Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(25,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([10, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.w (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −2.58171 | + | 0.939667i | −1.71864 | + | 0.215106i | 4.25019 | − | 3.56633i | 0.335317 | + | 0.122045i | 4.23491 | − | 2.17029i | −0.921726 | + | 2.48000i | −4.87420 | + | 8.44237i | 2.90746 | − | 0.739379i | −0.980375 | ||
25.2 | −2.28724 | + | 0.832486i | 1.36942 | − | 1.06052i | 3.00633 | − | 2.52261i | 4.14290 | + | 1.50789i | −2.24932 | + | 3.56567i | −1.33708 | − | 2.28303i | −2.34212 | + | 4.05668i | 0.750612 | − | 2.90458i | −10.7311 | ||
25.3 | −2.11851 | + | 0.771075i | 1.70797 | + | 0.287798i | 2.36145 | − | 1.98149i | −1.51793 | − | 0.552482i | −3.84028 | + | 0.707271i | 2.02397 | + | 1.70398i | −1.22040 | + | 2.11380i | 2.83434 | + | 0.983104i | 3.64176 | ||
25.4 | −2.06527 | + | 0.751697i | −0.131292 | + | 1.72707i | 2.16820 | − | 1.81934i | −1.77012 | − | 0.644271i | −1.02708 | − | 3.66555i | −0.610341 | − | 2.57439i | −0.912517 | + | 1.58053i | −2.96552 | − | 0.453502i | 4.14007 | ||
25.5 | −1.47150 | + | 0.535583i | 0.0586596 | + | 1.73106i | 0.346382 | − | 0.290649i | 3.26769 | + | 1.18934i | −1.01344 | − | 2.51584i | −0.172863 | + | 2.64010i | 1.21191 | − | 2.09908i | −2.99312 | + | 0.203086i | −5.44540 | ||
25.6 | −1.36957 | + | 0.498483i | 0.717145 | − | 1.57661i | 0.0951481 | − | 0.0798388i | −1.88092 | − | 0.684598i | −0.196268 | + | 2.51676i | −1.86025 | + | 1.88135i | 1.36695 | − | 2.36763i | −1.97140 | − | 2.26132i | 2.91731 | ||
25.7 | −1.30907 | + | 0.476464i | −1.39125 | − | 1.03171i | −0.0454330 | + | 0.0381228i | 1.40139 | + | 0.510065i | 2.31282 | + | 0.687701i | −2.64009 | − | 0.173054i | 1.43440 | − | 2.48445i | 0.871157 | + | 2.87073i | −2.07755 | ||
25.8 | −0.928908 | + | 0.338095i | −1.69366 | + | 0.362654i | −0.783527 | + | 0.657458i | −3.08847 | − | 1.12411i | 1.45064 | − | 0.909490i | 2.54716 | + | 0.715520i | 1.49406 | − | 2.58780i | 2.73696 | − | 1.22843i | 3.24896 | ||
25.9 | −0.606828 | + | 0.220867i | 1.44289 | + | 0.958162i | −1.21263 | + | 1.01752i | 1.46866 | + | 0.534550i | −1.08721 | − | 0.262753i | 1.88474 | − | 1.85681i | 1.15690 | − | 2.00380i | 1.16385 | + | 2.76504i | −1.00929 | ||
25.10 | −0.332947 | + | 0.121183i | −1.35881 | + | 1.07408i | −1.43592 | + | 1.20488i | 0.672463 | + | 0.244756i | 0.322250 | − | 0.522275i | −2.22176 | − | 1.43659i | 0.686389 | − | 1.18886i | 0.692708 | − | 2.91893i | −0.253554 | ||
25.11 | −0.328890 | + | 0.119706i | 0.434559 | − | 1.67665i | −1.43825 | + | 1.20683i | 2.13988 | + | 0.778854i | 0.0577835 | + | 0.603453i | 2.62809 | + | 0.305198i | 0.678558 | − | 1.17530i | −2.62232 | − | 1.45721i | −0.797020 | ||
25.12 | 0.0303128 | − | 0.0110329i | 0.919170 | + | 1.46804i | −1.53129 | + | 1.28491i | −3.70820 | − | 1.34968i | 0.0440593 | + | 0.0343591i | −2.47092 | + | 0.945798i | −0.0644996 | + | 0.111717i | −1.31025 | + | 2.69875i | −0.127297 | ||
25.13 | 0.456477 | − | 0.166144i | 1.72709 | − | 0.131048i | −1.35132 | + | 1.13389i | 1.44421 | + | 0.525651i | 0.766603 | − | 0.346766i | −1.09247 | + | 2.40967i | −0.914231 | + | 1.58349i | 2.96565 | − | 0.452662i | 0.746585 | ||
25.14 | 0.562011 | − | 0.204555i | −0.692899 | − | 1.58742i | −1.25807 | + | 1.05565i | −2.61250 | − | 0.950872i | −0.714132 | − | 0.750410i | −0.229775 | − | 2.63575i | −1.08919 | + | 1.88654i | −2.03978 | + | 2.19984i | −1.66276 | ||
25.15 | 1.00414 | − | 0.365478i | −0.803391 | + | 1.53446i | −0.657360 | + | 0.551590i | 0.354797 | + | 0.129136i | −0.245908 | + | 1.83444i | 1.55771 | + | 2.13859i | −1.52708 | + | 2.64497i | −1.70913 | − | 2.46554i | 0.403463 | ||
25.16 | 1.17974 | − | 0.429388i | −1.72810 | − | 0.116945i | −0.324689 | + | 0.272446i | 3.35074 | + | 1.21957i | −2.08891 | + | 0.604061i | 1.13056 | − | 2.39204i | −1.52151 | + | 2.63533i | 2.97265 | + | 0.404186i | 4.47665 | ||
25.17 | 1.45469 | − | 0.529465i | 1.56527 | − | 0.741574i | 0.303710 | − | 0.254843i | 0.0676746 | + | 0.0246315i | 1.88435 | − | 1.90752i | −1.36843 | − | 2.26438i | −1.24118 | + | 2.14978i | 1.90014 | − | 2.32153i | 0.111487 | ||
25.18 | 1.68235 | − | 0.612324i | 1.10447 | + | 1.33422i | 0.923259 | − | 0.774706i | −1.38133 | − | 0.502765i | 2.67508 | + | 1.56832i | 2.29659 | − | 1.31364i | −0.711445 | + | 1.23226i | −0.560272 | + | 2.94722i | −2.63174 | ||
25.19 | 1.90772 | − | 0.694353i | 0.482660 | − | 1.66344i | 1.62518 | − | 1.36369i | −2.38896 | − | 0.869509i | −0.234236 | − | 3.50852i | 1.31108 | + | 2.29806i | 0.123353 | − | 0.213653i | −2.53408 | − | 1.60575i | −5.16121 | ||
25.20 | 2.03199 | − | 0.739583i | −0.528499 | − | 1.64945i | 2.04991 | − | 1.72008i | 3.15692 | + | 1.14902i | −2.29381 | − | 2.96080i | −2.22776 | + | 1.42726i | 0.730849 | − | 1.26587i | −2.44138 | + | 1.74347i | 7.26462 | ||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.w | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.2.w.a | yes | 132 |
3.b | odd | 2 | 1 | 567.2.w.a | 132 | ||
7.c | even | 3 | 1 | 189.2.u.a | ✓ | 132 | |
21.h | odd | 6 | 1 | 567.2.u.a | 132 | ||
27.e | even | 9 | 1 | 189.2.u.a | ✓ | 132 | |
27.f | odd | 18 | 1 | 567.2.u.a | 132 | ||
189.w | even | 9 | 1 | inner | 189.2.w.a | yes | 132 |
189.bf | odd | 18 | 1 | 567.2.w.a | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.u.a | ✓ | 132 | 7.c | even | 3 | 1 | |
189.2.u.a | ✓ | 132 | 27.e | even | 9 | 1 | |
189.2.w.a | yes | 132 | 1.a | even | 1 | 1 | trivial |
189.2.w.a | yes | 132 | 189.w | even | 9 | 1 | inner |
567.2.u.a | 132 | 21.h | odd | 6 | 1 | ||
567.2.u.a | 132 | 27.f | odd | 18 | 1 | ||
567.2.w.a | 132 | 3.b | odd | 2 | 1 | ||
567.2.w.a | 132 | 189.bf | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(189, [\chi])\).