi\)
\(998\) 15.9868 27.6900i 0.506054 0.876511i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.a.899.5 48
3.2 odd 2 630.2.bi.b.479.18 yes 48
5.4 even 2 1890.2.bi.b.899.22 48
7.5 odd 6 1890.2.r.b.89.14 48
9.4 even 3 630.2.r.b.59.2 yes 48
9.5 odd 6 1890.2.r.a.1529.14 48
15.14 odd 2 630.2.bi.a.479.7 yes 48
21.5 even 6 630.2.r.a.299.23 yes 48
35.19 odd 6 1890.2.r.a.89.14 48
45.4 even 6 630.2.r.a.59.23 48
45.14 odd 6 1890.2.r.b.1529.14 48
63.5 even 6 1890.2.bi.b.719.22 48
63.40 odd 6 630.2.bi.a.509.7 yes 48
105.89 even 6 630.2.r.b.299.2 yes 48
315.194 even 6 inner 1890.2.bi.a.719.5 48
315.229 odd 6 630.2.bi.b.509.18 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.23 48 45.4 even 6
630.2.r.a.299.23 yes 48 21.5 even 6
630.2.r.b.59.2 yes 48 9.4 even 3
630.2.r.b.299.2 yes 48 105.89 even 6
630.2.bi.a.479.7 yes 48 15.14 odd 2
630.2.bi.a.509.7 yes 48 63.40 odd 6
630.2.bi.b.479.18 yes 48 3.2 odd 2
630.2.bi.b.509.18 yes 48 315.229 odd 6
1890.2.r.a.89.14 48 35.19 odd 6
1890.2.r.a.1529.14 48 9.5 odd 6
1890.2.r.b.89.14 48 7.5 odd 6
1890.2.r.b.1529.14 48 45.14 odd 6
1890.2.bi.a.719.5 48 315.194 even 6 inner
1890.2.bi.a.899.5 48 1.1 even 1 trivial
1890.2.bi.b.719.22 48 63.5 even 6
1890.2.bi.b.899.22 48 5.4 even 2