Properties

Label 189.2.w.a.25.7
Level $189$
Weight $2$
Character 189.25
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(25,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 25.7
Character \(\chi\) \(=\) 189.25
Dual form 189.2.w.a.121.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30907 + 0.476464i) q^{2} +(-1.39125 - 1.03171i) q^{3} +(-0.0454330 + 0.0381228i) q^{4} +(1.40139 + 0.510065i) q^{5} +(2.31282 + 0.687701i) q^{6} +(-2.64009 - 0.173054i) q^{7} +(1.43440 - 2.48445i) q^{8} +(0.871157 + 2.87073i) q^{9} +O(q^{10})\) \(q+(-1.30907 + 0.476464i) q^{2} +(-1.39125 - 1.03171i) q^{3} +(-0.0454330 + 0.0381228i) q^{4} +(1.40139 + 0.510065i) q^{5} +(2.31282 + 0.687701i) q^{6} +(-2.64009 - 0.173054i) q^{7} +(1.43440 - 2.48445i) q^{8} +(0.871157 + 2.87073i) q^{9} -2.07755 q^{10} +(4.49413 - 1.63573i) q^{11} +(0.102540 - 0.00616480i) q^{12} +(0.371663 + 2.10780i) q^{13} +(3.53852 - 1.03137i) q^{14} +(-1.42345 - 2.15546i) q^{15} +(-0.673384 + 3.81895i) q^{16} +5.84823 q^{17} +(-2.50821 - 3.34292i) q^{18} +7.81006 q^{19} +(-0.0831146 + 0.0302512i) q^{20} +(3.49448 + 2.96456i) q^{21} +(-5.10378 + 4.28258i) q^{22} +(-0.451305 - 2.55948i) q^{23} +(-4.55883 + 1.97661i) q^{24} +(-2.12649 - 1.78433i) q^{25} +(-1.49083 - 2.58219i) q^{26} +(1.74976 - 4.89268i) q^{27} +(0.126544 - 0.0927851i) q^{28} +(-1.22445 + 6.94422i) q^{29} +(2.89040 + 2.14343i) q^{30} +(1.19198 - 1.00019i) q^{31} +(0.0582395 + 0.330293i) q^{32} +(-7.94006 - 2.36092i) q^{33} +(-7.65576 + 2.78647i) q^{34} +(-3.61153 - 1.58913i) q^{35} +(-0.149019 - 0.0972148i) q^{36} +(-3.52981 + 6.11382i) q^{37} +(-10.2239 + 3.72121i) q^{38} +(1.65756 - 3.31593i) q^{39} +(3.27739 - 2.75005i) q^{40} +(-1.33423 - 7.56680i) q^{41} +(-5.98704 - 2.21583i) q^{42} +(-6.86262 - 5.75842i) q^{43} +(-0.141823 + 0.245645i) q^{44} +(-0.243426 + 4.46737i) q^{45} +(1.81029 + 3.13551i) q^{46} +(4.90812 + 4.11840i) q^{47} +(4.87689 - 4.61838i) q^{48} +(6.94010 + 0.913753i) q^{49} +(3.63390 + 1.32263i) q^{50} +(-8.13636 - 6.03367i) q^{51} +(-0.0972411 - 0.0815949i) q^{52} +(3.57502 - 6.19211i) q^{53} +(0.0406280 + 7.23858i) q^{54} +7.13238 q^{55} +(-4.21688 + 6.31093i) q^{56} +(-10.8658 - 8.05770i) q^{57} +(-1.70577 - 9.67390i) q^{58} +(0.143277 + 0.812567i) q^{59} +(0.146844 + 0.0436629i) q^{60} +(6.10769 + 5.12496i) q^{61} +(-1.08383 + 1.87725i) q^{62} +(-1.80314 - 7.72973i) q^{63} +(-4.11148 - 7.12129i) q^{64} +(-0.554272 + 3.14343i) q^{65} +(11.5190 - 0.692533i) q^{66} +(0.431518 + 0.157060i) q^{67} +(-0.265703 + 0.222951i) q^{68} +(-2.01275 + 4.02649i) q^{69} +(5.48492 + 0.359528i) q^{70} +(2.15632 + 3.73486i) q^{71} +(8.38177 + 1.95342i) q^{72} +(2.27530 + 3.94093i) q^{73} +(1.70777 - 9.68527i) q^{74} +(1.11756 + 4.67637i) q^{75} +(-0.354834 + 0.297741i) q^{76} +(-12.1480 + 3.54074i) q^{77} +(-0.589949 + 5.13056i) q^{78} +(-5.54499 + 2.01821i) q^{79} +(-2.89159 + 5.00838i) q^{80} +(-7.48217 + 5.00171i) q^{81} +(5.35191 + 9.26979i) q^{82} +(-0.177225 + 1.00509i) q^{83} +(-0.271782 - 0.00146936i) q^{84} +(8.19567 + 2.98298i) q^{85} +(11.7274 + 4.26841i) q^{86} +(8.86793 - 8.39787i) q^{87} +(2.38248 - 13.5117i) q^{88} -1.93404 q^{89} +(-1.80988 - 5.96410i) q^{90} +(-0.616458 - 5.62910i) q^{91} +(0.118079 + 0.0990797i) q^{92} +(-2.69024 + 0.161739i) q^{93} +(-8.38736 - 3.05275i) q^{94} +(10.9450 + 3.98364i) q^{95} +(0.259740 - 0.519606i) q^{96} +(8.10490 + 6.80081i) q^{97} +(-9.52048 + 2.11054i) q^{98} +(8.61084 + 11.4765i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 3 q^{11} - 3 q^{12} - 12 q^{13} + 15 q^{14} - 9 q^{16} - 54 q^{17} - 3 q^{18} - 6 q^{19} - 18 q^{20} - 21 q^{21} - 12 q^{22} + 45 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 57 q^{30} - 3 q^{31} + 51 q^{32} + 15 q^{33} - 18 q^{34} - 12 q^{35} - 60 q^{36} + 3 q^{37} - 57 q^{38} - 66 q^{39} - 66 q^{40} + 33 q^{42} - 12 q^{43} + 3 q^{44} + 33 q^{45} + 3 q^{46} - 21 q^{47} + 90 q^{48} + 12 q^{49} - 39 q^{50} - 48 q^{51} + 9 q^{52} + 9 q^{53} - 63 q^{54} - 24 q^{55} + 57 q^{56} - 18 q^{57} - 3 q^{58} - 18 q^{59} + 81 q^{60} + 33 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} + 81 q^{65} + 69 q^{66} - 3 q^{67} + 6 q^{68} - 6 q^{69} - 42 q^{70} - 18 q^{71} - 105 q^{72} + 21 q^{73} - 93 q^{74} + 18 q^{75} - 24 q^{76} + 87 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} + 39 q^{81} - 6 q^{82} - 42 q^{83} - 36 q^{84} - 63 q^{85} + 159 q^{86} + 30 q^{87} + 57 q^{88} - 150 q^{89} - 39 q^{90} + 6 q^{91} - 66 q^{92} - 27 q^{93} + 33 q^{94} - 147 q^{95} + 81 q^{96} - 12 q^{97} + 99 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30907 + 0.476464i −0.925655 + 0.336911i −0.760486 0.649354i \(-0.775039\pi\)
−0.165169 + 0.986265i \(0.552817\pi\)
\(3\) −1.39125 1.03171i −0.803239 0.595657i
\(4\) −0.0454330 + 0.0381228i −0.0227165 + 0.0190614i
\(5\) 1.40139 + 0.510065i 0.626722 + 0.228108i 0.635804 0.771851i \(-0.280669\pi\)
−0.00908190 + 0.999959i \(0.502891\pi\)
\(6\) 2.31282 + 0.687701i 0.944205 + 0.280753i
\(7\) −2.64009 0.173054i −0.997859 0.0654081i
\(8\) 1.43440 2.48445i 0.507136 0.878386i
\(9\) 0.871157 + 2.87073i 0.290386 + 0.956910i
\(10\) −2.07755 −0.656980
\(11\) 4.49413 1.63573i 1.35503 0.493191i 0.440518 0.897744i \(-0.354795\pi\)
0.914515 + 0.404553i \(0.132573\pi\)
\(12\) 0.102540 0.00616480i 0.0296008 0.00177963i
\(13\) 0.371663 + 2.10780i 0.103081 + 0.584599i 0.991970 + 0.126477i \(0.0403669\pi\)
−0.888889 + 0.458123i \(0.848522\pi\)
\(14\) 3.53852 1.03137i 0.945709 0.275644i
\(15\) −1.42345 2.15546i −0.367533 0.556537i
\(16\) −0.673384 + 3.81895i −0.168346 + 0.954738i
\(17\) 5.84823 1.41840 0.709202 0.705005i \(-0.249055\pi\)
0.709202 + 0.705005i \(0.249055\pi\)
\(18\) −2.50821 3.34292i −0.591190 0.787934i
\(19\) 7.81006 1.79175 0.895875 0.444306i \(-0.146550\pi\)
0.895875 + 0.444306i \(0.146550\pi\)
\(20\) −0.0831146 + 0.0302512i −0.0185850 + 0.00676438i
\(21\) 3.49448 + 2.96456i 0.762558 + 0.646920i
\(22\) −5.10378 + 4.28258i −1.08813 + 0.913050i
\(23\) −0.451305 2.55948i −0.0941036 0.533688i −0.995018 0.0996919i \(-0.968214\pi\)
0.900915 0.433996i \(-0.142897\pi\)
\(24\) −4.55883 + 1.97661i −0.930568 + 0.403475i
\(25\) −2.12649 1.78433i −0.425297 0.356867i
\(26\) −1.49083 2.58219i −0.292375 0.506408i
\(27\) 1.74976 4.89268i 0.336741 0.941597i
\(28\) 0.126544 0.0927851i 0.0239146 0.0175347i
\(29\) −1.22445 + 6.94422i −0.227375 + 1.28951i 0.630717 + 0.776013i \(0.282761\pi\)
−0.858092 + 0.513496i \(0.828350\pi\)
\(30\) 2.89040 + 2.14343i 0.527712 + 0.391335i
\(31\) 1.19198 1.00019i 0.214085 0.179639i −0.529439 0.848348i \(-0.677597\pi\)
0.743524 + 0.668709i \(0.233153\pi\)
\(32\) 0.0582395 + 0.330293i 0.0102954 + 0.0583881i
\(33\) −7.94006 2.36092i −1.38219 0.410984i
\(34\) −7.65576 + 2.78647i −1.31295 + 0.477876i
\(35\) −3.61153 1.58913i −0.610460 0.268612i
\(36\) −0.149019 0.0972148i −0.0248366 0.0162025i
\(37\) −3.52981 + 6.11382i −0.580298 + 1.00511i 0.415146 + 0.909755i \(0.363731\pi\)
−0.995444 + 0.0953507i \(0.969603\pi\)
\(38\) −10.2239 + 3.72121i −1.65854 + 0.603660i
\(39\) 1.65756 3.31593i 0.265422 0.530974i
\(40\) 3.27739 2.75005i 0.518200 0.434822i
\(41\) −1.33423 7.56680i −0.208372 1.18174i −0.892045 0.451947i \(-0.850730\pi\)
0.683673 0.729789i \(-0.260382\pi\)
\(42\) −5.98704 2.21583i −0.923820 0.341910i
\(43\) −6.86262 5.75842i −1.04654 0.878152i −0.0538147 0.998551i \(-0.517138\pi\)
−0.992726 + 0.120399i \(0.961582\pi\)
\(44\) −0.141823 + 0.245645i −0.0213807 + 0.0370324i
\(45\) −0.243426 + 4.46737i −0.0362877 + 0.665956i
\(46\) 1.81029 + 3.13551i 0.266913 + 0.462306i
\(47\) 4.90812 + 4.11840i 0.715923 + 0.600730i 0.926254 0.376900i \(-0.123010\pi\)
−0.210332 + 0.977630i \(0.567454\pi\)
\(48\) 4.87689 4.61838i 0.703918 0.666606i
\(49\) 6.94010 + 0.913753i 0.991444 + 0.130536i
\(50\) 3.63390 + 1.32263i 0.513911 + 0.187048i
\(51\) −8.13636 6.03367i −1.13932 0.844882i
\(52\) −0.0972411 0.0815949i −0.0134849 0.0113152i
\(53\) 3.57502 6.19211i 0.491066 0.850552i −0.508881 0.860837i \(-0.669941\pi\)
0.999947 + 0.0102850i \(0.00327388\pi\)
\(54\) 0.0406280 + 7.23858i 0.00552877 + 0.985046i
\(55\) 7.13238 0.961730
\(56\) −4.21688 + 6.31093i −0.563504 + 0.843334i
\(57\) −10.8658 8.05770i −1.43920 1.06727i
\(58\) −1.70577 9.67390i −0.223978 1.27025i
\(59\) 0.143277 + 0.812567i 0.0186531 + 0.105787i 0.992713 0.120504i \(-0.0384510\pi\)
−0.974060 + 0.226291i \(0.927340\pi\)
\(60\) 0.146844 + 0.0436629i 0.0189574 + 0.00563686i
\(61\) 6.10769 + 5.12496i 0.782010 + 0.656184i 0.943754 0.330649i \(-0.107267\pi\)
−0.161744 + 0.986833i \(0.551712\pi\)
\(62\) −1.08383 + 1.87725i −0.137647 + 0.238411i
\(63\) −1.80314 7.72973i −0.227174 0.973854i
\(64\) −4.11148 7.12129i −0.513935 0.890161i
\(65\) −0.554272 + 3.14343i −0.0687490 + 0.389895i
\(66\) 11.5190 0.692533i 1.41789 0.0852449i
\(67\) 0.431518 + 0.157060i 0.0527183 + 0.0191879i 0.368245 0.929729i \(-0.379959\pi\)
−0.315526 + 0.948917i \(0.602181\pi\)
\(68\) −0.265703 + 0.222951i −0.0322212 + 0.0270368i
\(69\) −2.01275 + 4.02649i −0.242307 + 0.484732i
\(70\) 5.48492 + 0.359528i 0.655574 + 0.0429719i
\(71\) 2.15632 + 3.73486i 0.255909 + 0.443247i 0.965142 0.261727i \(-0.0842921\pi\)
−0.709233 + 0.704974i \(0.750959\pi\)
\(72\) 8.38177 + 1.95342i 0.987801 + 0.230213i
\(73\) 2.27530 + 3.94093i 0.266304 + 0.461251i 0.967904 0.251319i \(-0.0808643\pi\)
−0.701601 + 0.712570i \(0.747531\pi\)
\(74\) 1.70777 9.68527i 0.198525 1.12589i
\(75\) 1.11756 + 4.67637i 0.129045 + 0.539981i
\(76\) −0.354834 + 0.297741i −0.0407023 + 0.0341533i
\(77\) −12.1480 + 3.54074i −1.38439 + 0.403505i
\(78\) −0.589949 + 5.13056i −0.0667986 + 0.580922i
\(79\) −5.54499 + 2.01821i −0.623860 + 0.227067i −0.634557 0.772876i \(-0.718817\pi\)
0.0106965 + 0.999943i \(0.496595\pi\)
\(80\) −2.89159 + 5.00838i −0.323290 + 0.559954i
\(81\) −7.48217 + 5.00171i −0.831352 + 0.555746i
\(82\) 5.35191 + 9.26979i 0.591020 + 1.02368i
\(83\) −0.177225 + 1.00509i −0.0194529 + 0.110323i −0.992988 0.118214i \(-0.962283\pi\)
0.973535 + 0.228537i \(0.0733942\pi\)
\(84\) −0.271782 0.00146936i −0.0296538 0.000160320i
\(85\) 8.19567 + 2.98298i 0.888945 + 0.323550i
\(86\) 11.7274 + 4.26841i 1.26459 + 0.460274i
\(87\) 8.86793 8.39787i 0.950741 0.900346i
\(88\) 2.38248 13.5117i 0.253974 1.44036i
\(89\) −1.93404 −0.205007 −0.102504 0.994733i \(-0.532685\pi\)
−0.102504 + 0.994733i \(0.532685\pi\)
\(90\) −1.80988 5.96410i −0.190778 0.628671i
\(91\) −0.616458 5.62910i −0.0646224 0.590090i
\(92\) 0.118079 + 0.0990797i 0.0123105 + 0.0103298i
\(93\) −2.69024 + 0.161739i −0.278965 + 0.0167716i
\(94\) −8.38736 3.05275i −0.865090 0.314867i
\(95\) 10.9450 + 3.98364i 1.12293 + 0.408713i
\(96\) 0.259740 0.519606i 0.0265096 0.0530321i
\(97\) 8.10490 + 6.80081i 0.822927 + 0.690518i 0.953656 0.300900i \(-0.0972871\pi\)
−0.130728 + 0.991418i \(0.541732\pi\)
\(98\) −9.52048 + 2.11054i −0.961714 + 0.213197i
\(99\) 8.61084 + 11.4765i 0.865422 + 1.15343i
\(100\) 0.164636 0.0164636
\(101\) 0.439689 2.49360i 0.0437507 0.248123i −0.955087 0.296326i \(-0.904238\pi\)
0.998838 + 0.0482035i \(0.0153496\pi\)
\(102\) 13.5259 + 4.02183i 1.33926 + 0.398221i
\(103\) −1.88418 0.685784i −0.185653 0.0675723i 0.247521 0.968883i \(-0.420384\pi\)
−0.433174 + 0.901310i \(0.642606\pi\)
\(104\) 5.76984 + 2.10005i 0.565780 + 0.205927i
\(105\) 3.38502 + 5.93693i 0.330344 + 0.579385i
\(106\) −1.72964 + 9.80930i −0.167998 + 0.952763i
\(107\) −5.24178 9.07903i −0.506742 0.877703i −0.999970 0.00780249i \(-0.997516\pi\)
0.493228 0.869900i \(-0.335817\pi\)
\(108\) 0.107026 + 0.288995i 0.0102986 + 0.0278085i
\(109\) 2.80584 4.85985i 0.268750 0.465489i −0.699789 0.714350i \(-0.746723\pi\)
0.968539 + 0.248860i \(0.0800560\pi\)
\(110\) −9.33681 + 3.39832i −0.890230 + 0.324017i
\(111\) 11.2185 4.86412i 1.06482 0.461682i
\(112\) 2.43868 9.96583i 0.230433 0.941682i
\(113\) 8.41891 7.06430i 0.791984 0.664553i −0.154252 0.988032i \(-0.549297\pi\)
0.946236 + 0.323478i \(0.104852\pi\)
\(114\) 18.0633 + 5.37099i 1.69178 + 0.503039i
\(115\) 0.673045 3.81703i 0.0627618 0.355940i
\(116\) −0.209102 0.362176i −0.0194147 0.0336272i
\(117\) −5.72715 + 2.90317i −0.529476 + 0.268398i
\(118\) −0.574719 0.995443i −0.0529072 0.0916380i
\(119\) −15.4398 1.01206i −1.41537 0.0927752i
\(120\) −7.39692 + 0.444709i −0.675243 + 0.0405962i
\(121\) 9.09513 7.63172i 0.826830 0.693793i
\(122\) −10.4373 3.79886i −0.944947 0.343932i
\(123\) −5.95048 + 11.9039i −0.536537 + 1.07333i
\(124\) −0.0160251 + 0.0908829i −0.00143910 + 0.00816153i
\(125\) −5.79824 10.0429i −0.518611 0.898260i
\(126\) 6.04338 + 9.25965i 0.538387 + 0.824915i
\(127\) −4.39951 + 7.62018i −0.390394 + 0.676182i −0.992501 0.122233i \(-0.960994\pi\)
0.602108 + 0.798415i \(0.294328\pi\)
\(128\) 8.26142 + 6.93215i 0.730213 + 0.612722i
\(129\) 3.60662 + 15.0916i 0.317545 + 1.32874i
\(130\) −0.772149 4.37908i −0.0677220 0.384070i
\(131\) 0.191855 + 1.08806i 0.0167624 + 0.0950644i 0.992041 0.125914i \(-0.0401862\pi\)
−0.975279 + 0.220978i \(0.929075\pi\)
\(132\) 0.450746 0.195434i 0.0392324 0.0170103i
\(133\) −20.6192 1.35156i −1.78791 0.117195i
\(134\) −0.639722 −0.0552636
\(135\) 4.94768 5.96408i 0.425829 0.513307i
\(136\) 8.38869 14.5296i 0.719324 1.24591i
\(137\) −0.723085 0.606740i −0.0617773 0.0518373i 0.611376 0.791340i \(-0.290616\pi\)
−0.673153 + 0.739503i \(0.735061\pi\)
\(138\) 0.716368 6.22998i 0.0609813 0.530331i
\(139\) −8.90721 3.24196i −0.755499 0.274979i −0.0645814 0.997912i \(-0.520571\pi\)
−0.690918 + 0.722933i \(0.742793\pi\)
\(140\) 0.224665 0.0654826i 0.0189876 0.00553429i
\(141\) −2.57944 10.7935i −0.217228 0.908974i
\(142\) −4.60231 3.86180i −0.386218 0.324075i
\(143\) 5.11810 + 8.86481i 0.427997 + 0.741312i
\(144\) −11.5498 + 1.39380i −0.962483 + 0.116150i
\(145\) −5.25794 + 9.10703i −0.436649 + 0.756297i
\(146\) −4.85625 4.07487i −0.401906 0.337239i
\(147\) −8.71270 8.43142i −0.718611 0.695412i
\(148\) −0.0727059 0.412335i −0.00597638 0.0338938i
\(149\) 0.0332949 0.0279377i 0.00272763 0.00228875i −0.641423 0.767188i \(-0.721656\pi\)
0.644150 + 0.764899i \(0.277211\pi\)
\(150\) −3.69109 5.58923i −0.301377 0.456359i
\(151\) −17.4552 + 6.35317i −1.42048 + 0.517014i −0.934188 0.356781i \(-0.883874\pi\)
−0.486295 + 0.873795i \(0.661652\pi\)
\(152\) 11.2027 19.4037i 0.908662 1.57385i
\(153\) 5.09473 + 16.7887i 0.411884 + 1.35728i
\(154\) 14.2155 10.4232i 1.14552 0.839922i
\(155\) 2.18059 0.793669i 0.175149 0.0637490i
\(156\) 0.0511046 + 0.213843i 0.00409164 + 0.0171212i
\(157\) −2.20209 12.4887i −0.175746 0.996704i −0.937279 0.348579i \(-0.886664\pi\)
0.761534 0.648125i \(-0.224447\pi\)
\(158\) 6.29720 5.28398i 0.500978 0.420371i
\(159\) −11.3622 + 4.92641i −0.901081 + 0.390689i
\(160\) −0.0868544 + 0.492576i −0.00686645 + 0.0389415i
\(161\) 0.748557 + 6.83534i 0.0589945 + 0.538700i
\(162\) 7.41158 10.1126i 0.582308 0.794520i
\(163\) −1.63127 2.82544i −0.127771 0.221306i 0.795042 0.606555i \(-0.207449\pi\)
−0.922813 + 0.385249i \(0.874116\pi\)
\(164\) 0.349086 + 0.292918i 0.0272590 + 0.0228730i
\(165\) −9.92293 7.35853i −0.772499 0.572861i
\(166\) −0.246889 1.40018i −0.0191623 0.108675i
\(167\) −13.5065 + 11.3333i −1.04516 + 0.876996i −0.992577 0.121620i \(-0.961191\pi\)
−0.0525869 + 0.998616i \(0.516747\pi\)
\(168\) 12.3778 4.42951i 0.954966 0.341744i
\(169\) 7.91130 2.87948i 0.608562 0.221498i
\(170\) −12.1500 −0.931864
\(171\) 6.80379 + 22.4206i 0.520299 + 1.71454i
\(172\) 0.531317 0.0405125
\(173\) 2.07208 11.7513i 0.157537 0.893438i −0.798892 0.601474i \(-0.794580\pi\)
0.956429 0.291964i \(-0.0943086\pi\)
\(174\) −7.60749 + 15.2187i −0.576722 + 1.15372i
\(175\) 5.30532 + 5.07879i 0.401045 + 0.383920i
\(176\) 3.22050 + 18.2644i 0.242754 + 1.37673i
\(177\) 0.638997 1.27830i 0.0480299 0.0960832i
\(178\) 2.53179 0.921498i 0.189766 0.0690692i
\(179\) −9.92811 −0.742062 −0.371031 0.928620i \(-0.620996\pi\)
−0.371031 + 0.928620i \(0.620996\pi\)
\(180\) −0.159249 0.212246i −0.0118697 0.0158199i
\(181\) −11.0205 + 19.0880i −0.819146 + 1.41880i 0.0871660 + 0.996194i \(0.472219\pi\)
−0.906312 + 0.422609i \(0.861114\pi\)
\(182\) 3.48905 + 7.07518i 0.258626 + 0.524447i
\(183\) −3.20987 13.4315i −0.237280 0.992882i
\(184\) −7.00624 2.55006i −0.516507 0.187993i
\(185\) −8.06511 + 6.76743i −0.592958 + 0.497551i
\(186\) 3.44466 1.49353i 0.252575 0.109511i
\(187\) 26.2827 9.56613i 1.92198 0.699545i
\(188\) −0.379995 −0.0277140
\(189\) −5.46620 + 12.6143i −0.397608 + 0.917556i
\(190\) −16.2258 −1.17714
\(191\) 4.40924 1.60483i 0.319042 0.116122i −0.177535 0.984114i \(-0.556812\pi\)
0.496577 + 0.867993i \(0.334590\pi\)
\(192\) −1.62699 + 14.1493i −0.117418 + 1.02114i
\(193\) −16.7099 + 14.0213i −1.20281 + 1.00928i −0.203262 + 0.979124i \(0.565154\pi\)
−0.999545 + 0.0301510i \(0.990401\pi\)
\(194\) −13.8502 5.04108i −0.994390 0.361928i
\(195\) 4.01424 3.80146i 0.287465 0.272228i
\(196\) −0.350144 + 0.223062i −0.0250103 + 0.0159330i
\(197\) 1.13500 1.96587i 0.0808651 0.140063i −0.822757 0.568394i \(-0.807565\pi\)
0.903622 + 0.428331i \(0.140898\pi\)
\(198\) −16.7403 10.9208i −1.18968 0.776106i
\(199\) −0.0489016 −0.00346655 −0.00173327 0.999998i \(-0.500552\pi\)
−0.00173327 + 0.999998i \(0.500552\pi\)
\(200\) −7.48332 + 2.72370i −0.529150 + 0.192595i
\(201\) −0.438310 0.663710i −0.0309160 0.0468145i
\(202\) 0.612525 + 3.47380i 0.0430971 + 0.244416i
\(203\) 4.43438 18.1214i 0.311233 1.27188i
\(204\) 0.599679 0.0360532i 0.0419859 0.00252423i
\(205\) 1.98978 11.2846i 0.138972 0.788151i
\(206\) 2.79328 0.194617
\(207\) 6.95441 3.52528i 0.483365 0.245024i
\(208\) −8.29987 −0.575492
\(209\) 35.0994 12.7752i 2.42788 0.883676i
\(210\) −7.25997 6.15903i −0.500986 0.425014i
\(211\) −6.37793 + 5.35172i −0.439075 + 0.368428i −0.835363 0.549698i \(-0.814743\pi\)
0.396288 + 0.918126i \(0.370298\pi\)
\(212\) 0.0736369 + 0.417616i 0.00505741 + 0.0286820i
\(213\) 0.853300 7.42083i 0.0584672 0.508467i
\(214\) 11.1877 + 9.38760i 0.764776 + 0.641723i
\(215\) −6.68006 11.5702i −0.455576 0.789081i
\(216\) −9.64578 11.3652i −0.656312 0.773306i
\(217\) −3.32001 + 2.43430i −0.225377 + 0.165251i
\(218\) −1.35750 + 7.69878i −0.0919417 + 0.521427i
\(219\) 0.900381 7.83027i 0.0608421 0.529121i
\(220\) −0.324045 + 0.271906i −0.0218471 + 0.0183319i
\(221\) 2.17357 + 12.3269i 0.146210 + 0.829198i
\(222\) −12.3683 + 11.7127i −0.830107 + 0.786106i
\(223\) 3.41124 1.24159i 0.228434 0.0831431i −0.225267 0.974297i \(-0.572326\pi\)
0.453701 + 0.891154i \(0.350103\pi\)
\(224\) −0.0965990 0.882080i −0.00645429 0.0589364i
\(225\) 3.26983 7.65900i 0.217989 0.510600i
\(226\) −7.65508 + 13.2590i −0.509209 + 0.881975i
\(227\) 8.50651 3.09612i 0.564597 0.205496i −0.0439233 0.999035i \(-0.513986\pi\)
0.608520 + 0.793538i \(0.291763\pi\)
\(228\) 0.800845 0.0481475i 0.0530373 0.00318864i
\(229\) 7.84521 6.58291i 0.518426 0.435011i −0.345656 0.938361i \(-0.612344\pi\)
0.864083 + 0.503350i \(0.167899\pi\)
\(230\) 0.937610 + 5.31745i 0.0618242 + 0.350622i
\(231\) 20.5539 + 7.60709i 1.35235 + 0.500510i
\(232\) 15.4962 + 13.0029i 1.01738 + 0.853680i
\(233\) −6.85759 + 11.8777i −0.449256 + 0.778133i −0.998338 0.0576349i \(-0.981644\pi\)
0.549082 + 0.835768i \(0.314977\pi\)
\(234\) 6.11401 6.52925i 0.399685 0.426830i
\(235\) 4.77755 + 8.27496i 0.311653 + 0.539799i
\(236\) −0.0374868 0.0314552i −0.00244018 0.00204756i
\(237\) 9.79668 + 2.91297i 0.636363 + 0.189218i
\(238\) 20.6941 6.03166i 1.34140 0.390975i
\(239\) 9.66912 + 3.51927i 0.625444 + 0.227643i 0.635247 0.772309i \(-0.280898\pi\)
−0.00980329 + 0.999952i \(0.503121\pi\)
\(240\) 9.19012 3.98464i 0.593220 0.257207i
\(241\) −3.78789 3.17842i −0.244000 0.204740i 0.512584 0.858637i \(-0.328688\pi\)
−0.756583 + 0.653897i \(0.773133\pi\)
\(242\) −8.26996 + 14.3240i −0.531613 + 0.920781i
\(243\) 15.5699 + 0.760777i 0.998808 + 0.0488038i
\(244\) −0.472868 −0.0302723
\(245\) 9.25974 + 4.82043i 0.591583 + 0.307966i
\(246\) 2.11786 18.4182i 0.135030 1.17430i
\(247\) 2.90271 + 16.4621i 0.184695 + 1.04746i
\(248\) −0.775146 4.39607i −0.0492218 0.279151i
\(249\) 1.28352 1.21549i 0.0813401 0.0770285i
\(250\) 12.3754 + 10.3842i 0.782688 + 0.656753i
\(251\) −2.29292 + 3.97146i −0.144728 + 0.250676i −0.929271 0.369398i \(-0.879564\pi\)
0.784543 + 0.620074i \(0.212897\pi\)
\(252\) 0.376601 + 0.282444i 0.0237236 + 0.0177923i
\(253\) −6.21484 10.7644i −0.390724 0.676753i
\(254\) 2.12855 12.0716i 0.133557 0.757439i
\(255\) −8.32467 12.6056i −0.521311 0.789394i
\(256\) 1.33638 + 0.486401i 0.0835235 + 0.0304001i
\(257\) −15.9125 + 13.3522i −0.992596 + 0.832887i −0.985941 0.167091i \(-0.946563\pi\)
−0.00665437 + 0.999978i \(0.502118\pi\)
\(258\) −11.9119 18.0376i −0.741605 1.12297i
\(259\) 10.3770 15.5302i 0.644797 0.964997i
\(260\) −0.0946542 0.163946i −0.00587021 0.0101675i
\(261\) −21.0017 + 2.53443i −1.29997 + 0.156878i
\(262\) −0.769574 1.33294i −0.0475444 0.0823494i
\(263\) 3.49710 19.8330i 0.215640 1.22296i −0.664152 0.747598i \(-0.731207\pi\)
0.879792 0.475359i \(-0.157682\pi\)
\(264\) −17.2548 + 16.3402i −1.06196 + 1.00567i
\(265\) 8.16839 6.85409i 0.501780 0.421043i
\(266\) 27.6361 8.05502i 1.69448 0.493885i
\(267\) 2.69073 + 1.99536i 0.164670 + 0.122114i
\(268\) −0.0255927 + 0.00931498i −0.00156332 + 0.000569003i
\(269\) 3.35015 5.80263i 0.204262 0.353792i −0.745635 0.666354i \(-0.767854\pi\)
0.949897 + 0.312562i \(0.101187\pi\)
\(270\) −3.63521 + 10.1648i −0.221232 + 0.618611i
\(271\) −7.25281 12.5622i −0.440577 0.763102i 0.557155 0.830408i \(-0.311893\pi\)
−0.997732 + 0.0673067i \(0.978559\pi\)
\(272\) −3.93811 + 22.3341i −0.238783 + 1.35420i
\(273\) −4.94994 + 8.46749i −0.299584 + 0.512476i
\(274\) 1.23566 + 0.449744i 0.0746490 + 0.0271700i
\(275\) −12.4754 4.54068i −0.752295 0.273813i
\(276\) −0.0620556 0.259667i −0.00373531 0.0156301i
\(277\) −2.02300 + 11.4730i −0.121550 + 0.689344i 0.861747 + 0.507338i \(0.169370\pi\)
−0.983297 + 0.182007i \(0.941741\pi\)
\(278\) 13.2049 0.791975
\(279\) 3.90966 + 2.55052i 0.234066 + 0.152696i
\(280\) −9.12849 + 6.69322i −0.545532 + 0.399996i
\(281\) −23.3996 19.6346i −1.39590 1.17130i −0.962883 0.269920i \(-0.913003\pi\)
−0.433022 0.901383i \(-0.642553\pi\)
\(282\) 8.51937 + 12.9004i 0.507321 + 0.768210i
\(283\) −19.8751 7.23396i −1.18145 0.430014i −0.324739 0.945804i \(-0.605276\pi\)
−0.856715 + 0.515789i \(0.827499\pi\)
\(284\) −0.240352 0.0874808i −0.0142622 0.00519103i
\(285\) −11.1172 16.8342i −0.658528 0.997175i
\(286\) −10.9237 9.16610i −0.645934 0.542003i
\(287\) 2.21302 + 20.2079i 0.130631 + 1.19283i
\(288\) −0.897445 + 0.454927i −0.0528825 + 0.0268068i
\(289\) 17.2018 1.01187
\(290\) 2.54387 14.4270i 0.149381 0.847182i
\(291\) −4.25949 17.8235i −0.249696 1.04483i
\(292\) −0.253613 0.0923076i −0.0148416 0.00540189i
\(293\) −10.3694 3.77415i −0.605787 0.220488i 0.0208719 0.999782i \(-0.493356\pi\)
−0.626659 + 0.779294i \(0.715578\pi\)
\(294\) 15.4228 + 6.88606i 0.899478 + 0.401603i
\(295\) −0.213674 + 1.21181i −0.0124406 + 0.0705541i
\(296\) 10.1263 + 17.5393i 0.588580 + 1.01945i
\(297\) −0.139479 24.8505i −0.00809337 1.44197i
\(298\) −0.0302742 + 0.0524364i −0.00175374 + 0.00303756i
\(299\) 5.22714 1.90252i 0.302293 0.110026i
\(300\) −0.229051 0.169857i −0.0132242 0.00980668i
\(301\) 17.1214 + 16.3903i 0.986861 + 0.944723i
\(302\) 19.8231 16.6335i 1.14069 0.957152i
\(303\) −3.18439 + 3.01559i −0.182938 + 0.173241i
\(304\) −5.25917 + 29.8262i −0.301634 + 1.71065i
\(305\) 5.94521 + 10.2974i 0.340422 + 0.589628i
\(306\) −14.6686 19.5502i −0.838547 1.11761i
\(307\) 2.00598 + 3.47446i 0.114487 + 0.198298i 0.917575 0.397563i \(-0.130144\pi\)
−0.803087 + 0.595861i \(0.796811\pi\)
\(308\) 0.416935 0.623981i 0.0237571 0.0355546i
\(309\) 1.91383 + 2.89802i 0.108874 + 0.164862i
\(310\) −2.47640 + 2.07794i −0.140650 + 0.118019i
\(311\) 5.86732 + 2.13553i 0.332705 + 0.121095i 0.502971 0.864303i \(-0.332240\pi\)
−0.170265 + 0.985398i \(0.554463\pi\)
\(312\) −5.86066 8.87449i −0.331794 0.502419i
\(313\) −3.63982 + 20.6424i −0.205735 + 1.16678i 0.690545 + 0.723290i \(0.257371\pi\)
−0.896279 + 0.443490i \(0.853740\pi\)
\(314\) 8.83310 + 15.2994i 0.498480 + 0.863393i
\(315\) 1.41576 11.7521i 0.0797689 0.662156i
\(316\) 0.174986 0.303084i 0.00984371 0.0170498i
\(317\) 14.2672 + 11.9716i 0.801324 + 0.672391i 0.948520 0.316716i \(-0.102580\pi\)
−0.147196 + 0.989107i \(0.547025\pi\)
\(318\) 12.5267 11.8627i 0.702462 0.665228i
\(319\) 5.85602 + 33.2111i 0.327874 + 1.85947i
\(320\) −2.12947 12.0768i −0.119041 0.675116i
\(321\) −2.07428 + 18.0392i −0.115775 + 1.00685i
\(322\) −4.23671 8.59130i −0.236102 0.478775i
\(323\) 45.6750 2.54143
\(324\) 0.149258 0.512484i 0.00829211 0.0284713i
\(325\) 2.97069 5.14538i 0.164784 0.285415i
\(326\) 3.48167 + 2.92147i 0.192832 + 0.161805i
\(327\) −8.91757 + 3.86647i −0.493143 + 0.213816i
\(328\) −20.7132 7.53897i −1.14369 0.416270i
\(329\) −12.2451 11.7223i −0.675097 0.646271i
\(330\) 16.4959 + 4.90494i 0.908070 + 0.270008i
\(331\) −8.87008 7.44288i −0.487544 0.409098i 0.365601 0.930772i \(-0.380863\pi\)
−0.853145 + 0.521674i \(0.825308\pi\)
\(332\) −0.0302650 0.0524206i −0.00166101 0.00287695i
\(333\) −20.6261 4.80704i −1.13031 0.263424i
\(334\) 12.2811 21.2715i 0.671991 1.16392i
\(335\) 0.524616 + 0.440205i 0.0286628 + 0.0240510i
\(336\) −13.6746 + 11.3490i −0.746012 + 0.619137i
\(337\) 4.85745 + 27.5479i 0.264602 + 1.50063i 0.770166 + 0.637843i \(0.220173\pi\)
−0.505564 + 0.862789i \(0.668716\pi\)
\(338\) −8.98451 + 7.53890i −0.488693 + 0.410062i
\(339\) −19.0011 + 1.14236i −1.03200 + 0.0620446i
\(340\) −0.486073 + 0.176916i −0.0263610 + 0.00959463i
\(341\) 3.72086 6.44473i 0.201496 0.349002i
\(342\) −19.5892 26.1084i −1.05927 1.41178i
\(343\) −18.1643 3.61340i −0.980782 0.195105i
\(344\) −24.1503 + 8.78997i −1.30209 + 0.473924i
\(345\) −4.87443 + 4.61606i −0.262431 + 0.248520i
\(346\) 2.88659 + 16.3706i 0.155184 + 0.880091i
\(347\) −2.45931 + 2.06361i −0.132023 + 0.110780i −0.706408 0.707805i \(-0.749686\pi\)
0.574385 + 0.818585i \(0.305241\pi\)
\(348\) −0.0827460 + 0.719610i −0.00443565 + 0.0385752i
\(349\) 2.39501 13.5828i 0.128202 0.727068i −0.851153 0.524918i \(-0.824096\pi\)
0.979355 0.202150i \(-0.0647929\pi\)
\(350\) −9.36491 4.12072i −0.500576 0.220262i
\(351\) 10.9631 + 1.86971i 0.585169 + 0.0997979i
\(352\) 0.802006 + 1.38912i 0.0427471 + 0.0740401i
\(353\) −1.64539 1.38064i −0.0875751 0.0734843i 0.597949 0.801534i \(-0.295982\pi\)
−0.685524 + 0.728050i \(0.740427\pi\)
\(354\) −0.227428 + 1.97785i −0.0120877 + 0.105122i
\(355\) 1.11683 + 6.33388i 0.0592754 + 0.336167i
\(356\) 0.0878690 0.0737308i 0.00465705 0.00390773i
\(357\) 20.4365 + 17.3374i 1.08162 + 0.917594i
\(358\) 12.9966 4.73039i 0.686893 0.250009i
\(359\) −0.544651 −0.0287456 −0.0143728 0.999897i \(-0.504575\pi\)
−0.0143728 + 0.999897i \(0.504575\pi\)
\(360\) 10.7498 + 7.01276i 0.566563 + 0.369605i
\(361\) 41.9970 2.21037
\(362\) 5.33186 30.2385i 0.280237 1.58930i
\(363\) −20.5273 + 1.23412i −1.07740 + 0.0647744i
\(364\) 0.242604 + 0.232246i 0.0127159 + 0.0121730i
\(365\) 1.17845 + 6.68335i 0.0616831 + 0.349822i
\(366\) 10.6016 + 16.0534i 0.554152 + 0.839124i
\(367\) 14.1305 5.14307i 0.737605 0.268466i 0.0542245 0.998529i \(-0.482731\pi\)
0.683380 + 0.730063i \(0.260509\pi\)
\(368\) 10.0784 0.525374
\(369\) 20.5599 10.4221i 1.07031 0.542552i
\(370\) 7.33338 12.7018i 0.381244 0.660335i
\(371\) −10.5099 + 15.7290i −0.545648 + 0.816611i
\(372\) 0.116060 0.109908i 0.00601741 0.00569845i
\(373\) −16.2540 5.91597i −0.841600 0.306317i −0.114989 0.993367i \(-0.536683\pi\)
−0.726611 + 0.687049i \(0.758906\pi\)
\(374\) −29.8481 + 25.0455i −1.54341 + 1.29507i
\(375\) −2.29448 + 19.9542i −0.118486 + 1.03043i
\(376\) 17.2722 6.28655i 0.890743 0.324204i
\(377\) −15.0921 −0.777284
\(378\) 1.14540 19.1175i 0.0589131 0.983298i
\(379\) −32.3988 −1.66421 −0.832107 0.554615i \(-0.812866\pi\)
−0.832107 + 0.554615i \(0.812866\pi\)
\(380\) −0.649130 + 0.236264i −0.0332997 + 0.0121201i
\(381\) 13.9826 6.06257i 0.716352 0.310595i
\(382\) −5.00738 + 4.20169i −0.256200 + 0.214977i
\(383\) 8.46130 + 3.07966i 0.432352 + 0.157363i 0.549023 0.835807i \(-0.315000\pi\)
−0.116671 + 0.993171i \(0.537222\pi\)
\(384\) −4.34175 18.1677i −0.221564 0.927118i
\(385\) −18.8301 1.23428i −0.959670 0.0629049i
\(386\) 15.1939 26.3166i 0.773349 1.33948i
\(387\) 10.5525 24.7172i 0.536411 1.25645i
\(388\) −0.627496 −0.0318563
\(389\) 21.8477 7.95190i 1.10772 0.403177i 0.277564 0.960707i \(-0.410473\pi\)
0.830157 + 0.557530i \(0.188251\pi\)
\(390\) −3.44367 + 6.88902i −0.174377 + 0.348839i
\(391\) −2.63934 14.9684i −0.133477 0.756985i
\(392\) 12.2250 15.9317i 0.617458 0.804670i
\(393\) 0.855644 1.71170i 0.0431615 0.0863441i
\(394\) −0.549127 + 3.11425i −0.0276646 + 0.156894i
\(395\) −8.80013 −0.442783
\(396\) −0.828731 0.193141i −0.0416453 0.00970568i
\(397\) −29.1889 −1.46495 −0.732475 0.680794i \(-0.761635\pi\)
−0.732475 + 0.680794i \(0.761635\pi\)
\(398\) 0.0640158 0.0232999i 0.00320882 0.00116792i
\(399\) 27.2921 + 23.1534i 1.36631 + 1.15912i
\(400\) 8.24623 6.91941i 0.412311 0.345970i
\(401\) −5.16132 29.2713i −0.257744 1.46174i −0.788930 0.614484i \(-0.789364\pi\)
0.531186 0.847255i \(-0.321747\pi\)
\(402\) 0.890014 + 0.660006i 0.0443899 + 0.0329181i
\(403\) 2.55121 + 2.14072i 0.127085 + 0.106637i
\(404\) 0.0750867 + 0.130054i 0.00373570 + 0.00647042i
\(405\) −13.0367 + 3.19297i −0.647797 + 0.158660i
\(406\) 2.82927 + 25.8351i 0.140415 + 1.28218i
\(407\) −5.86290 + 33.2501i −0.290613 + 1.64815i
\(408\) −26.6611 + 11.5597i −1.31992 + 0.572290i
\(409\) 16.8366 14.1276i 0.832516 0.698564i −0.123351 0.992363i \(-0.539364\pi\)
0.955867 + 0.293799i \(0.0949196\pi\)
\(410\) 2.77194 + 15.7204i 0.136896 + 0.776377i
\(411\) 0.380014 + 1.59014i 0.0187447 + 0.0784358i
\(412\) 0.111748 0.0406729i 0.00550542 0.00200381i
\(413\) −0.237647 2.17004i −0.0116938 0.106781i
\(414\) −7.42416 + 7.92838i −0.364878 + 0.389658i
\(415\) −0.761024 + 1.31813i −0.0373572 + 0.0647045i
\(416\) −0.674547 + 0.245515i −0.0330724 + 0.0120374i
\(417\) 9.04740 + 13.7000i 0.443053 + 0.670892i
\(418\) −39.8609 + 33.4472i −1.94966 + 1.63596i
\(419\) −0.0110791 0.0628327i −0.000541250 0.00306958i 0.984536 0.175183i \(-0.0560516\pi\)
−0.985077 + 0.172113i \(0.944941\pi\)
\(420\) −0.380124 0.140686i −0.0185481 0.00686476i
\(421\) −29.7483 24.9618i −1.44984 1.21656i −0.932694 0.360669i \(-0.882548\pi\)
−0.517150 0.855895i \(-0.673007\pi\)
\(422\) 5.79928 10.0447i 0.282305 0.488966i
\(423\) −7.54707 + 17.6776i −0.366951 + 0.859517i
\(424\) −10.2560 17.7639i −0.498075 0.862692i
\(425\) −12.4362 10.4352i −0.603243 0.506181i
\(426\) 2.41872 + 10.1210i 0.117187 + 0.490363i
\(427\) −15.2379 14.5873i −0.737415 0.705929i
\(428\) 0.584268 + 0.212656i 0.0282416 + 0.0102791i
\(429\) 2.02533 17.6136i 0.0977840 0.850390i
\(430\) 14.2575 + 11.9634i 0.687556 + 0.576928i
\(431\) −11.4662 + 19.8600i −0.552306 + 0.956623i 0.445801 + 0.895132i \(0.352919\pi\)
−0.998108 + 0.0614907i \(0.980415\pi\)
\(432\) 17.5067 + 9.97689i 0.842290 + 0.480013i
\(433\) 24.7963 1.19163 0.595816 0.803121i \(-0.296829\pi\)
0.595816 + 0.803121i \(0.296829\pi\)
\(434\) 3.18627 4.76855i 0.152946 0.228897i
\(435\) 16.7109 7.24550i 0.801227 0.347395i
\(436\) 0.0577936 + 0.327764i 0.00276781 + 0.0156970i
\(437\) −3.52472 19.9897i −0.168610 0.956235i
\(438\) 2.55218 + 10.6794i 0.121948 + 0.510281i
\(439\) −22.8844 19.2023i −1.09221 0.916474i −0.0953345 0.995445i \(-0.530392\pi\)
−0.996877 + 0.0789711i \(0.974837\pi\)
\(440\) 10.2307 17.7200i 0.487728 0.844770i
\(441\) 3.42279 + 20.7192i 0.162990 + 0.986628i
\(442\) −8.71869 15.1012i −0.414706 0.718292i
\(443\) −2.31611 + 13.1353i −0.110042 + 0.624077i 0.879045 + 0.476739i \(0.158181\pi\)
−0.989086 + 0.147337i \(0.952930\pi\)
\(444\) −0.324258 + 0.648673i −0.0153886 + 0.0307847i
\(445\) −2.71034 0.986484i −0.128483 0.0467638i
\(446\) −3.87399 + 3.25067i −0.183439 + 0.153924i
\(447\) −0.0751452 + 0.00451779i −0.00355424 + 0.000213684i
\(448\) 9.62229 + 19.5123i 0.454610 + 0.921870i
\(449\) 0.345536 + 0.598487i 0.0163069 + 0.0282443i 0.874064 0.485811i \(-0.161476\pi\)
−0.857757 + 0.514056i \(0.828142\pi\)
\(450\) −0.631217 + 11.5842i −0.0297559 + 0.546082i
\(451\) −18.3735 31.8238i −0.865173 1.49852i
\(452\) −0.113185 + 0.641904i −0.00532378 + 0.0301926i
\(453\) 30.8392 + 9.16981i 1.44895 + 0.430835i
\(454\) −9.66046 + 8.10609i −0.453388 + 0.380438i
\(455\) 2.00731 8.20301i 0.0941040 0.384563i
\(456\) −35.6048 + 15.4375i −1.66735 + 0.722926i
\(457\) 12.0285 4.37800i 0.562668 0.204794i −0.0449982 0.998987i \(-0.514328\pi\)
0.607666 + 0.794193i \(0.292106\pi\)
\(458\) −7.13344 + 12.3555i −0.333324 + 0.577334i
\(459\) 10.2330 28.6135i 0.477634 1.33557i
\(460\) 0.114937 + 0.199077i 0.00535898 + 0.00928203i
\(461\) 4.76655 27.0325i 0.222000 1.25903i −0.646337 0.763052i \(-0.723700\pi\)
0.868337 0.495974i \(-0.165189\pi\)
\(462\) −30.5310 0.165062i −1.42043 0.00767939i
\(463\) 23.7421 + 8.64141i 1.10339 + 0.401600i 0.828564 0.559894i \(-0.189158\pi\)
0.274824 + 0.961495i \(0.411380\pi\)
\(464\) −25.6951 9.35225i −1.19287 0.434167i
\(465\) −3.85258 1.14554i −0.178659 0.0531230i
\(466\) 3.31780 18.8162i 0.153694 0.871642i
\(467\) −2.41125 −0.111579 −0.0557897 0.998443i \(-0.517768\pi\)
−0.0557897 + 0.998443i \(0.517768\pi\)
\(468\) 0.149525 0.350235i 0.00691178 0.0161896i
\(469\) −1.11206 0.489327i −0.0513504 0.0225950i
\(470\) −10.1969 8.55620i −0.470347 0.394668i
\(471\) −9.82100 + 19.6468i −0.452528 + 0.905276i
\(472\) 2.22430 + 0.809578i 0.102382 + 0.0372639i
\(473\) −40.2608 14.6537i −1.85119 0.673779i
\(474\) −14.2125 + 0.854467i −0.652802 + 0.0392470i
\(475\) −16.6080 13.9358i −0.762026 0.639416i
\(476\) 0.740060 0.542629i 0.0339206 0.0248713i
\(477\) 20.8903 + 4.86860i 0.956500 + 0.222918i
\(478\) −14.3344 −0.655640
\(479\) 1.30209 7.38454i 0.0594941 0.337408i −0.940503 0.339785i \(-0.889646\pi\)
0.999997 + 0.00237724i \(0.000756698\pi\)
\(480\) 0.629031 0.595688i 0.0287112 0.0271893i
\(481\) −14.1986 5.16788i −0.647402 0.235635i
\(482\) 6.47303 + 2.35599i 0.294838 + 0.107312i
\(483\) 6.01064 10.2820i 0.273494 0.467845i
\(484\) −0.122276 + 0.693464i −0.00555802 + 0.0315211i
\(485\) 7.88928 + 13.6646i 0.358234 + 0.620479i
\(486\) −20.7446 + 6.42257i −0.940994 + 0.291334i
\(487\) −6.59719 + 11.4267i −0.298947 + 0.517792i −0.975895 0.218239i \(-0.929969\pi\)
0.676948 + 0.736031i \(0.263302\pi\)
\(488\) 21.4936 7.82302i 0.972968 0.354131i
\(489\) −0.645525 + 5.61389i −0.0291917 + 0.253869i
\(490\) −14.4184 1.89837i −0.651359 0.0857597i
\(491\) −17.6183 + 14.7835i −0.795104 + 0.667171i −0.947003 0.321225i \(-0.895905\pi\)
0.151899 + 0.988396i \(0.451461\pi\)
\(492\) −0.183460 0.767676i −0.00827103 0.0346095i
\(493\) −7.16088 + 40.6114i −0.322510 + 1.82904i
\(494\) −11.6434 20.1670i −0.523863 0.907357i
\(495\) 6.21342 + 20.4751i 0.279273 + 0.920288i
\(496\) 3.01701 + 5.22561i 0.135468 + 0.234637i
\(497\) −5.04655 10.2335i −0.226369 0.459036i
\(498\) −1.10109 + 2.20272i −0.0493411 + 0.0987062i
\(499\) 14.3591 12.0488i 0.642803 0.539376i −0.262074 0.965048i \(-0.584407\pi\)
0.904878 + 0.425672i \(0.139962\pi\)
\(500\) 0.646293 + 0.235231i 0.0289031 + 0.0105199i
\(501\) 30.4836 1.83270i 1.36191 0.0818788i
\(502\) 1.10935 6.29143i 0.0495127 0.280800i
\(503\) 9.60239 + 16.6318i 0.428149 + 0.741576i 0.996709 0.0810660i \(-0.0258324\pi\)
−0.568560 + 0.822642i \(0.692499\pi\)
\(504\) −21.7905 6.60769i −0.970628 0.294330i
\(505\) 1.88808 3.27025i 0.0840183 0.145524i
\(506\) 13.2645 + 11.1303i 0.589681 + 0.494801i
\(507\) −13.9774 4.15608i −0.620758 0.184578i
\(508\) −0.0906196 0.513929i −0.00402059 0.0228019i
\(509\) 0.475326 + 2.69571i 0.0210685 + 0.119485i 0.993528 0.113586i \(-0.0362337\pi\)
−0.972460 + 0.233071i \(0.925123\pi\)
\(510\) 16.9037 + 12.5353i 0.748509 + 0.555071i
\(511\) −5.32499 10.7981i −0.235564 0.477682i
\(512\) −23.5502 −1.04078
\(513\) 13.6657 38.2121i 0.603355 1.68711i
\(514\) 14.4688 25.0607i 0.638193 1.10538i
\(515\) −2.29068 1.92211i −0.100939 0.0846981i
\(516\) −0.739195 0.548164i −0.0325412 0.0241316i
\(517\) 28.7943 + 10.4803i 1.26637 + 0.460922i
\(518\) −6.18474 + 25.2744i −0.271742 + 1.11049i
\(519\) −15.0067 + 14.2113i −0.658722 + 0.623806i
\(520\) 7.01466 + 5.88599i 0.307613 + 0.258118i
\(521\) 15.5604 + 26.9514i 0.681714 + 1.18076i 0.974457 + 0.224573i \(0.0720986\pi\)
−0.292743 + 0.956191i \(0.594568\pi\)
\(522\) 26.2851 13.3243i 1.15047 0.583188i
\(523\) −5.71752 + 9.90304i −0.250010 + 0.433030i −0.963528 0.267607i \(-0.913767\pi\)
0.713518 + 0.700637i \(0.247101\pi\)
\(524\) −0.0501965 0.0421199i −0.00219284 0.00184001i
\(525\) −2.14120 12.5394i −0.0934497 0.547265i
\(526\) 4.87176 + 27.6291i 0.212419 + 1.20469i
\(527\) 6.97095 5.84932i 0.303660 0.254801i
\(528\) 14.3630 28.7329i 0.625068 1.25044i
\(529\) 15.2657 5.55625i 0.663725 0.241576i
\(530\) −7.42729 + 12.8645i −0.322621 + 0.558796i
\(531\) −2.20784 + 1.11918i −0.0958122 + 0.0485685i
\(532\) 0.988318 0.724657i 0.0428490 0.0314179i
\(533\) 15.4534 5.62459i 0.669363 0.243628i
\(534\) −4.47308 1.33004i −0.193569 0.0575564i
\(535\) −2.71490 15.3969i −0.117375 0.665668i
\(536\) 1.00918 0.846799i 0.0435898 0.0365761i
\(537\) 13.8125 + 10.2429i 0.596053 + 0.442014i
\(538\) −1.62085 + 9.19229i −0.0698797 + 0.396308i
\(539\) 32.6844 7.24562i 1.40782 0.312091i
\(540\) 0.00257952 + 0.459586i 0.000111005 + 0.0197774i
\(541\) 7.51932 + 13.0238i 0.323281 + 0.559939i 0.981163 0.193182i \(-0.0618808\pi\)
−0.657882 + 0.753121i \(0.728547\pi\)
\(542\) 15.4799 + 12.9892i 0.664919 + 0.557934i
\(543\) 35.0255 15.1863i 1.50309 0.651708i
\(544\) 0.340598 + 1.93163i 0.0146030 + 0.0828179i
\(545\) 6.41092 5.37940i 0.274614 0.230428i
\(546\) 2.44538 13.4430i 0.104653 0.575309i
\(547\) 39.8368 14.4994i 1.70330 0.619950i 0.707105 0.707109i \(-0.250001\pi\)
0.996194 + 0.0871585i \(0.0277787\pi\)
\(548\) 0.0559825 0.00239145
\(549\) −9.39162 + 21.9982i −0.400824 + 0.938859i
\(550\) 18.4947 0.788616
\(551\) −9.56305 + 54.2347i −0.407400 + 2.31048i
\(552\) 7.11652 + 10.7762i 0.302899 + 0.458665i
\(553\) 14.9885 4.36867i 0.637376 0.185775i
\(554\) −2.81821 15.9829i −0.119734 0.679046i
\(555\) 18.2026 1.09435i 0.772657 0.0464528i
\(556\) 0.528273 0.192276i 0.0224038 0.00815431i
\(557\) −30.2590 −1.28211 −0.641056 0.767494i \(-0.721504\pi\)
−0.641056 + 0.767494i \(0.721504\pi\)
\(558\) −6.33327 1.47601i −0.268109 0.0624843i
\(559\) 9.58704 16.6052i 0.405489 0.702327i
\(560\) 8.50077 12.7222i 0.359223 0.537609i
\(561\) −46.4353 13.8072i −1.96050 0.582941i
\(562\) 39.9870 + 14.5541i 1.68675 + 0.613927i
\(563\) −26.0504 + 21.8589i −1.09789 + 0.921242i −0.997282 0.0736839i \(-0.976524\pi\)
−0.100612 + 0.994926i \(0.532080\pi\)
\(564\) 0.528669 + 0.392044i 0.0222610 + 0.0165080i
\(565\) 15.4015 5.60567i 0.647944 0.235832i
\(566\) 29.4647 1.23850
\(567\) 20.6191 11.9101i 0.865922 0.500179i
\(568\) 12.3721 0.519122
\(569\) −22.0584 + 8.02861i −0.924737 + 0.336577i −0.760122 0.649781i \(-0.774861\pi\)
−0.164616 + 0.986358i \(0.552638\pi\)
\(570\) 22.5742 + 16.7403i 0.945529 + 0.701174i
\(571\) 2.82552 2.37090i 0.118244 0.0992189i −0.581748 0.813369i \(-0.697631\pi\)
0.699993 + 0.714150i \(0.253187\pi\)
\(572\) −0.570482 0.207638i −0.0238530 0.00868180i
\(573\) −7.79008 2.31632i −0.325435 0.0967659i
\(574\) −12.5253 25.3992i −0.522798 1.06014i
\(575\) −3.60727 + 6.24797i −0.150433 + 0.260558i
\(576\) 16.8615 18.0067i 0.702564 0.750279i
\(577\) 35.8996 1.49452 0.747259 0.664533i \(-0.231369\pi\)
0.747259 + 0.664533i \(0.231369\pi\)
\(578\) −22.5184 + 8.19604i −0.936643 + 0.340910i
\(579\) 37.7136 2.26737i 1.56732 0.0942288i
\(580\) −0.108301 0.614207i −0.00449696 0.0255036i
\(581\) 0.641823 2.62286i 0.0266273 0.108814i
\(582\) 14.0682 + 21.3028i 0.583148 + 0.883030i
\(583\) 5.93798 33.6759i 0.245926 1.39472i
\(584\) 13.0547 0.540209
\(585\) −9.50680 + 1.14726i −0.393058 + 0.0474334i
\(586\) 15.3726 0.635034
\(587\) −23.9743 + 8.72592i −0.989524 + 0.360157i −0.785536 0.618816i \(-0.787613\pi\)
−0.203988 + 0.978973i \(0.565390\pi\)
\(588\) 0.717273 + 0.0509121i 0.0295799 + 0.00209958i
\(589\) 9.30941 7.81152i 0.383587 0.321868i
\(590\) −0.297667 1.68815i −0.0122547 0.0695001i
\(591\) −3.60727 + 1.56404i −0.148383 + 0.0643358i
\(592\) −20.9715 17.5971i −0.861922 0.723238i
\(593\) 7.52044 + 13.0258i 0.308828 + 0.534905i 0.978106 0.208106i \(-0.0667301\pi\)
−0.669279 + 0.743012i \(0.733397\pi\)
\(594\) 12.0230 + 32.4647i 0.493308 + 1.33204i
\(595\) −21.1211 9.29361i −0.865879 0.381001i
\(596\) −0.000447622 0.00253859i −1.83353e−5 0.000103985i
\(597\) 0.0680344 + 0.0504522i 0.00278446 + 0.00206487i
\(598\) −5.93623 + 4.98109i −0.242750 + 0.203692i
\(599\) 0.386535 + 2.19215i 0.0157934 + 0.0895688i 0.991686 0.128684i \(-0.0410753\pi\)
−0.975892 + 0.218253i \(0.929964\pi\)
\(600\) 13.2212 + 3.93124i 0.539755 + 0.160492i
\(601\) 19.6594 7.15543i 0.801923 0.291876i 0.0916402 0.995792i \(-0.470789\pi\)
0.710283 + 0.703916i \(0.248567\pi\)
\(602\) −30.2226 13.2984i −1.23178 0.542004i
\(603\) −0.0749558 + 1.37560i −0.00305244 + 0.0560186i
\(604\) 0.550841 0.954084i 0.0224134 0.0388211i
\(605\) 16.6385 6.05593i 0.676453 0.246209i
\(606\) 2.73177 5.46488i 0.110971 0.221996i
\(607\) 9.78791 8.21303i 0.397279 0.333357i −0.422162 0.906521i \(-0.638729\pi\)
0.819441 + 0.573164i \(0.194284\pi\)
\(608\) 0.454854 + 2.57961i 0.0184468 + 0.104617i
\(609\) −24.8654 + 20.6365i −1.00760 + 0.836232i
\(610\) −12.6891 10.6474i −0.513765 0.431100i
\(611\) −6.85661 + 11.8760i −0.277389 + 0.480451i
\(612\) −0.871500 0.568535i −0.0352283 0.0229817i
\(613\) −7.87511 13.6401i −0.318073 0.550918i 0.662013 0.749492i \(-0.269702\pi\)
−0.980086 + 0.198574i \(0.936369\pi\)
\(614\) −4.28144 3.59255i −0.172785 0.144984i
\(615\) −14.4107 + 13.6468i −0.581096 + 0.550294i
\(616\) −8.62822 + 35.2599i −0.347641 + 1.42066i
\(617\) 1.10667 + 0.402796i 0.0445529 + 0.0162159i 0.364200 0.931321i \(-0.381342\pi\)
−0.319648 + 0.947537i \(0.603565\pi\)
\(618\) −3.88615 2.88185i −0.156324 0.115925i
\(619\) 3.45184 + 2.89643i 0.138741 + 0.116418i 0.709517 0.704688i \(-0.248913\pi\)
−0.570776 + 0.821106i \(0.693358\pi\)
\(620\) −0.0688137 + 0.119189i −0.00276363 + 0.00478674i
\(621\) −13.3124 2.27037i −0.534208 0.0911067i
\(622\) −8.69826 −0.348769
\(623\) 5.10602 + 0.334692i 0.204568 + 0.0134091i
\(624\) 11.5472 + 8.56304i 0.462258 + 0.342796i
\(625\) −0.592932 3.36268i −0.0237173 0.134507i
\(626\) −5.07058 28.7567i −0.202661 1.14935i
\(627\) −62.0124 18.4389i −2.47654 0.736380i
\(628\) 0.576150 + 0.483448i 0.0229909 + 0.0192917i
\(629\) −20.6432 + 35.7550i −0.823097 + 1.42565i
\(630\) 3.74612 + 16.0589i 0.149249 + 0.639803i
\(631\) −1.35722 2.35078i −0.0540302 0.0935831i 0.837745 0.546061i \(-0.183873\pi\)
−0.891776 + 0.452478i \(0.850540\pi\)
\(632\) −2.93958 + 16.6712i −0.116930 + 0.663144i
\(633\) 14.3947 0.865422i 0.572139 0.0343974i
\(634\) −24.3808 8.87389i −0.968285 0.352427i
\(635\) −10.0522 + 8.43483i −0.398911 + 0.334726i
\(636\) 0.328410 0.656980i 0.0130223 0.0260510i
\(637\) 0.653366 + 14.9680i 0.0258873 + 0.593053i
\(638\) −23.4899 40.6856i −0.929972 1.61076i
\(639\) −8.84328 + 9.44387i −0.349835 + 0.373594i
\(640\) 8.04164 + 13.9285i 0.317874 + 0.550574i
\(641\) −0.956914 + 5.42693i −0.0377958 + 0.214351i −0.997856 0.0654414i \(-0.979154\pi\)
0.960061 + 0.279792i \(0.0902656\pi\)
\(642\) −5.87964 24.6029i −0.232051 0.971001i
\(643\) −1.96919 + 1.65235i −0.0776575 + 0.0651623i −0.680790 0.732479i \(-0.738363\pi\)
0.603133 + 0.797641i \(0.293919\pi\)
\(644\) −0.294591 0.282013i −0.0116085 0.0111129i
\(645\) −2.64343 + 22.9889i −0.104085 + 0.905188i
\(646\) −59.7920 + 21.7625i −2.35248 + 0.856234i
\(647\) 15.2410 26.3983i 0.599187 1.03782i −0.393754 0.919216i \(-0.628824\pi\)
0.992941 0.118607i \(-0.0378429\pi\)
\(648\) 1.69410 + 25.7635i 0.0665505 + 1.01209i
\(649\) 1.97305 + 3.41742i 0.0774489 + 0.134145i
\(650\) −1.43726 + 8.15111i −0.0563740 + 0.319713i
\(651\) 7.13045 + 0.0385499i 0.279464 + 0.00151089i
\(652\) 0.181827 + 0.0661796i 0.00712090 + 0.00259179i
\(653\) 44.3248 + 16.1329i 1.73456 + 0.631330i 0.998939 0.0460589i \(-0.0146662\pi\)
0.735625 + 0.677389i \(0.236888\pi\)
\(654\) 9.83152 9.31039i 0.384443 0.364065i
\(655\) −0.286119 + 1.62266i −0.0111796 + 0.0634026i
\(656\) 29.7957 1.16333
\(657\) −9.33121 + 9.96494i −0.364045 + 0.388769i
\(658\) 21.6150 + 9.51098i 0.842642 + 0.370777i
\(659\) −8.99638 7.54886i −0.350449 0.294062i 0.450521 0.892766i \(-0.351238\pi\)
−0.800970 + 0.598704i \(0.795683\pi\)
\(660\) 0.731356 0.0439697i 0.0284680 0.00171152i
\(661\) −25.1459 9.15236i −0.978062 0.355986i −0.196976 0.980408i \(-0.563112\pi\)
−0.781087 + 0.624423i \(0.785334\pi\)
\(662\) 15.1579 + 5.51701i 0.589127 + 0.214425i
\(663\) 9.69380 19.3923i 0.376476 0.753135i
\(664\) 2.24289 + 1.88201i 0.0870409 + 0.0730360i
\(665\) −28.2063 12.4112i −1.09379 0.481286i
\(666\) 29.2915 3.53484i 1.13502 0.136972i
\(667\) 18.3262 0.709592
\(668\) 0.181583 1.02981i 0.00702567 0.0398446i
\(669\) −6.02685 1.79204i −0.233012 0.0692844i
\(670\) −0.896502 0.326300i −0.0346349 0.0126061i
\(671\) 35.8318 + 13.0417i 1.38327 + 0.503470i
\(672\) −0.775655 + 1.32686i −0.0299215 + 0.0511846i
\(673\) −1.93416 + 10.9692i −0.0745564 + 0.422830i 0.924569 + 0.381015i \(0.124425\pi\)
−0.999125 + 0.0418154i \(0.986686\pi\)
\(674\) −19.4844 33.7479i −0.750509 1.29992i
\(675\) −12.4510 + 7.28208i −0.479240 + 0.280287i
\(676\) −0.249660 + 0.432424i −0.00960232 + 0.0166317i
\(677\) −10.3039 + 3.75031i −0.396011 + 0.144136i −0.532347 0.846526i \(-0.678690\pi\)
0.136336 + 0.990663i \(0.456467\pi\)
\(678\) 24.3295 10.5488i 0.934371 0.405123i
\(679\) −20.2207 19.3573i −0.776000 0.742866i
\(680\) 19.1669 16.0830i 0.735018 0.616753i
\(681\) −15.0290 4.46876i −0.575912 0.171243i
\(682\) −1.80021 + 10.2095i −0.0689335 + 0.390941i
\(683\) 7.29090 + 12.6282i 0.278978 + 0.483205i 0.971131 0.238546i \(-0.0766708\pi\)
−0.692153 + 0.721751i \(0.743338\pi\)
\(684\) −1.16385 0.759253i −0.0445010 0.0290308i
\(685\) −0.703849 1.21910i −0.0268927 0.0465795i
\(686\) 25.5001 3.92445i 0.973599 0.149836i
\(687\) −17.7063 + 1.06452i −0.675538 + 0.0406139i
\(688\) 26.6123 22.3304i 1.01459 0.851338i
\(689\) 14.3805 + 5.23406i 0.547852 + 0.199402i
\(690\) 4.18161 8.36525i 0.159191 0.318460i
\(691\) −8.20271 + 46.5199i −0.312046 + 1.76970i 0.276282 + 0.961077i \(0.410898\pi\)
−0.588328 + 0.808623i \(0.700213\pi\)
\(692\) 0.353853 + 0.612892i 0.0134515 + 0.0232986i
\(693\) −20.7473 31.7890i −0.788125 1.20756i
\(694\) 2.23619 3.87319i 0.0848845 0.147024i
\(695\) −10.8289 9.08651i −0.410763 0.344671i
\(696\) −8.14396 34.0778i −0.308696 1.29172i
\(697\) −7.80289 44.2524i −0.295556 1.67618i
\(698\) 3.33645 + 18.9220i 0.126287 + 0.716207i
\(699\) 21.7949 9.44982i 0.824360 0.357425i
\(700\) −0.434654 0.0284909i −0.0164284 0.00107686i
\(701\) −36.9374 −1.39511 −0.697553 0.716533i \(-0.745728\pi\)
−0.697553 + 0.716533i \(0.745728\pi\)
\(702\) −15.2424 + 2.77594i −0.575287 + 0.104771i
\(703\) −27.5681 + 47.7493i −1.03975 + 1.80090i
\(704\) −30.1260 25.2787i −1.13542 0.952729i
\(705\) 1.89057 16.4416i 0.0712030 0.619226i
\(706\) 2.81176 + 1.02340i 0.105822 + 0.0385161i
\(707\) −1.59234 + 6.50723i −0.0598862 + 0.244730i
\(708\) 0.0197010 + 0.0824375i 0.000740410 + 0.00309819i
\(709\) 20.5181 + 17.2167i 0.770573 + 0.646587i 0.940856 0.338808i \(-0.110024\pi\)
−0.170283 + 0.985395i \(0.554468\pi\)
\(710\) −4.47988 7.75938i −0.168127 0.291204i
\(711\) −10.6243 14.1600i −0.398442 0.531041i
\(712\) −2.77418 + 4.80501i −0.103967 + 0.180076i
\(713\) −3.09790 2.59945i −0.116017 0.0973501i
\(714\) −35.0136 12.9587i −1.31035 0.484967i
\(715\) 2.65084 + 15.0336i 0.0991357 + 0.562226i
\(716\) 0.451064 0.378487i 0.0168570 0.0141447i
\(717\) −9.82131 14.8719i −0.366784 0.555401i
\(718\) 0.712989 0.259507i 0.0266085 0.00968470i
\(719\) 0.376366 0.651884i 0.0140361 0.0243112i −0.858922 0.512106i \(-0.828865\pi\)
0.872958 + 0.487795i \(0.162199\pi\)
\(720\) −16.8967 3.93789i −0.629704 0.146756i
\(721\) 4.85571 + 2.13659i 0.180836 + 0.0795709i
\(722\) −54.9772 + 20.0101i −2.04604 + 0.744697i
\(723\) 1.99071 + 8.32997i 0.0740352 + 0.309795i
\(724\) −0.226996 1.28736i −0.00843624 0.0478443i
\(725\) 14.9946 12.5819i 0.556885 0.467282i
\(726\) 26.2838 11.3961i 0.975482 0.422948i
\(727\) −7.84405 + 44.4858i −0.290920 + 1.64989i 0.392419 + 0.919786i \(0.371638\pi\)
−0.683339 + 0.730101i \(0.739473\pi\)
\(728\) −14.8695 6.54281i −0.551099 0.242493i
\(729\) −20.8767 17.1220i −0.773212 0.634148i
\(730\) −4.72706 8.18750i −0.174956 0.303033i
\(731\) −40.1342 33.6766i −1.48442 1.24557i
\(732\) 0.657879 + 0.487862i 0.0243159 + 0.0180319i
\(733\) −6.07259 34.4394i −0.224296 1.27205i −0.864026 0.503447i \(-0.832065\pi\)
0.639730 0.768600i \(-0.279046\pi\)
\(734\) −16.0473 + 13.4653i −0.592318 + 0.497014i
\(735\) −7.90934 16.2598i −0.291740 0.599751i
\(736\) 0.819093 0.298125i 0.0301922 0.0109890i
\(737\) 2.19621 0.0808983
\(738\) −21.9487 + 23.4393i −0.807942 + 0.862814i
\(739\) −31.2474 −1.14945 −0.574727 0.818345i \(-0.694892\pi\)
−0.574727 + 0.818345i \(0.694892\pi\)
\(740\) 0.108429 0.614929i 0.00398591 0.0226052i
\(741\) 12.9457 25.8976i 0.475570 0.951372i
\(742\) 6.26394 25.5981i 0.229957 0.939735i
\(743\) 9.21125 + 52.2396i 0.337928 + 1.91649i 0.396159 + 0.918182i \(0.370343\pi\)
−0.0582305 + 0.998303i \(0.518546\pi\)
\(744\) −3.45704 + 6.91576i −0.126741 + 0.253544i
\(745\) 0.0609093 0.0221692i 0.00223155 0.000812216i
\(746\) 24.0964 0.882233
\(747\) −3.03973 + 0.366828i −0.111218 + 0.0134216i
\(748\) −0.829415 + 1.43659i −0.0303264 + 0.0525269i
\(749\) 12.2676 + 24.8765i 0.448248 + 0.908968i
\(750\) −6.50382 27.2148i −0.237486 0.993743i
\(751\) 23.0941 + 8.40556i 0.842715 + 0.306723i 0.727067 0.686567i \(-0.240883\pi\)
0.115649 + 0.993290i \(0.463105\pi\)
\(752\) −19.0330 + 15.9706i −0.694063 + 0.582388i
\(753\) 7.28742 3.15967i 0.265568 0.115145i
\(754\) 19.7567 7.19085i 0.719497 0.261875i
\(755\) −27.7021 −1.00818
\(756\) −0.232547 0.781492i −0.00845764 0.0284226i
\(757\) −36.7061 −1.33411 −0.667054 0.745010i \(-0.732445\pi\)
−0.667054 + 0.745010i \(0.732445\pi\)
\(758\) 42.4124 15.4369i 1.54049 0.560692i
\(759\) −2.45934 + 21.3879i −0.0892682 + 0.776332i
\(760\) 25.5966 21.4781i 0.928486 0.779092i
\(761\) 11.5697 + 4.21104i 0.419403 + 0.152650i 0.543096 0.839670i \(-0.317252\pi\)
−0.123694 + 0.992320i \(0.539474\pi\)
\(762\) −15.4157 + 14.5986i −0.558452 + 0.528850i
\(763\) −8.24866 + 12.3449i −0.298622 + 0.446914i
\(764\) −0.139144 + 0.241005i −0.00503406 + 0.00871925i
\(765\) −1.42361 + 26.1262i −0.0514707 + 0.944595i
\(766\) −12.5438 −0.453226
\(767\) −1.65948 + 0.604001i