Properties

Label 1890.2.bi.a.719.18
Level $1890$
Weight $2$
Character 1890.719
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 719.18
Character \(\chi\) \(=\) 1890.719
Dual form 1890.2.bi.a.899.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(1.55089 - 1.61082i) q^{5} +(-0.405354 - 2.61451i) q^{7} -1.00000 q^{8} +(-1.55089 + 1.61082i) q^{10} +(-0.922101 - 0.532375i) q^{11} +(2.83827 - 4.91604i) q^{13} +(0.405354 + 2.61451i) q^{14} +1.00000 q^{16} +(-1.18969 + 0.686867i) q^{17} +(-5.87638 - 3.39273i) q^{19} +(1.55089 - 1.61082i) q^{20} +(0.922101 + 0.532375i) q^{22} +(2.24743 + 3.89266i) q^{23} +(-0.189463 - 4.99641i) q^{25} +(-2.83827 + 4.91604i) q^{26} +(-0.405354 - 2.61451i) q^{28} +(-4.67691 + 2.70021i) q^{29} -7.52185i q^{31} -1.00000 q^{32} +(1.18969 - 0.686867i) q^{34} +(-4.84017 - 3.40188i) q^{35} +(7.42263 + 4.28546i) q^{37} +(5.87638 + 3.39273i) q^{38} +(-1.55089 + 1.61082i) q^{40} +(-1.21989 + 2.11292i) q^{41} +(-4.89080 + 2.82370i) q^{43} +(-0.922101 - 0.532375i) q^{44} +(-2.24743 - 3.89266i) q^{46} -8.75012i q^{47} +(-6.67138 + 2.11961i) q^{49} +(0.189463 + 4.99641i) q^{50} +(2.83827 - 4.91604i) q^{52} +(2.29752 + 3.97942i) q^{53} +(-2.28764 + 0.659679i) q^{55} +(0.405354 + 2.61451i) q^{56} +(4.67691 - 2.70021i) q^{58} -9.70296 q^{59} +9.92998i q^{61} +7.52185i q^{62} +1.00000 q^{64} +(-3.51697 - 12.1962i) q^{65} -0.0645415i q^{67} +(-1.18969 + 0.686867i) q^{68} +(4.84017 + 3.40188i) q^{70} +6.07978i q^{71} +(-4.78305 - 8.28448i) q^{73} +(-7.42263 - 4.28546i) q^{74} +(-5.87638 - 3.39273i) q^{76} +(-1.01813 + 2.62665i) q^{77} +7.34722 q^{79} +(1.55089 - 1.61082i) q^{80} +(1.21989 - 2.11292i) q^{82} +(7.57279 - 4.37215i) q^{83} +(-0.738663 + 2.98163i) q^{85} +(4.89080 - 2.82370i) q^{86} +(0.922101 + 0.532375i) q^{88} +(-5.74422 + 9.94928i) q^{89} +(-14.0036 - 5.42798i) q^{91} +(2.24743 + 3.89266i) q^{92} +8.75012i q^{94} +(-14.5787 + 4.20401i) q^{95} +(6.25791 + 10.8390i) q^{97} +(6.67138 - 2.11961i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{2} + 48 q^{4} + 3 q^{7} - 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} + 6 q^{22} - 3 q^{23} - 18 q^{25} + 3 q^{28} + 3 q^{29} - 48 q^{32} + 12 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.55089 1.61082i 0.693580 0.720379i
\(6\) 0 0
\(7\) −0.405354 2.61451i −0.153209 0.988194i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.55089 + 1.61082i −0.490435 + 0.509385i
\(11\) −0.922101 0.532375i −0.278024 0.160517i 0.354505 0.935054i \(-0.384650\pi\)
−0.632528 + 0.774537i \(0.717983\pi\)
\(12\) 0 0
\(13\) 2.83827 4.91604i 0.787196 1.36346i −0.140483 0.990083i \(-0.544866\pi\)
0.927679 0.373380i \(-0.121801\pi\)
\(14\) 0.405354 + 2.61451i 0.108335 + 0.698759i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.18969 + 0.686867i −0.288542 + 0.166590i −0.637284 0.770629i \(-0.719942\pi\)
0.348742 + 0.937219i \(0.386609\pi\)
\(18\) 0 0
\(19\) −5.87638 3.39273i −1.34813 0.778345i −0.360148 0.932895i \(-0.617274\pi\)
−0.987985 + 0.154550i \(0.950607\pi\)
\(20\) 1.55089 1.61082i 0.346790 0.360190i
\(21\) 0 0
\(22\) 0.922101 + 0.532375i 0.196593 + 0.113503i
\(23\) 2.24743 + 3.89266i 0.468621 + 0.811676i 0.999357 0.0358617i \(-0.0114176\pi\)
−0.530736 + 0.847537i \(0.678084\pi\)
\(24\) 0 0
\(25\) −0.189463 4.99641i −0.0378926 0.999282i
\(26\) −2.83827 + 4.91604i −0.556631 + 0.964114i
\(27\) 0 0
\(28\) −0.405354 2.61451i −0.0766046 0.494097i
\(29\) −4.67691 + 2.70021i −0.868480 + 0.501417i −0.866843 0.498581i \(-0.833854\pi\)
−0.00163724 + 0.999999i \(0.500521\pi\)
\(30\) 0 0
\(31\) 7.52185i 1.35096i −0.737376 0.675482i \(-0.763936\pi\)
0.737376 0.675482i \(-0.236064\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.18969 0.686867i 0.204030 0.117797i
\(35\) −4.84017 3.40188i −0.818137 0.575023i
\(36\) 0 0
\(37\) 7.42263 + 4.28546i 1.22027 + 0.704525i 0.964976 0.262338i \(-0.0844934\pi\)
0.255297 + 0.966863i \(0.417827\pi\)
\(38\) 5.87638 + 3.39273i 0.953274 + 0.550373i
\(39\) 0 0
\(40\) −1.55089 + 1.61082i −0.245218 + 0.254693i
\(41\) −1.21989 + 2.11292i −0.190515 + 0.329982i −0.945421 0.325851i \(-0.894349\pi\)
0.754906 + 0.655833i \(0.227683\pi\)
\(42\) 0 0
\(43\) −4.89080 + 2.82370i −0.745840 + 0.430611i −0.824189 0.566315i \(-0.808368\pi\)
0.0783491 + 0.996926i \(0.475035\pi\)
\(44\) −0.922101 0.532375i −0.139012 0.0802586i
\(45\) 0 0
\(46\) −2.24743 3.89266i −0.331365 0.573941i
\(47\) 8.75012i 1.27634i −0.769897 0.638168i \(-0.779692\pi\)
0.769897 0.638168i \(-0.220308\pi\)
\(48\) 0 0
\(49\) −6.67138 + 2.11961i −0.953054 + 0.302801i
\(50\) 0.189463 + 4.99641i 0.0267941 + 0.706599i
\(51\) 0 0
\(52\) 2.83827 4.91604i 0.393598 0.681731i
\(53\) 2.29752 + 3.97942i 0.315589 + 0.546615i 0.979562 0.201140i \(-0.0644647\pi\)
−0.663974 + 0.747756i \(0.731131\pi\)
\(54\) 0 0
\(55\) −2.28764 + 0.659679i −0.308465 + 0.0889511i
\(56\) 0.405354 + 2.61451i 0.0541676 + 0.349379i
\(57\) 0 0
\(58\) 4.67691 2.70021i 0.614108 0.354556i
\(59\) −9.70296 −1.26322 −0.631609 0.775287i \(-0.717605\pi\)
−0.631609 + 0.775287i \(0.717605\pi\)
\(60\) 0 0
\(61\) 9.92998i 1.27140i 0.771935 + 0.635702i \(0.219289\pi\)
−0.771935 + 0.635702i \(0.780711\pi\)
\(62\) 7.52185i 0.955276i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.51697 12.1962i −0.436227 1.51275i
\(66\) 0 0
\(67\) 0.0645415i 0.00788500i −0.999992 0.00394250i \(-0.998745\pi\)
0.999992 0.00394250i \(-0.00125494\pi\)
\(68\) −1.18969 + 0.686867i −0.144271 + 0.0832949i
\(69\) 0 0
\(70\) 4.84017 + 3.40188i 0.578510 + 0.406603i
\(71\) 6.07978i 0.721537i 0.932655 + 0.360768i \(0.117486\pi\)
−0.932655 + 0.360768i \(0.882514\pi\)
\(72\) 0 0
\(73\) −4.78305 8.28448i −0.559813 0.969625i −0.997512 0.0705034i \(-0.977539\pi\)
0.437698 0.899122i \(-0.355794\pi\)
\(74\) −7.42263 4.28546i −0.862863 0.498174i
\(75\) 0 0
\(76\) −5.87638 3.39273i −0.674067 0.389173i
\(77\) −1.01813 + 2.62665i −0.116026 + 0.299334i
\(78\) 0 0
\(79\) 7.34722 0.826627 0.413314 0.910589i \(-0.364371\pi\)
0.413314 + 0.910589i \(0.364371\pi\)
\(80\) 1.55089 1.61082i 0.173395 0.180095i
\(81\) 0 0
\(82\) 1.21989 2.11292i 0.134715 0.233332i
\(83\) 7.57279 4.37215i 0.831222 0.479906i −0.0230489 0.999734i \(-0.507337\pi\)
0.854271 + 0.519828i \(0.174004\pi\)
\(84\) 0 0
\(85\) −0.738663 + 2.98163i −0.0801192 + 0.323403i
\(86\) 4.89080 2.82370i 0.527388 0.304488i
\(87\) 0 0
\(88\) 0.922101 + 0.532375i 0.0982963 + 0.0567514i
\(89\) −5.74422 + 9.94928i −0.608886 + 1.05462i 0.382538 + 0.923940i \(0.375050\pi\)
−0.991424 + 0.130682i \(0.958283\pi\)
\(90\) 0 0
\(91\) −14.0036 5.42798i −1.46797 0.569007i
\(92\) 2.24743 + 3.89266i 0.234311 + 0.405838i
\(93\) 0 0
\(94\) 8.75012i 0.902506i
\(95\) −14.5787 + 4.20401i −1.49574 + 0.431322i
\(96\) 0 0
\(97\) 6.25791 + 10.8390i 0.635394 + 1.10054i 0.986431 + 0.164174i \(0.0524957\pi\)
−0.351037 + 0.936361i \(0.614171\pi\)
\(98\) 6.67138 2.11961i 0.673911 0.214113i
\(99\) 0 0
\(100\) −0.189463 4.99641i −0.0189463 0.499641i
\(101\) 4.13794 7.16712i 0.411740 0.713155i −0.583340 0.812228i \(-0.698254\pi\)
0.995080 + 0.0990729i \(0.0315877\pi\)
\(102\) 0 0
\(103\) 0.0267719 + 0.0463704i 0.00263792 + 0.00456901i 0.867341 0.497714i \(-0.165827\pi\)
−0.864703 + 0.502283i \(0.832494\pi\)
\(104\) −2.83827 + 4.91604i −0.278316 + 0.482057i
\(105\) 0 0
\(106\) −2.29752 3.97942i −0.223155 0.386515i
\(107\) 4.10444 7.10909i 0.396791 0.687262i −0.596537 0.802586i \(-0.703457\pi\)
0.993328 + 0.115323i \(0.0367904\pi\)
\(108\) 0 0
\(109\) 6.86529 + 11.8910i 0.657575 + 1.13895i 0.981241 + 0.192783i \(0.0617512\pi\)
−0.323666 + 0.946171i \(0.604915\pi\)
\(110\) 2.28764 0.659679i 0.218118 0.0628979i
\(111\) 0 0
\(112\) −0.405354 2.61451i −0.0383023 0.247048i
\(113\) −0.256031 + 0.443458i −0.0240853 + 0.0417170i −0.877817 0.478996i \(-0.841001\pi\)
0.853732 + 0.520713i \(0.174334\pi\)
\(114\) 0 0
\(115\) 9.75588 + 2.41690i 0.909741 + 0.225377i
\(116\) −4.67691 + 2.70021i −0.434240 + 0.250709i
\(117\) 0 0
\(118\) 9.70296 0.893230
\(119\) 2.27807 + 2.83204i 0.208830 + 0.259612i
\(120\) 0 0
\(121\) −4.93315 8.54447i −0.448468 0.776770i
\(122\) 9.92998i 0.899018i
\(123\) 0 0
\(124\) 7.52185i 0.675482i
\(125\) −8.34214 7.44371i −0.746143 0.665785i
\(126\) 0 0
\(127\) 4.60873i 0.408959i −0.978871 0.204480i \(-0.934450\pi\)
0.978871 0.204480i \(-0.0655502\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 3.51697 + 12.1962i 0.308459 + 1.06968i
\(131\) −2.65642 4.60106i −0.232093 0.401996i 0.726331 0.687345i \(-0.241224\pi\)
−0.958424 + 0.285349i \(0.907891\pi\)
\(132\) 0 0
\(133\) −6.48833 + 16.7391i −0.562609 + 1.45147i
\(134\) 0.0645415i 0.00557554i
\(135\) 0 0
\(136\) 1.18969 0.686867i 0.102015 0.0588984i
\(137\) 0.0371922 0.0644188i 0.00317754 0.00550367i −0.864432 0.502749i \(-0.832322\pi\)
0.867610 + 0.497246i \(0.165655\pi\)
\(138\) 0 0
\(139\) −14.6763 8.47337i −1.24483 0.718702i −0.274755 0.961514i \(-0.588597\pi\)
−0.970073 + 0.242812i \(0.921930\pi\)
\(140\) −4.84017 3.40188i −0.409069 0.287512i
\(141\) 0 0
\(142\) 6.07978i 0.510203i
\(143\) −5.23435 + 3.02205i −0.437718 + 0.252717i
\(144\) 0 0
\(145\) −2.90383 + 11.7214i −0.241150 + 0.973408i
\(146\) 4.78305 + 8.28448i 0.395848 + 0.685629i
\(147\) 0 0
\(148\) 7.42263 + 4.28546i 0.610137 + 0.352263i
\(149\) 14.4973 8.37004i 1.18767 0.685700i 0.229892 0.973216i \(-0.426163\pi\)
0.957776 + 0.287516i \(0.0928295\pi\)
\(150\) 0 0
\(151\) 3.00497 5.20476i 0.244541 0.423557i −0.717462 0.696598i \(-0.754696\pi\)
0.962002 + 0.273041i \(0.0880294\pi\)
\(152\) 5.87638 + 3.39273i 0.476637 + 0.275187i
\(153\) 0 0
\(154\) 1.01813 2.62665i 0.0820429 0.211661i
\(155\) −12.1163 11.6656i −0.973207 0.937002i
\(156\) 0 0
\(157\) −9.02952 −0.720634 −0.360317 0.932830i \(-0.617332\pi\)
−0.360317 + 0.932830i \(0.617332\pi\)
\(158\) −7.34722 −0.584514
\(159\) 0 0
\(160\) −1.55089 + 1.61082i −0.122609 + 0.127346i
\(161\) 9.26641 7.45384i 0.730296 0.587445i
\(162\) 0 0
\(163\) 8.62716 + 4.98089i 0.675731 + 0.390134i 0.798245 0.602333i \(-0.205762\pi\)
−0.122514 + 0.992467i \(0.539095\pi\)
\(164\) −1.21989 + 2.11292i −0.0952576 + 0.164991i
\(165\) 0 0
\(166\) −7.57279 + 4.37215i −0.587763 + 0.339345i
\(167\) −16.2295 9.37008i −1.25587 0.725078i −0.283603 0.958942i \(-0.591530\pi\)
−0.972269 + 0.233863i \(0.924863\pi\)
\(168\) 0 0
\(169\) −9.61160 16.6478i −0.739354 1.28060i
\(170\) 0.738663 2.98163i 0.0566528 0.228680i
\(171\) 0 0
\(172\) −4.89080 + 2.82370i −0.372920 + 0.215305i
\(173\) 22.1147i 1.68135i −0.541538 0.840676i \(-0.682158\pi\)
0.541538 0.840676i \(-0.317842\pi\)
\(174\) 0 0
\(175\) −12.9864 + 2.52067i −0.981679 + 0.190544i
\(176\) −0.922101 0.532375i −0.0695060 0.0401293i
\(177\) 0 0
\(178\) 5.74422 9.94928i 0.430547 0.745730i
\(179\) −9.16532 + 5.29160i −0.685048 + 0.395513i −0.801754 0.597654i \(-0.796100\pi\)
0.116706 + 0.993166i \(0.462766\pi\)
\(180\) 0 0
\(181\) 6.54895i 0.486780i −0.969929 0.243390i \(-0.921741\pi\)
0.969929 0.243390i \(-0.0782594\pi\)
\(182\) 14.0036 + 5.42798i 1.03801 + 0.402349i
\(183\) 0 0
\(184\) −2.24743 3.89266i −0.165683 0.286971i
\(185\) 18.4148 5.31021i 1.35388 0.390415i
\(186\) 0 0
\(187\) 1.46268 0.106962
\(188\) 8.75012i 0.638168i
\(189\) 0 0
\(190\) 14.5787 4.20401i 1.05765 0.304991i
\(191\) 6.43820i 0.465852i 0.972495 + 0.232926i \(0.0748299\pi\)
−0.972495 + 0.232926i \(0.925170\pi\)
\(192\) 0 0
\(193\) 23.2031i 1.67019i −0.550103 0.835097i \(-0.685411\pi\)
0.550103 0.835097i \(-0.314589\pi\)
\(194\) −6.25791 10.8390i −0.449292 0.778196i
\(195\) 0 0
\(196\) −6.67138 + 2.11961i −0.476527 + 0.151400i
\(197\) 2.32392 0.165572 0.0827861 0.996567i \(-0.473618\pi\)
0.0827861 + 0.996567i \(0.473618\pi\)
\(198\) 0 0
\(199\) −10.1070 + 5.83527i −0.716465 + 0.413651i −0.813450 0.581635i \(-0.802413\pi\)
0.0969854 + 0.995286i \(0.469080\pi\)
\(200\) 0.189463 + 4.99641i 0.0133970 + 0.353299i
\(201\) 0 0
\(202\) −4.13794 + 7.16712i −0.291144 + 0.504277i
\(203\) 8.95555 + 11.1333i 0.628557 + 0.781405i
\(204\) 0 0
\(205\) 1.51160 + 5.24193i 0.105575 + 0.366112i
\(206\) −0.0267719 0.0463704i −0.00186529 0.00323078i
\(207\) 0 0
\(208\) 2.83827 4.91604i 0.196799 0.340866i
\(209\) 3.61241 + 6.25688i 0.249876 + 0.432797i
\(210\) 0 0
\(211\) 7.82600 13.5550i 0.538764 0.933167i −0.460207 0.887812i \(-0.652225\pi\)
0.998971 0.0453551i \(-0.0144419\pi\)
\(212\) 2.29752 + 3.97942i 0.157794 + 0.273308i
\(213\) 0 0
\(214\) −4.10444 + 7.10909i −0.280574 + 0.485968i
\(215\) −3.03663 + 12.2574i −0.207097 + 0.835951i
\(216\) 0 0
\(217\) −19.6660 + 3.04901i −1.33501 + 0.206980i
\(218\) −6.86529 11.8910i −0.464976 0.805362i
\(219\) 0 0
\(220\) −2.28764 + 0.659679i −0.154233 + 0.0444755i
\(221\) 7.79807i 0.524555i
\(222\) 0 0
\(223\) −6.52152 11.2956i −0.436714 0.756410i 0.560720 0.828005i \(-0.310524\pi\)
−0.997434 + 0.0715953i \(0.977191\pi\)
\(224\) 0.405354 + 2.61451i 0.0270838 + 0.174690i
\(225\) 0 0
\(226\) 0.256031 0.443458i 0.0170309 0.0294984i
\(227\) −24.8272 14.3340i −1.64784 0.951380i −0.977929 0.208936i \(-0.933000\pi\)
−0.669909 0.742444i \(-0.733667\pi\)
\(228\) 0 0
\(229\) 3.57358 2.06321i 0.236149 0.136341i −0.377257 0.926109i \(-0.623133\pi\)
0.613405 + 0.789768i \(0.289799\pi\)
\(230\) −9.75588 2.41690i −0.643284 0.159366i
\(231\) 0 0
\(232\) 4.67691 2.70021i 0.307054 0.177278i
\(233\) −0.859394 + 1.48851i −0.0563008 + 0.0975158i −0.892802 0.450449i \(-0.851264\pi\)
0.836501 + 0.547965i \(0.184597\pi\)
\(234\) 0 0
\(235\) −14.0948 13.5705i −0.919447 0.885242i
\(236\) −9.70296 −0.631609
\(237\) 0 0
\(238\) −2.27807 2.83204i −0.147665 0.183574i
\(239\) −7.92591 4.57603i −0.512684 0.295999i 0.221252 0.975217i \(-0.428986\pi\)
−0.733936 + 0.679218i \(0.762319\pi\)
\(240\) 0 0
\(241\) −0.696421 0.402079i −0.0448605 0.0259002i 0.477402 0.878685i \(-0.341579\pi\)
−0.522262 + 0.852785i \(0.674912\pi\)
\(242\) 4.93315 + 8.54447i 0.317115 + 0.549259i
\(243\) 0 0
\(244\) 9.92998i 0.635702i
\(245\) −6.93229 + 14.0336i −0.442888 + 0.896577i
\(246\) 0 0
\(247\) −33.3575 + 19.2590i −2.12249 + 1.22542i
\(248\) 7.52185i 0.477638i
\(249\) 0 0
\(250\) 8.34214 + 7.44371i 0.527603 + 0.470781i
\(251\) 19.6454 1.24001 0.620004 0.784599i \(-0.287131\pi\)
0.620004 + 0.784599i \(0.287131\pi\)
\(252\) 0 0
\(253\) 4.78590i 0.300887i
\(254\) 4.60873i 0.289178i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −14.3279 + 8.27221i −0.893749 + 0.516006i −0.875167 0.483821i \(-0.839248\pi\)
−0.0185820 + 0.999827i \(0.505915\pi\)
\(258\) 0 0
\(259\) 8.19560 21.1437i 0.509250 1.31381i
\(260\) −3.51697 12.1962i −0.218113 0.756375i
\(261\) 0 0
\(262\) 2.65642 + 4.60106i 0.164114 + 0.284254i
\(263\) −1.01677 + 1.76111i −0.0626970 + 0.108594i −0.895670 0.444719i \(-0.853304\pi\)
0.832973 + 0.553313i \(0.186637\pi\)
\(264\) 0 0
\(265\) 9.97332 + 2.47077i 0.612656 + 0.151778i
\(266\) 6.48833 16.7391i 0.397825 1.02634i
\(267\) 0 0
\(268\) 0.0645415i 0.00394250i
\(269\) −11.6388 20.1590i −0.709631 1.22912i −0.964994 0.262272i \(-0.915528\pi\)
0.255363 0.966845i \(-0.417805\pi\)
\(270\) 0 0
\(271\) 21.0788 + 12.1699i 1.28045 + 0.739266i 0.976930 0.213560i \(-0.0685059\pi\)
0.303517 + 0.952826i \(0.401839\pi\)
\(272\) −1.18969 + 0.686867i −0.0721355 + 0.0416474i
\(273\) 0 0
\(274\) −0.0371922 + 0.0644188i −0.00224686 + 0.00389168i
\(275\) −2.48526 + 4.70806i −0.149867 + 0.283907i
\(276\) 0 0
\(277\) −7.08143 4.08846i −0.425482 0.245652i 0.271938 0.962315i \(-0.412335\pi\)
−0.697420 + 0.716663i \(0.745669\pi\)
\(278\) 14.6763 + 8.47337i 0.880227 + 0.508199i
\(279\) 0 0
\(280\) 4.84017 + 3.40188i 0.289255 + 0.203301i
\(281\) 4.54162 2.62210i 0.270930 0.156422i −0.358380 0.933576i \(-0.616671\pi\)
0.629310 + 0.777154i \(0.283337\pi\)
\(282\) 0 0
\(283\) 16.8827 1.00357 0.501785 0.864992i \(-0.332677\pi\)
0.501785 + 0.864992i \(0.332677\pi\)
\(284\) 6.07978i 0.360768i
\(285\) 0 0
\(286\) 5.23435 3.02205i 0.309514 0.178698i
\(287\) 6.01874 + 2.33295i 0.355275 + 0.137710i
\(288\) 0 0
\(289\) −7.55643 + 13.0881i −0.444496 + 0.769889i
\(290\) 2.90383 11.7214i 0.170519 0.688304i
\(291\) 0 0
\(292\) −4.78305 8.28448i −0.279907 0.484813i
\(293\) 25.5501 + 14.7514i 1.49265 + 0.861783i 0.999965 0.00842274i \(-0.00268107\pi\)
0.492688 + 0.870206i \(0.336014\pi\)
\(294\) 0 0
\(295\) −15.0483 + 15.6297i −0.876143 + 0.909996i
\(296\) −7.42263 4.28546i −0.431432 0.249087i
\(297\) 0 0
\(298\) −14.4973 + 8.37004i −0.839808 + 0.484863i
\(299\) 25.5153 1.47559
\(300\) 0 0
\(301\) 9.36512 + 11.6425i 0.539796 + 0.671061i
\(302\) −3.00497 + 5.20476i −0.172917 + 0.299500i
\(303\) 0 0
\(304\) −5.87638 3.39273i −0.337033 0.194586i
\(305\) 15.9954 + 15.4003i 0.915893 + 0.881821i
\(306\) 0 0
\(307\) 10.7900 0.615818 0.307909 0.951416i \(-0.400371\pi\)
0.307909 + 0.951416i \(0.400371\pi\)
\(308\) −1.01813 + 2.62665i −0.0580131 + 0.149667i
\(309\) 0 0
\(310\) 12.1163 + 11.6656i 0.688161 + 0.662561i
\(311\) 6.78533 0.384761 0.192380 0.981320i \(-0.438379\pi\)
0.192380 + 0.981320i \(0.438379\pi\)
\(312\) 0 0
\(313\) 22.5896 1.27684 0.638419 0.769689i \(-0.279589\pi\)
0.638419 + 0.769689i \(0.279589\pi\)
\(314\) 9.02952 0.509565
\(315\) 0 0
\(316\) 7.34722 0.413314
\(317\) 27.0432 1.51890 0.759449 0.650567i \(-0.225469\pi\)
0.759449 + 0.650567i \(0.225469\pi\)
\(318\) 0 0
\(319\) 5.75011 0.321944
\(320\) 1.55089 1.61082i 0.0866975 0.0900474i
\(321\) 0 0
\(322\) −9.26641 + 7.45384i −0.516397 + 0.415386i
\(323\) 9.32142 0.518657
\(324\) 0 0
\(325\) −25.1003 13.2498i −1.39231 0.734965i
\(326\) −8.62716 4.98089i −0.477814 0.275866i
\(327\) 0 0
\(328\) 1.21989 2.11292i 0.0673573 0.116666i
\(329\) −22.8773 + 3.54689i −1.26127 + 0.195547i
\(330\) 0 0
\(331\) 6.03337 0.331624 0.165812 0.986157i \(-0.446976\pi\)
0.165812 + 0.986157i \(0.446976\pi\)
\(332\) 7.57279 4.37215i 0.415611 0.239953i
\(333\) 0 0
\(334\) 16.2295 + 9.37008i 0.888036 + 0.512708i
\(335\) −0.103965 0.100097i −0.00568019 0.00546888i
\(336\) 0 0
\(337\) 14.4392 + 8.33650i 0.786555 + 0.454118i 0.838748 0.544519i \(-0.183288\pi\)
−0.0521932 + 0.998637i \(0.516621\pi\)
\(338\) 9.61160 + 16.6478i 0.522802 + 0.905520i
\(339\) 0 0
\(340\) −0.738663 + 2.98163i −0.0400596 + 0.161702i
\(341\) −4.00445 + 6.93591i −0.216853 + 0.375600i
\(342\) 0 0
\(343\) 8.24601 + 16.5832i 0.445243 + 0.895410i
\(344\) 4.89080 2.82370i 0.263694 0.152244i
\(345\) 0 0
\(346\) 22.1147i 1.18890i
\(347\) −33.0004 −1.77156 −0.885778 0.464108i \(-0.846375\pi\)
−0.885778 + 0.464108i \(0.846375\pi\)
\(348\) 0 0
\(349\) −9.69567 + 5.59780i −0.518998 + 0.299643i −0.736524 0.676411i \(-0.763534\pi\)
0.217527 + 0.976054i \(0.430201\pi\)
\(350\) 12.9864 2.52067i 0.694152 0.134735i
\(351\) 0 0
\(352\) 0.922101 + 0.532375i 0.0491481 + 0.0283757i
\(353\) −12.5080 7.22147i −0.665731 0.384360i 0.128726 0.991680i \(-0.458911\pi\)
−0.794457 + 0.607320i \(0.792245\pi\)
\(354\) 0 0
\(355\) 9.79341 + 9.42908i 0.519780 + 0.500444i
\(356\) −5.74422 + 9.94928i −0.304443 + 0.527311i
\(357\) 0 0
\(358\) 9.16532 5.29160i 0.484402 0.279670i
\(359\) 18.4344 + 10.6431i 0.972931 + 0.561722i 0.900129 0.435624i \(-0.143472\pi\)
0.0728028 + 0.997346i \(0.476806\pi\)
\(360\) 0 0
\(361\) 13.5212 + 23.4194i 0.711643 + 1.23260i
\(362\) 6.54895i 0.344205i
\(363\) 0 0
\(364\) −14.0036 5.42798i −0.733986 0.284503i
\(365\) −20.7628 5.14373i −1.08677 0.269235i
\(366\) 0 0
\(367\) 8.90707 15.4275i 0.464945 0.805309i −0.534254 0.845324i \(-0.679407\pi\)
0.999199 + 0.0400151i \(0.0127406\pi\)
\(368\) 2.24743 + 3.89266i 0.117155 + 0.202919i
\(369\) 0 0
\(370\) −18.4148 + 5.31021i −0.957340 + 0.276065i
\(371\) 9.47295 7.61997i 0.491811 0.395609i
\(372\) 0 0
\(373\) 15.5268 8.96439i 0.803946 0.464159i −0.0409028 0.999163i \(-0.513023\pi\)
0.844849 + 0.535004i \(0.179690\pi\)
\(374\) −1.46268 −0.0756336
\(375\) 0 0
\(376\) 8.75012i 0.451253i
\(377\) 30.6558i 1.57885i
\(378\) 0 0
\(379\) −0.162766 −0.00836075 −0.00418037 0.999991i \(-0.501331\pi\)
−0.00418037 + 0.999991i \(0.501331\pi\)
\(380\) −14.5787 + 4.20401i −0.747871 + 0.215661i
\(381\) 0 0
\(382\) 6.43820i 0.329407i
\(383\) 8.64195 4.98943i 0.441583 0.254948i −0.262686 0.964881i \(-0.584608\pi\)
0.704269 + 0.709933i \(0.251275\pi\)
\(384\) 0 0
\(385\) 2.65204 + 5.71366i 0.135161 + 0.291195i
\(386\) 23.2031i 1.18101i
\(387\) 0 0
\(388\) 6.25791 + 10.8390i 0.317697 + 0.550268i
\(389\) −20.5762 11.8797i −1.04326 0.602325i −0.122503 0.992468i \(-0.539092\pi\)
−0.920754 + 0.390144i \(0.872425\pi\)
\(390\) 0 0
\(391\) −5.34748 3.08737i −0.270434 0.156135i
\(392\) 6.67138 2.11961i 0.336955 0.107056i
\(393\) 0 0
\(394\) −2.32392 −0.117077
\(395\) 11.3948 11.8350i 0.573332 0.595485i
\(396\) 0 0
\(397\) 10.9098 18.8963i 0.547547 0.948379i −0.450895 0.892577i \(-0.648895\pi\)
0.998442 0.0558021i \(-0.0177716\pi\)
\(398\) 10.1070 5.83527i 0.506617 0.292495i
\(399\) 0 0
\(400\) −0.189463 4.99641i −0.00947314 0.249820i
\(401\) 2.29120 1.32282i 0.114417 0.0660587i −0.441699 0.897163i \(-0.645624\pi\)
0.556116 + 0.831104i \(0.312291\pi\)
\(402\) 0 0
\(403\) −36.9777 21.3491i −1.84199 1.06347i
\(404\) 4.13794 7.16712i 0.205870 0.356578i
\(405\) 0 0
\(406\) −8.95555 11.1333i −0.444457 0.552537i
\(407\) −4.56294 7.90325i −0.226177 0.391750i
\(408\) 0 0
\(409\) 17.4968i 0.865163i −0.901595 0.432582i \(-0.857603\pi\)
0.901595 0.432582i \(-0.142397\pi\)
\(410\) −1.51160 5.24193i −0.0746525 0.258880i
\(411\) 0 0
\(412\) 0.0267719 + 0.0463704i 0.00131896 + 0.00228450i
\(413\) 3.93313 + 25.3685i 0.193537 + 1.24830i
\(414\) 0 0
\(415\) 4.70185 18.9791i 0.230805 0.931649i
\(416\) −2.83827 + 4.91604i −0.139158 + 0.241028i
\(417\) 0 0
\(418\) −3.61241 6.25688i −0.176689 0.306034i
\(419\) 4.87854 8.44988i 0.238332 0.412804i −0.721904 0.691994i \(-0.756733\pi\)
0.960236 + 0.279190i \(0.0900659\pi\)
\(420\) 0 0
\(421\) 15.0741 + 26.1091i 0.734667 + 1.27248i 0.954869 + 0.297027i \(0.0959951\pi\)
−0.220202 + 0.975454i \(0.570672\pi\)
\(422\) −7.82600 + 13.5550i −0.380964 + 0.659849i
\(423\) 0 0
\(424\) −2.29752 3.97942i −0.111577 0.193258i
\(425\) 3.65727 + 5.81404i 0.177404 + 0.282022i
\(426\) 0 0
\(427\) 25.9621 4.02515i 1.25639 0.194791i
\(428\) 4.10444 7.10909i 0.198395 0.343631i
\(429\) 0 0
\(430\) 3.03663 12.2574i 0.146439 0.591106i
\(431\) 30.1386 17.4005i 1.45172 0.838153i 0.453144 0.891437i \(-0.350302\pi\)
0.998579 + 0.0532842i \(0.0169689\pi\)
\(432\) 0 0
\(433\) 36.5774 1.75780 0.878899 0.477008i \(-0.158279\pi\)
0.878899 + 0.477008i \(0.158279\pi\)
\(434\) 19.6660 3.04901i 0.943998 0.146357i
\(435\) 0 0
\(436\) 6.86529 + 11.8910i 0.328788 + 0.569477i
\(437\) 30.4997i 1.45900i
\(438\) 0 0
\(439\) 1.51393i 0.0722559i 0.999347 + 0.0361280i \(0.0115024\pi\)
−0.999347 + 0.0361280i \(0.988498\pi\)
\(440\) 2.28764 0.659679i 0.109059 0.0314490i
\(441\) 0 0
\(442\) 7.79807i 0.370916i
\(443\) 22.5770 1.07267 0.536333 0.844006i \(-0.319809\pi\)
0.536333 + 0.844006i \(0.319809\pi\)
\(444\) 0 0
\(445\) 7.11780 + 24.6831i 0.337416 + 1.17009i
\(446\) 6.52152 + 11.2956i 0.308803 + 0.534863i
\(447\) 0 0
\(448\) −0.405354 2.61451i −0.0191512 0.123524i
\(449\) 6.39415i 0.301758i 0.988552 + 0.150879i \(0.0482105\pi\)
−0.988552 + 0.150879i \(0.951790\pi\)
\(450\) 0 0
\(451\) 2.24973 1.29888i 0.105936 0.0611619i
\(452\) −0.256031 + 0.443458i −0.0120427 + 0.0208585i
\(453\) 0 0
\(454\) 24.8272 + 14.3340i 1.16520 + 0.672727i
\(455\) −30.4615 + 14.1389i −1.42806 + 0.662844i
\(456\) 0 0
\(457\) 1.55320i 0.0726557i 0.999340 + 0.0363278i \(0.0115661\pi\)
−0.999340 + 0.0363278i \(0.988434\pi\)
\(458\) −3.57358 + 2.06321i −0.166982 + 0.0964073i
\(459\) 0 0
\(460\) 9.75588 + 2.41690i 0.454870 + 0.112689i
\(461\) 7.34634 + 12.7242i 0.342153 + 0.592626i 0.984832 0.173509i \(-0.0555105\pi\)
−0.642679 + 0.766135i \(0.722177\pi\)
\(462\) 0 0
\(463\) 1.02891 + 0.594041i 0.0478174 + 0.0276074i 0.523718 0.851892i \(-0.324545\pi\)
−0.475901 + 0.879499i \(0.657878\pi\)
\(464\) −4.67691 + 2.70021i −0.217120 + 0.125354i
\(465\) 0 0
\(466\) 0.859394 1.48851i 0.0398107 0.0689541i
\(467\) −29.2203 16.8704i −1.35216 0.780667i −0.363604 0.931554i \(-0.618454\pi\)
−0.988551 + 0.150886i \(0.951787\pi\)
\(468\) 0 0
\(469\) −0.168745 + 0.0261621i −0.00779191 + 0.00120806i
\(470\) 14.0948 + 13.5705i 0.650147 + 0.625961i
\(471\) 0 0
\(472\) 9.70296 0.446615
\(473\) 6.01308 0.276482
\(474\) 0 0
\(475\) −15.8381 + 30.0036i −0.726702 + 1.37666i
\(476\) 2.27807 + 2.83204i 0.104415 + 0.129806i
\(477\) 0 0
\(478\) 7.92591 + 4.57603i 0.362523 + 0.209303i
\(479\) −3.15505 + 5.46471i −0.144158 + 0.249689i −0.929058 0.369933i \(-0.879381\pi\)
0.784901 + 0.619622i \(0.212714\pi\)
\(480\) 0 0
\(481\) 42.1349 24.3266i 1.92119 1.10920i
\(482\) 0.696421 + 0.402079i 0.0317211 + 0.0183142i
\(483\) 0 0
\(484\) −4.93315 8.54447i −0.224234 0.388385i
\(485\) 27.1650 + 6.72980i 1.23350 + 0.305585i
\(486\) 0 0
\(487\) −29.8197 + 17.2164i −1.35126 + 0.780149i −0.988426 0.151705i \(-0.951524\pi\)
−0.362833 + 0.931854i \(0.618190\pi\)
\(488\) 9.92998i 0.449509i
\(489\) 0 0
\(490\) 6.93229 14.0336i 0.313169 0.633976i
\(491\) −0.145232 0.0838499i −0.00655424 0.00378409i 0.496719 0.867911i \(-0.334538\pi\)
−0.503274 + 0.864127i \(0.667871\pi\)
\(492\) 0 0
\(493\) 3.70938 6.42483i 0.167062 0.289360i
\(494\) 33.3575 19.2590i 1.50083 0.866503i
\(495\) 0 0
\(496\) 7.52185i 0.337741i
\(497\) 15.8957 2.46446i 0.713018 0.110546i
\(498\) 0 0
\(499\) 1.46377 + 2.53532i 0.0655272 + 0.113496i 0.896928 0.442177i \(-0.145794\pi\)
−0.831401 + 0.555674i \(0.812460\pi\)
\(500\) −8.34214 7.44371i −0.373072 0.332893i
\(501\) 0 0
\(502\) −19.6454 −0.876818
\(503\) 14.0715i 0.627418i −0.949519 0.313709i \(-0.898428\pi\)
0.949519 0.313709i \(-0.101572\pi\)
\(504\) 0 0
\(505\) −5.12742 17.7809i −0.228167 0.791240i
\(506\) 4.78590i 0.212759i
\(507\) 0 0
\(508\) 4.60873i 0.204480i
\(509\) 13.8664 + 24.0173i 0.614616 + 1.06455i 0.990452 + 0.137860i \(0.0440224\pi\)
−0.375836 + 0.926686i \(0.622644\pi\)
\(510\) 0 0
\(511\) −19.7211 + 15.8635i −0.872409 + 0.701760i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 14.3279 8.27221i 0.631976 0.364871i
\(515\) 0.116215 + 0.0287908i 0.00512103 + 0.00126867i
\(516\) 0 0
\(517\) −4.65835 + 8.06850i −0.204874 + 0.354852i
\(518\) −8.19560 + 21.1437i −0.360094 + 0.929001i
\(519\) 0 0
\(520\) 3.51697 + 12.1962i 0.154230 + 0.534838i
\(521\) −12.4542 21.5713i −0.545627 0.945054i −0.998567 0.0535127i \(-0.982958\pi\)
0.452940 0.891541i \(-0.350375\pi\)
\(522\) 0 0
\(523\) −9.31147 + 16.1279i −0.407162 + 0.705226i −0.994570 0.104065i \(-0.966815\pi\)
0.587408 + 0.809291i \(0.300148\pi\)
\(524\) −2.65642 4.60106i −0.116046 0.200998i
\(525\) 0 0
\(526\) 1.01677 1.76111i 0.0443335 0.0767878i
\(527\) 5.16651 + 8.94866i 0.225057 + 0.389810i
\(528\) 0 0
\(529\) 1.39813 2.42164i 0.0607883 0.105289i
\(530\) −9.97332 2.47077i −0.433213 0.107323i
\(531\) 0 0
\(532\) −6.48833 + 16.7391i −0.281305 + 0.725733i
\(533\) 6.92478 + 11.9941i 0.299945 + 0.519521i
\(534\) 0 0
\(535\) −5.08591 17.6369i −0.219883 0.762512i
\(536\) 0.0645415i 0.00278777i
\(537\) 0 0
\(538\) 11.6388 + 20.1590i 0.501785 + 0.869117i
\(539\) 7.28011 + 1.59719i 0.313577 + 0.0687956i
\(540\) 0 0
\(541\) −8.55300 + 14.8142i −0.367722 + 0.636913i −0.989209 0.146511i \(-0.953196\pi\)
0.621487 + 0.783425i \(0.286529\pi\)
\(542\) −21.0788 12.1699i −0.905412 0.522740i
\(543\) 0 0
\(544\) 1.18969 0.686867i 0.0510075 0.0294492i
\(545\) 29.8016 + 7.38299i 1.27656 + 0.316252i
\(546\) 0 0
\(547\) −10.4426 + 6.02903i −0.446493 + 0.257783i −0.706348 0.707865i \(-0.749658\pi\)
0.259855 + 0.965648i \(0.416325\pi\)
\(548\) 0.0371922 0.0644188i 0.00158877 0.00275183i
\(549\) 0 0
\(550\) 2.48526 4.70806i 0.105972 0.200752i
\(551\) 36.6444 1.56110
\(552\) 0 0
\(553\) −2.97822 19.2094i −0.126647 0.816868i
\(554\) 7.08143 + 4.08846i 0.300861 + 0.173702i
\(555\) 0 0
\(556\) −14.6763 8.47337i −0.622414 0.359351i
\(557\) 5.85535 + 10.1418i 0.248099 + 0.429720i 0.962998 0.269507i \(-0.0868608\pi\)
−0.714899 + 0.699227i \(0.753528\pi\)
\(558\) 0 0
\(559\) 32.0578i 1.35590i
\(560\) −4.84017 3.40188i −0.204534 0.143756i
\(561\) 0 0
\(562\) −4.54162 + 2.62210i −0.191577 + 0.110607i
\(563\) 28.8230i 1.21474i 0.794417 + 0.607372i \(0.207776\pi\)
−0.794417 + 0.607372i \(0.792224\pi\)
\(564\) 0 0
\(565\) 0.317254 + 1.10017i 0.0133470 + 0.0462847i
\(566\) −16.8827 −0.709632
\(567\) 0 0
\(568\) 6.07978i 0.255102i
\(569\) 44.5037i 1.86569i 0.360273 + 0.932847i \(0.382684\pi\)
−0.360273 + 0.932847i \(0.617316\pi\)
\(570\) 0 0
\(571\) 19.7658 0.827175 0.413587 0.910464i \(-0.364276\pi\)
0.413587 + 0.910464i \(0.364276\pi\)
\(572\) −5.23435 + 3.02205i −0.218859 + 0.126358i
\(573\) 0 0
\(574\) −6.01874 2.33295i −0.251217 0.0973754i
\(575\) 19.0235 11.9666i 0.793336 0.499041i
\(576\) 0 0
\(577\) 13.6853 + 23.7036i 0.569726 + 0.986795i 0.996593 + 0.0824802i \(0.0262841\pi\)
−0.426866 + 0.904315i \(0.640383\pi\)
\(578\) 7.55643 13.0881i 0.314306 0.544394i
\(579\) 0 0
\(580\) −2.90383 + 11.7214i −0.120575 + 0.486704i
\(581\) −14.5007 18.0269i −0.601591 0.747882i
\(582\) 0 0
\(583\) 4.89257i 0.202630i
\(584\) 4.78305 + 8.28448i 0.197924 + 0.342814i
\(585\) 0 0
\(586\) −25.5501 14.7514i −1.05546 0.609373i
\(587\) 22.8974 13.2198i 0.945077 0.545641i 0.0535291 0.998566i \(-0.482953\pi\)
0.891548 + 0.452926i \(0.149620\pi\)
\(588\) 0 0
\(589\) −25.5196 + 44.2012i −1.05152 + 1.82128i
\(590\) 15.0483 15.6297i 0.619527 0.643465i
\(591\) 0 0
\(592\) 7.42263 + 4.28546i 0.305068 + 0.176131i
\(593\) −1.24355 0.717964i −0.0510665 0.0294832i 0.474249 0.880391i \(-0.342720\pi\)
−0.525316 + 0.850907i \(0.676053\pi\)
\(594\) 0 0
\(595\) 8.09493 + 0.722631i 0.331860 + 0.0296250i
\(596\) 14.4973 8.37004i 0.593834 0.342850i
\(597\) 0 0
\(598\) −25.5153 −1.04340
\(599\) 25.1094i 1.02594i −0.858406 0.512972i \(-0.828545\pi\)
0.858406 0.512972i \(-0.171455\pi\)
\(600\) 0 0
\(601\) 18.4357 10.6439i 0.752009 0.434173i −0.0744104 0.997228i \(-0.523707\pi\)
0.826419 + 0.563055i \(0.190374\pi\)
\(602\) −9.36512 11.6425i −0.381694 0.474511i
\(603\) 0 0
\(604\) 3.00497 5.20476i 0.122270 0.211779i
\(605\) −21.4144 5.30515i −0.870618 0.215685i
\(606\) 0 0
\(607\) 10.6016 + 18.3625i 0.430306 + 0.745311i 0.996899 0.0786859i \(-0.0250724\pi\)
−0.566594 + 0.823997i \(0.691739\pi\)
\(608\) 5.87638 + 3.39273i 0.238319 + 0.137593i
\(609\) 0 0
\(610\) −15.9954 15.4003i −0.647634 0.623542i
\(611\) −43.0159 24.8353i −1.74024 1.00473i
\(612\) 0 0
\(613\) 15.9028 9.18146i 0.642306 0.370836i −0.143196 0.989694i \(-0.545738\pi\)
0.785502 + 0.618859i \(0.212405\pi\)
\(614\) −10.7900 −0.435449
\(615\) 0 0
\(616\) 1.01813 2.62665i 0.0410215 0.105831i
\(617\) 4.58356 7.93896i 0.184527 0.319610i −0.758890 0.651219i \(-0.774258\pi\)
0.943417 + 0.331609i \(0.107591\pi\)
\(618\) 0 0
\(619\) 28.7858 + 16.6195i 1.15700 + 0.667993i 0.950583 0.310472i \(-0.100487\pi\)
0.206415 + 0.978465i \(0.433820\pi\)
\(620\) −12.1163 11.6656i −0.486603 0.468501i
\(621\) 0 0
\(622\) −6.78533 −0.272067
\(623\) 28.3410 + 10.9854i 1.13546 + 0.440120i
\(624\) 0 0
\(625\) −24.9282 + 1.89327i −0.997128 + 0.0757307i
\(626\) −22.5896 −0.902860
\(627\) 0 0
\(628\) −9.02952 −0.360317
\(629\) −11.7742 −0.469467
\(630\) 0 0
\(631\) −33.5594 −1.33598 −0.667989 0.744171i \(-0.732845\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(632\) −7.34722 −0.292257
\(633\) 0 0
\(634\) −27.0432 −1.07402
\(635\) −7.42383 7.14765i −0.294606 0.283646i
\(636\) 0 0
\(637\) −8.51514 + 38.8127i −0.337382 + 1.53782i
\(638\) −5.75011 −0.227649
\(639\) 0 0
\(640\) −1.55089 + 1.61082i −0.0613044 + 0.0636731i
\(641\) −24.6820 14.2502i −0.974881 0.562848i −0.0741605 0.997246i \(-0.523628\pi\)
−0.900721 + 0.434398i \(0.856961\pi\)
\(642\) 0 0
\(643\) 1.28905 2.23270i 0.0508352 0.0880491i −0.839488 0.543378i \(-0.817145\pi\)
0.890323 + 0.455329i \(0.150478\pi\)
\(644\) 9.26641 7.45384i 0.365148 0.293722i
\(645\) 0 0
\(646\) −9.32142 −0.366746
\(647\) −6.52143 + 3.76515i −0.256384 + 0.148023i −0.622684 0.782473i \(-0.713958\pi\)
0.366300 + 0.930497i \(0.380624\pi\)
\(648\) 0 0
\(649\) 8.94711 + 5.16562i 0.351205 + 0.202768i
\(650\) 25.1003 + 13.2498i 0.984514 + 0.519699i
\(651\) 0 0
\(652\) 8.62716 + 4.98089i 0.337866 + 0.195067i
\(653\) −16.9498 29.3579i −0.663296 1.14886i −0.979744 0.200252i \(-0.935824\pi\)
0.316449 0.948610i \(-0.397509\pi\)
\(654\) 0 0
\(655\) −11.5313 2.85674i −0.450565 0.111622i
\(656\) −1.21989 + 2.11292i −0.0476288 + 0.0824955i
\(657\) 0 0
\(658\) 22.8773 3.54689i 0.891851 0.138272i
\(659\) −5.47266 + 3.15964i −0.213185 + 0.123082i −0.602791 0.797899i \(-0.705945\pi\)
0.389606 + 0.920982i \(0.372611\pi\)
\(660\) 0 0
\(661\) 22.2173i 0.864155i 0.901837 + 0.432077i \(0.142219\pi\)
−0.901837 + 0.432077i \(0.857781\pi\)
\(662\) −6.03337 −0.234493
\(663\) 0 0
\(664\) −7.57279 + 4.37215i −0.293881 + 0.169672i
\(665\) 16.9010 + 36.4121i 0.655392 + 1.41200i
\(666\) 0 0
\(667\) −21.0220 12.1371i −0.813976 0.469949i
\(668\) −16.2295 9.37008i −0.627936 0.362539i
\(669\) 0 0
\(670\) 0.103965 + 0.100097i 0.00401650 + 0.00386708i
\(671\) 5.28648 9.15645i 0.204082 0.353481i
\(672\) 0 0
\(673\) 12.4379 7.18105i 0.479447 0.276809i −0.240739 0.970590i \(-0.577390\pi\)
0.720186 + 0.693781i \(0.244056\pi\)
\(674\) −14.4392 8.33650i −0.556179 0.321110i
\(675\) 0 0
\(676\) −9.61160 16.6478i −0.369677 0.640299i
\(677\) 37.5022i 1.44132i 0.693286 + 0.720662i \(0.256162\pi\)
−0.693286 + 0.720662i \(0.743838\pi\)
\(678\) 0 0
\(679\) 25.8021 20.7550i 0.990194 0.796505i
\(680\) 0.738663 2.98163i 0.0283264 0.114340i
\(681\) 0 0
\(682\) 4.00445 6.93591i 0.153338 0.265590i
\(683\) −2.22205 3.84871i −0.0850245 0.147267i 0.820377 0.571823i \(-0.193764\pi\)
−0.905402 + 0.424556i \(0.860430\pi\)
\(684\) 0 0
\(685\) −0.0460858 0.159816i −0.00176085 0.00610627i
\(686\) −8.24601 16.5832i −0.314834 0.633150i
\(687\) 0 0
\(688\) −4.89080 + 2.82370i −0.186460 + 0.107653i
\(689\) 26.0840 0.993720
\(690\) 0 0
\(691\) 41.5004i 1.57875i 0.613912 + 0.789374i \(0.289595\pi\)
−0.613912 + 0.789374i \(0.710405\pi\)
\(692\) 22.1147i 0.840676i
\(693\) 0 0
\(694\) 33.0004 1.25268
\(695\) −36.4104 + 10.4996i −1.38113 + 0.398271i
\(696\) 0 0
\(697\) 3.35162i 0.126952i
\(698\) 9.69567 5.59780i 0.366987 0.211880i
\(699\) 0 0
\(700\) −12.9864 + 2.52067i −0.490839 + 0.0952722i
\(701\) 26.9990i 1.01974i −0.860252 0.509869i \(-0.829694\pi\)
0.860252 0.509869i \(-0.170306\pi\)
\(702\) 0 0
\(703\) −29.0788 50.3659i −1.09673 1.89959i
\(704\) −0.922101 0.532375i −0.0347530 0.0200646i
\(705\) 0 0
\(706\) 12.5080 + 7.22147i 0.470743 + 0.271784i
\(707\) −20.4159 7.91349i −0.767818 0.297617i
\(708\) 0 0
\(709\) 37.9992 1.42709 0.713545 0.700610i \(-0.247089\pi\)
0.713545 + 0.700610i \(0.247089\pi\)
\(710\) −9.79341 9.42908i −0.367540 0.353867i
\(711\) 0 0
\(712\) 5.74422 9.94928i 0.215274 0.372865i
\(713\) 29.2800 16.9048i 1.09654 0.633090i
\(714\) 0 0
\(715\) −3.24994 + 13.1185i −0.121541 + 0.490603i
\(716\) −9.16532 + 5.29160i −0.342524 + 0.197756i
\(717\) 0 0
\(718\) −18.4344 10.6431i −0.687966 0.397198i
\(719\) −5.43173 + 9.40802i −0.202569 + 0.350860i −0.949356 0.314204i \(-0.898262\pi\)
0.746786 + 0.665064i \(0.231596\pi\)
\(720\) 0 0
\(721\) 0.110384 0.0887920i 0.00411091 0.00330679i
\(722\) −13.5212 23.4194i −0.503207 0.871581i
\(723\) 0 0
\(724\) 6.54895i 0.243390i
\(725\) 14.3775 + 22.8562i 0.533966 + 0.848856i
\(726\) 0 0
\(727\) 16.6696 + 28.8726i 0.618242 + 1.07083i 0.989806 + 0.142419i \(0.0454881\pi\)
−0.371565 + 0.928407i \(0.621179\pi\)
\(728\) 14.0036 + 5.42798i 0.519006 + 0.201174i
\(729\) 0 0
\(730\) 20.7628 + 5.14373i 0.768465 + 0.190378i
\(731\) 3.87902 6.71866i 0.143471 0.248499i
\(732\) 0 0
\(733\) 0.906200 + 1.56958i 0.0334713 + 0.0579739i 0.882276 0.470733i \(-0.156010\pi\)
−0.848805 + 0.528707i \(0.822677\pi\)
\(734\) −8.90707 + 15.4275i −0.328766 + 0.569440i
\(735\) 0 0
\(736\) −2.24743 3.89266i −0.0828413 0.143485i
\(737\) −0.0343603 + 0.0595138i −0.00126568 + 0.00219222i
\(738\) 0 0
\(739\) −5.23342 9.06456i −0.192515 0.333445i 0.753568 0.657370i \(-0.228331\pi\)
−0.946083 + 0.323924i \(0.894998\pi\)
\(740\) 18.4148 5.31021i 0.676941 0.195207i
\(741\) 0 0
\(742\) −9.47295 + 7.61997i −0.347763 + 0.279738i
\(743\) 8.55060 14.8101i 0.313691 0.543329i −0.665467 0.746427i \(-0.731768\pi\)
0.979158 + 0.203098i \(0.0651010\pi\)
\(744\) 0 0
\(745\) 9.00121 36.3336i 0.329779 1.33116i
\(746\) −15.5268 + 8.96439i −0.568476 + 0.328210i
\(747\) 0 0
\(748\) 1.46268 0.0534810
\(749\) −20.2506 7.84942i −0.739940 0.286811i
\(750\) 0 0
\(751\) −3.02573 5.24072i −0.110410 0.191237i 0.805525 0.592561i \(-0.201883\pi\)
−0.915936 + 0.401325i \(0.868550\pi\)
\(752\) 8.75012i 0.319084i
\(753\) 0 0
\(754\) 30.6558i 1.11642i
\(755\) −3.72353 12.9125i −0.135513 0.469933i
\(756\) 0 0
\(757\) 29.0415i 1.05553i −0.849390 0.527765i \(-0.823030\pi\)
0.849390 0.527765i \(-0.176970\pi\)
\(758\) 0.162766 0.00591194
\(759\) 0 0
\(760\) 14.5787 4.20401i 0.528825 0.152496i
\(761\) −15.7946 27.3571i −0.572555 0.991694i −0.996303 0.0859137i \(-0.972619\pi\)
0.423748 0.905780i \(-0.360714\pi\)
\(762\) 0 0
\(763\) 28.3064 22.7695i 1.02476 0.824310i
\(764\) 6.43820i 0.232926i
\(765\) 0 0
\(766\) −8.64195 + 4.98943i −0.312246 + 0.180276i
\(767\) −27.5397 + 47.7001i −0.994400 + 1.72235i
\(768\) 0 0
\(769\) −45.0333 26.0000i −1.62394 0.937583i −0.985851 0.167622i \(-0.946391\pi\)
−0.638090 0.769961i \(-0.720275\pi\)
\(770\) −2.65204 5.71366i −0.0955730 0.205906i
\(771\) 0 0
\(772\) 23.2031i 0.835097i
\(773\) 1.80797 1.04383i 0.0650283 0.0375441i −0.467133 0.884187i \(-0.654713\pi\)
0.532162 + 0.846643i \(0.321380\pi\)
\(774\) 0 0
\(775\) −37.5822 + 1.42511i −1.34999 + 0.0511915i
\(776\) −6.25791 10.8390i −0.224646 0.389098i
\(777\) 0 0
\(778\) 20.5762 + 11.8797i 0.737694 + 0.425908i
\(779\) 14.3371 8.27753i 0.513680 0.296573i
\(780\) 0 0
\(781\) 3.23672 5.60617i 0.115819 0.200604i
\(782\) 5.34748 + 3.08737i 0.191226 + 0.110404i
\(783\) 0 0
\(784\) −6.67138 + 2.11961i −0.238263 + 0.0757002i
\(785\) −14.0038 + 14.5449i −0.499818 + 0.519130i
\(786\) 0 0
\(787\) 26.9597 0.961010 0.480505 0.876992i \(-0.340453\pi\)
0.480505 + 0.876992i \(0.340453\pi\)
\(788\) 2.32392 0.0827861
\(789\) 0 0
\(790\) −11.3948 + 11.8350i −0.405407 + 0.421072i
\(791\) 1.26321 + 0.489638i 0.0449146 + 0.0174095i
\(792\) 0 0
\(793\) 48.8161 + 28.1840i 1.73351 + 1.00084i
\(794\) −10.9098 + 18.8963i −0.387174 + 0.670605i
\(795\) 0 0
\(796\) −10.1070 + 5.83527i −0.358232 + 0.206826i
\(797\) 6.03754 + 3.48577i 0.213861 + 0.123472i 0.603104 0.797662i \(-0.293930\pi\)
−0.389244 + 0.921135i \(0.627264\pi\)
\(798\) 0 0
\(799\) 6.01017 + 10.4099i 0.212625 + 0.368277i
\(800\) 0.189463 + 4.99641i 0.00669852 + 0.176650i
\(801\) 0 0
\(802\) −2.29120 + 1.32282i −0.0809051 + 0.0467106i
\(803\) 10.1855i 0.359439i
\(804\) 0 0
\(805\) 2.36445 26.4866i 0.0833358 0.933530i
\(806\) 36.9777 + 21.3491i 1.30248 + 0.751989i
\(807\) 0 0
\(808\) −4.13794 + 7.16712i −0.145572 + 0.252138i
\(809\) −9.53225 + 5.50345i −0.335136 + 0.193491i −0.658119 0.752914i \(-0.728648\pi\)
0.322983 + 0.946405i \(0.395314\pi\)
\(810\) 0 0
\(811\) 44.4197i 1.55979i −0.625913 0.779893i \(-0.715273\pi\)
0.625913 0.779893i \(-0.284727\pi\)
\(812\) 8.95555 + 11.1333i 0.314278 + 0.390702i
\(813\) 0 0
\(814\) 4.56294 + 7.90325i 0.159931 + 0.277009i
\(815\) 21.4031 6.17194i 0.749718 0.216194i
\(816\) 0 0
\(817\) 38.3202 1.34066
\(818\) 17.4968i 0.611763i
\(819\) 0 0
\(820\) 1.51160 + 5.24193i 0.0527873 + 0.183056i
\(821\) 5.01695i 0.175093i 0.996160 + 0.0875464i \(0.0279026\pi\)
−0.996160 + 0.0875464i \(0.972097\pi\)
\(822\) 0 0
\(823\) 22.3769i 0.780008i −0.920813 0.390004i \(-0.872474\pi\)
0.920813 0.390004i \(-0.127526\pi\)
\(824\) −0.0267719 0.0463704i −0.000932645 0.00161539i
\(825\) 0 0
\(826\) −3.93313 25.3685i −0.136851 0.882685i
\(827\) −4.65264 −0.161788 −0.0808940 0.996723i \(-0.525778\pi\)
−0.0808940 + 0.996723i \(0.525778\pi\)
\(828\) 0 0
\(829\) 25.1125 14.4987i 0.872192 0.503561i 0.00411622 0.999992i \(-0.498690\pi\)
0.868076 + 0.496431i \(0.165356\pi\)
\(830\) −4.70185 + 18.9791i −0.163204 + 0.658775i
\(831\) 0 0
\(832\) 2.83827 4.91604i 0.0983995 0.170433i
\(833\) 6.48098 7.10402i 0.224553 0.246140i
\(834\) 0 0
\(835\) −40.2636 + 11.6107i −1.39338 + 0.401804i
\(836\) 3.61241 + 6.25688i 0.124938 + 0.216399i
\(837\) 0 0
\(838\) −4.87854 + 8.44988i −0.168526 + 0.291896i
\(839\) −24.3540 42.1824i −0.840793 1.45630i −0.889225 0.457470i \(-0.848756\pi\)
0.0484316 0.998827i \(-0.484578\pi\)
\(840\) 0 0
\(841\) 0.0823151 0.142574i 0.00283845 0.00491634i
\(842\) −15.0741 26.1091i −0.519488 0.899780i
\(843\) 0 0
\(844\) 7.82600 13.5550i 0.269382 0.466583i
\(845\) −41.7231 10.3364i −1.43532 0.355583i
\(846\) 0 0
\(847\) −20.3400 + 16.3613i −0.698890 + 0.562182i
\(848\) 2.29752 + 3.97942i 0.0788971 + 0.136654i
\(849\) 0 0
\(850\) −3.65727 5.81404i −0.125443 0.199420i
\(851\) 38.5250i 1.32062i
\(852\) 0 0
\(853\) 6.96876 + 12.0702i 0.238606 + 0.413277i 0.960314 0.278920i \(-0.0899763\pi\)
−0.721709 + 0.692197i \(0.756643\pi\)
\(854\) −25.9621 + 4.02515i −0.888404 + 0.137738i
\(855\) 0 0
\(856\) −4.10444 + 7.10909i −0.140287 + 0.242984i
\(857\) 5.89936 + 3.40600i 0.201518 + 0.116347i 0.597363 0.801971i \(-0.296215\pi\)
−0.395845 + 0.918317i \(0.629548\pi\)
\(858\) 0 0
\(859\) −21.8561 + 12.6186i −0.745721 + 0.430542i −0.824146 0.566378i \(-0.808344\pi\)
0.0784245 + 0.996920i \(0.475011\pi\)
\(860\) −3.03663 + 12.2574i −0.103548 + 0.417975i
\(861\) 0 0
\(862\) −30.1386 + 17.4005i −1.02652 + 0.592664i
\(863\) −5.87923 + 10.1831i −0.200131 + 0.346638i −0.948571 0.316566i \(-0.897470\pi\)
0.748439 + 0.663203i \(0.230804\pi\)
\(864\) 0 0
\(865\) −35.6228 34.2976i −1.21121 1.16615i
\(866\) −36.5774 −1.24295
\(867\) 0 0
\(868\) −19.6660 + 3.04901i −0.667507 + 0.103490i
\(869\) −6.77488 3.91148i −0.229822 0.132688i
\(870\) 0 0
\(871\) −0.317288 0.183187i −0.0107509 0.00620704i
\(872\) −6.86529 11.8910i −0.232488 0.402681i
\(873\) 0 0
\(874\) 30.4997i 1.03167i
\(875\) −16.0802 + 24.8280i −0.543609 + 0.839339i
\(876\) 0 0
\(877\) −6.11879 + 3.53268i −0.206617 + 0.119290i −0.599738 0.800196i \(-0.704729\pi\)
0.393121 + 0.919487i \(0.371395\pi\)
\(878\) 1.51393i 0.0510927i
\(879\) 0 0
\(880\) −2.28764 + 0.659679i −0.0771163 + 0.0222378i
\(881\) 15.3713 0.517872 0.258936 0.965895i \(-0.416628\pi\)
0.258936 + 0.965895i \(0.416628\pi\)
\(882\) 0 0
\(883\) 29.3232i 0.986803i −0.869802 0.493401i \(-0.835753\pi\)
0.869802 0.493401i \(-0.164247\pi\)
\(884\) 7.79807i 0.262278i
\(885\) 0 0
\(886\) −22.5770 −0.758490
\(887\) 33.5481 19.3690i 1.12644 0.650348i 0.183400 0.983038i \(-0.441290\pi\)
0.943036 + 0.332691i \(0.107956\pi\)
\(888\) 0 0
\(889\) −12.0496 + 1.86817i −0.404131 + 0.0626563i
\(890\) −7.11780 24.6831i −0.238589 0.827381i
\(891\) 0 0
\(892\) −6.52152 11.2956i −0.218357 0.378205i
\(893\) −29.6868 + 51.4190i −0.993431 + 1.72067i
\(894\) 0 0
\(895\) −5.69063 + 22.9704i −0.190217 + 0.767814i
\(896\) 0.405354 + 2.61451i 0.0135419 + 0.0873448i
\(897\) 0 0
\(898\) 6.39415i 0.213375i
\(899\) 20.3106 + 35.1790i 0.677397 + 1.17329i
\(900\) 0 0
\(901\) −5.46667 3.15618i −0.182121 0.105148i
\(902\) −2.24973 + 1.29888i −0.0749077 + 0.0432480i
\(903\) 0 0
\(904\) 0.256031 0.443458i 0.00851545 0.0147492i
\(905\) −10.5492 10.1567i −0.350666 0.337621i
\(906\) 0 0
\(907\) −34.3857 19.8526i −1.14176 0.659194i −0.194893 0.980825i \(-0.562436\pi\)
−0.946865 + 0.321630i \(0.895769\pi\)
\(908\) −24.8272 14.3340i −0.823919 0.475690i
\(909\) 0 0
\(910\) 30.4615 14.1389i 1.00979 0.468702i
\(911\) −27.2064 + 15.7076i −0.901388 + 0.520417i −0.877650 0.479302i \(-0.840890\pi\)
−0.0237377 + 0.999718i \(0.507557\pi\)
\(912\) 0 0
\(913\) −9.31051 −0.308133
\(914\) 1.55320i 0.0513753i
\(915\) 0 0
\(916\) 3.57358 2.06321i 0.118074 0.0681703i
\(917\) −10.9527 + 8.81031i −0.361691 + 0.290942i
\(918\) 0 0
\(919\) 15.2764 26.4595i 0.503921 0.872818i −0.496068 0.868284i \(-0.665223\pi\)
0.999990 0.00453405i \(-0.00144324\pi\)
\(920\) −9.75588 2.41690i −0.321642 0.0796829i
\(921\) 0 0
\(922\) −7.34634 12.7242i −0.241939 0.419050i
\(923\) 29.8884 + 17.2561i 0.983788 + 0.567991i
\(924\) 0 0
\(925\) 20.0056 37.8984i 0.657780 1.24609i
\(926\) −1.02891 0.594041i −0.0338120 0.0195214i
\(927\) 0 0
\(928\) 4.67691 2.70021i 0.153527 0.0886389i
\(929\) 36.6852 1.20360 0.601801 0.798646i \(-0.294450\pi\)
0.601801 + 0.798646i \(0.294450\pi\)
\(930\) 0 0
\(931\) 46.3948 + 10.1786i 1.52053 + 0.333589i
\(932\) −0.859394 + 1.48851i −0.0281504 + 0.0487579i
\(933\) 0 0
\(934\) 29.2203 + 16.8704i 0.956118 + 0.552015i
\(935\) 2.26847 2.35612i 0.0741868 0.0770533i
\(936\) 0 0
\(937\) −14.4145 −0.470900 −0.235450 0.971887i \(-0.575656\pi\)
−0.235450 + 0.971887i \(0.575656\pi\)
\(938\) 0.168745 0.0261621i 0.00550971 0.000854224i
\(939\) 0 0
\(940\) −14.0948 13.5705i −0.459723 0.442621i
\(941\) −5.61702 −0.183110 −0.0915548 0.995800i \(-0.529184\pi\)
−0.0915548 + 0.995800i \(0.529184\pi\)
\(942\) 0 0
\(943\) −10.9665 −0.357118
\(944\) −9.70296 −0.315805
\(945\) 0 0
\(946\) −6.01308 −0.195502
\(947\) 56.8287 1.84668 0.923342 0.383979i \(-0.125446\pi\)
0.923342 + 0.383979i \(0.125446\pi\)
\(948\) 0 0
\(949\) −54.3024 −1.76273
\(950\) 15.8381 30.0036i 0.513856 0.973445i
\(951\) 0 0
\(952\) −2.27807 2.83204i −0.0738327 0.0917868i
\(953\) 17.2680 0.559366 0.279683 0.960092i \(-0.409771\pi\)
0.279683 + 0.960092i \(0.409771\pi\)
\(954\) 0 0
\(955\) 10.3708 + 9.98495i 0.335590 + 0.323105i
\(956\) −7.92591 4.57603i −0.256342 0.147999i
\(957\) 0 0
\(958\) 3.15505 5.46471i 0.101935 0.176557i
\(959\) −0.183500 0.0711272i −0.00592552 0.00229682i
\(960\) 0 0
\(961\) −25.5782 −0.825104
\(962\) −42.1349 + 24.3266i −1.35848 + 0.784321i
\(963\) 0 0
\(964\) −0.696421 0.402079i −0.0224302 0.0129501i
\(965\) −37.3759 35.9855i −1.20317 1.15841i
\(966\) 0 0
\(967\) −21.1215 12.1945i −0.679222 0.392149i 0.120340 0.992733i \(-0.461602\pi\)
−0.799562 + 0.600584i \(0.794935\pi\)
\(968\) 4.93315 + 8.54447i 0.158558 + 0.274630i
\(969\) 0 0
\(970\) −27.1650 6.72980i −0.872216 0.216081i
\(971\) −19.8177 + 34.3253i −0.635980 + 1.10155i 0.350326 + 0.936628i \(0.386071\pi\)
−0.986307 + 0.164923i \(0.947263\pi\)
\(972\) 0 0
\(973\) −16.2047 + 41.8062i −0.519498 + 1.34024i
\(974\) 29.8197 17.2164i 0.955484 0.551649i
\(975\) 0 0
\(976\) 9.92998i 0.317851i
\(977\) −4.03312 −0.129031 −0.0645155 0.997917i \(-0.520550\pi\)
−0.0645155 + 0.997917i \(0.520550\pi\)
\(978\) 0 0
\(979\) 10.5935 6.11616i 0.338570 0.195473i
\(980\) −6.93229 + 14.0336i −0.221444 + 0.448288i
\(981\) 0 0
\(982\) 0.145232 + 0.0838499i 0.00463455 + 0.00267576i
\(983\) 11.2271 + 6.48198i 0.358090 + 0.206743i 0.668242 0.743944i \(-0.267047\pi\)
−0.310153 + 0.950687i \(0.600380\pi\)
\(984\) 0 0
\(985\) 3.60415 3.74340i 0.114838 0.119275i
\(986\) −3.70938 + 6.42483i −0.118131 + 0.204608i
\(987\) 0 0
\(988\) −33.3575 + 19.2590i −1.06124 + 0.612710i
\(989\) −21.9834 12.6921i −0.699032 0.403587i
\(990\) 0 0
\(991\) 5.51935 + 9.55980i 0.175328 + 0.303677i 0.940275 0.340417i \(-0.110568\pi\)
−0.764947 + 0.644094i \(0.777235\pi\)
\(992\) 7.52185i 0.238819i
\(993\) 0 0
\(994\) −15.8957 + 2.46446i −0.504180 + 0.0781679i
\(995\) −6.27529 + 25.3304i −0.198940 + 0.803027i
\(996\) 0 0
\(997\) 12.2807 21.2708i 0.388934 0.673653i −0.603373 0.797459i \(-0.706177\pi\)
0.992306 + 0.123807i \(0.0395102\pi\)
\(998\) −1.46377 2.53532i −0.0463347 0.0802540i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.a.719.18 48
3.2 odd 2 630.2.bi.b.509.3 yes 48
5.4 even 2 1890.2.bi.b.719.2 48
7.3 odd 6 1890.2.r.b.1529.10 48
9.2 odd 6 1890.2.r.a.89.10 48
9.7 even 3 630.2.r.b.299.14 yes 48
15.14 odd 2 630.2.bi.a.509.22 yes 48
21.17 even 6 630.2.r.a.59.11 48
35.24 odd 6 1890.2.r.a.1529.10 48
45.29 odd 6 1890.2.r.b.89.10 48
45.34 even 6 630.2.r.a.299.11 yes 48
63.38 even 6 1890.2.bi.b.899.2 48
63.52 odd 6 630.2.bi.a.479.22 yes 48
105.59 even 6 630.2.r.b.59.14 yes 48
315.164 even 6 inner 1890.2.bi.a.899.18 48
315.304 odd 6 630.2.bi.b.479.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.11 48 21.17 even 6
630.2.r.a.299.11 yes 48 45.34 even 6
630.2.r.b.59.14 yes 48 105.59 even 6
630.2.r.b.299.14 yes 48 9.7 even 3
630.2.bi.a.479.22 yes 48 63.52 odd 6
630.2.bi.a.509.22 yes 48 15.14 odd 2
630.2.bi.b.479.3 yes 48 315.304 odd 6
630.2.bi.b.509.3 yes 48 3.2 odd 2
1890.2.r.a.89.10 48 9.2 odd 6
1890.2.r.a.1529.10 48 35.24 odd 6
1890.2.r.b.89.10 48 45.29 odd 6
1890.2.r.b.1529.10 48 7.3 odd 6
1890.2.bi.a.719.18 48 1.1 even 1 trivial
1890.2.bi.a.899.18 48 315.164 even 6 inner
1890.2.bi.b.719.2 48 5.4 even 2
1890.2.bi.b.899.2 48 63.38 even 6