Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(22,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.22");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.v (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(54\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 | −2.12375 | + | 1.78204i | 1.53024 | + | 0.811393i | 0.987362 | − | 5.59961i | 0.371253 | − | 0.135125i | −4.69579 | + | 1.00376i | −0.173648 | − | 0.984808i | 5.10945 | + | 8.84983i | 1.68328 | + | 2.48326i | −0.547652 | + | 0.948561i |
22.2 | −1.67142 | + | 1.40248i | −1.72870 | − | 0.107685i | 0.479372 | − | 2.71866i | −2.82618 | + | 1.02865i | 3.04040 | − | 2.24449i | −0.173648 | − | 0.984808i | 0.829763 | + | 1.43719i | 2.97681 | + | 0.372309i | 3.28107 | − | 5.68297i |
22.3 | −1.18344 | + | 0.993024i | 0.993131 | − | 1.41905i | 0.0671374 | − | 0.380755i | 2.98981 | − | 1.08820i | 0.233835 | + | 2.66556i | −0.173648 | − | 0.984808i | −1.24623 | − | 2.15853i | −1.02738 | − | 2.81860i | −2.45765 | + | 4.25678i |
22.4 | −0.461316 | + | 0.387090i | 1.33551 | + | 1.10291i | −0.284323 | + | 1.61247i | 2.68051 | − | 0.975627i | −1.04302 | + | 0.00817329i | −0.173648 | − | 0.984808i | −1.09521 | − | 1.89697i | 0.567181 | + | 2.94590i | −0.858907 | + | 1.48767i |
22.5 | −0.246848 | + | 0.207130i | −0.915107 | + | 1.47057i | −0.329265 | + | 1.86736i | −1.61217 | + | 0.586782i | −0.0787071 | − | 0.552555i | −0.173648 | − | 0.984808i | −0.627745 | − | 1.08729i | −1.32516 | − | 2.69146i | 0.276422 | − | 0.478776i |
22.6 | 0.554554 | − | 0.465326i | −1.73195 | − | 0.0184677i | −0.256295 | + | 1.45352i | 2.40653 | − | 0.875906i | −0.969054 | + | 0.795681i | −0.173648 | − | 0.984808i | 1.25815 | + | 2.17918i | 2.99932 | + | 0.0639705i | 0.926970 | − | 1.60556i |
22.7 | 1.19955 | − | 1.00654i | 1.37519 | − | 1.05302i | 0.0784988 | − | 0.445189i | −0.920293 | + | 0.334959i | 0.589706 | − | 2.64734i | −0.173648 | − | 0.984808i | 1.21197 | + | 2.09919i | 0.782305 | − | 2.89620i | −0.766788 | + | 1.32812i |
22.8 | 1.35330 | − | 1.13555i | 0.722934 | + | 1.57397i | 0.194644 | − | 1.10388i | 0.893231 | − | 0.325110i | 2.76567 | + | 1.30912i | −0.173648 | − | 0.984808i | 0.776506 | + | 1.34495i | −1.95473 | + | 2.27575i | 0.839631 | − | 1.45428i |
22.9 | 1.81332 | − | 1.52156i | −1.25490 | − | 1.19383i | 0.625702 | − | 3.54853i | −0.550279 | + | 0.200285i | −4.09202 | − | 0.255396i | −0.173648 | − | 0.984808i | −1.89757 | − | 3.28669i | 0.149542 | + | 2.99627i | −0.693087 | + | 1.20046i |
43.1 | −2.12375 | − | 1.78204i | 1.53024 | − | 0.811393i | 0.987362 | + | 5.59961i | 0.371253 | + | 0.135125i | −4.69579 | − | 1.00376i | −0.173648 | + | 0.984808i | 5.10945 | − | 8.84983i | 1.68328 | − | 2.48326i | −0.547652 | − | 0.948561i |
43.2 | −1.67142 | − | 1.40248i | −1.72870 | + | 0.107685i | 0.479372 | + | 2.71866i | −2.82618 | − | 1.02865i | 3.04040 | + | 2.24449i | −0.173648 | + | 0.984808i | 0.829763 | − | 1.43719i | 2.97681 | − | 0.372309i | 3.28107 | + | 5.68297i |
43.3 | −1.18344 | − | 0.993024i | 0.993131 | + | 1.41905i | 0.0671374 | + | 0.380755i | 2.98981 | + | 1.08820i | 0.233835 | − | 2.66556i | −0.173648 | + | 0.984808i | −1.24623 | + | 2.15853i | −1.02738 | + | 2.81860i | −2.45765 | − | 4.25678i |
43.4 | −0.461316 | − | 0.387090i | 1.33551 | − | 1.10291i | −0.284323 | − | 1.61247i | 2.68051 | + | 0.975627i | −1.04302 | − | 0.00817329i | −0.173648 | + | 0.984808i | −1.09521 | + | 1.89697i | 0.567181 | − | 2.94590i | −0.858907 | − | 1.48767i |
43.5 | −0.246848 | − | 0.207130i | −0.915107 | − | 1.47057i | −0.329265 | − | 1.86736i | −1.61217 | − | 0.586782i | −0.0787071 | + | 0.552555i | −0.173648 | + | 0.984808i | −0.627745 | + | 1.08729i | −1.32516 | + | 2.69146i | 0.276422 | + | 0.478776i |
43.6 | 0.554554 | + | 0.465326i | −1.73195 | + | 0.0184677i | −0.256295 | − | 1.45352i | 2.40653 | + | 0.875906i | −0.969054 | − | 0.795681i | −0.173648 | + | 0.984808i | 1.25815 | − | 2.17918i | 2.99932 | − | 0.0639705i | 0.926970 | + | 1.60556i |
43.7 | 1.19955 | + | 1.00654i | 1.37519 | + | 1.05302i | 0.0784988 | + | 0.445189i | −0.920293 | − | 0.334959i | 0.589706 | + | 2.64734i | −0.173648 | + | 0.984808i | 1.21197 | − | 2.09919i | 0.782305 | + | 2.89620i | −0.766788 | − | 1.32812i |
43.8 | 1.35330 | + | 1.13555i | 0.722934 | − | 1.57397i | 0.194644 | + | 1.10388i | 0.893231 | + | 0.325110i | 2.76567 | − | 1.30912i | −0.173648 | + | 0.984808i | 0.776506 | − | 1.34495i | −1.95473 | − | 2.27575i | 0.839631 | + | 1.45428i |
43.9 | 1.81332 | + | 1.52156i | −1.25490 | + | 1.19383i | 0.625702 | + | 3.54853i | −0.550279 | − | 0.200285i | −4.09202 | + | 0.255396i | −0.173648 | + | 0.984808i | −1.89757 | + | 3.28669i | 0.149542 | − | 2.99627i | −0.693087 | − | 1.20046i |
85.1 | −2.47328 | − | 0.900200i | −0.969270 | + | 1.43545i | 3.77466 | + | 3.16732i | −0.697772 | + | 3.95726i | 3.68947 | − | 2.67773i | −0.766044 | + | 0.642788i | −3.85257 | − | 6.67284i | −1.12103 | − | 2.78268i | 5.28812 | − | 9.15929i |
85.2 | −1.78358 | − | 0.649172i | 0.189618 | + | 1.72164i | 1.22766 | + | 1.03013i | 0.611519 | − | 3.46809i | 0.779441 | − | 3.19379i | −0.766044 | + | 0.642788i | 0.377143 | + | 0.653231i | −2.92809 | + | 0.652907i | −3.34208 | + | 5.78866i |
See all 54 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.2.v.b | ✓ | 54 |
3.b | odd | 2 | 1 | 567.2.v.a | 54 | ||
27.e | even | 9 | 1 | inner | 189.2.v.b | ✓ | 54 |
27.e | even | 9 | 1 | 5103.2.a.g | 27 | ||
27.f | odd | 18 | 1 | 567.2.v.a | 54 | ||
27.f | odd | 18 | 1 | 5103.2.a.h | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.v.b | ✓ | 54 | 1.a | even | 1 | 1 | trivial |
189.2.v.b | ✓ | 54 | 27.e | even | 9 | 1 | inner |
567.2.v.a | 54 | 3.b | odd | 2 | 1 | ||
567.2.v.a | 54 | 27.f | odd | 18 | 1 | ||
5103.2.a.g | 27 | 27.e | even | 9 | 1 | ||
5103.2.a.h | 27 | 27.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{54} - 7 T_{2}^{51} - 39 T_{2}^{49} + 416 T_{2}^{48} - 27 T_{2}^{47} + 156 T_{2}^{46} + \cdots + 5041 \)
acting on \(S_{2}^{\mathrm{new}}(189, [\chi])\).