Properties

Label 1872.3.l.a
Level $1872$
Weight $3$
Character orbit 1872.l
Analytic conductor $51.008$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,3,Mod(1169,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1169"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1872.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.0083054882\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{3} q^{5} + 2 \beta_1 q^{7} - \beta_{3} q^{11} - 13 q^{13} + \beta_{2} q^{17} + 3 \beta_1 q^{19} - 4 \beta_{2} q^{23} + 47 q^{25} - 9 \beta_{2} q^{29} + 7 \beta_1 q^{31} + 24 \beta_{2} q^{35}+ \cdots - 18 \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 52 q^{13} + 188 q^{25} - 272 q^{43} - 380 q^{49} - 144 q^{55} + 160 q^{61} + 272 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 6\zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\zeta_{8}^{3} + 3\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\zeta_{8}^{3} + 3\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 6 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1169.1
−0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 0 0 −8.48528 0 12.0000i 0 0 0
1169.2 0 0 0 −8.48528 0 12.0000i 0 0 0
1169.3 0 0 0 8.48528 0 12.0000i 0 0 0
1169.4 0 0 0 8.48528 0 12.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
39.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.3.l.a 4
3.b odd 2 1 inner 1872.3.l.a 4
4.b odd 2 1 234.3.d.a 4
12.b even 2 1 234.3.d.a 4
13.b even 2 1 inner 1872.3.l.a 4
39.d odd 2 1 inner 1872.3.l.a 4
52.b odd 2 1 234.3.d.a 4
52.f even 4 1 3042.3.c.a 2
52.f even 4 1 3042.3.c.i 2
156.h even 2 1 234.3.d.a 4
156.l odd 4 1 3042.3.c.a 2
156.l odd 4 1 3042.3.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.3.d.a 4 4.b odd 2 1
234.3.d.a 4 12.b even 2 1
234.3.d.a 4 52.b odd 2 1
234.3.d.a 4 156.h even 2 1
1872.3.l.a 4 1.a even 1 1 trivial
1872.3.l.a 4 3.b odd 2 1 inner
1872.3.l.a 4 13.b even 2 1 inner
1872.3.l.a 4 39.d odd 2 1 inner
3042.3.c.a 2 52.f even 4 1
3042.3.c.a 2 156.l odd 4 1
3042.3.c.i 2 52.f even 4 1
3042.3.c.i 2 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1872, [\chi])\):

\( T_{5}^{2} - 72 \) Copy content Toggle raw display
\( T_{7}^{2} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$13$ \( (T + 13)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 324)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1458)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1764)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 3600)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$43$ \( (T + 68)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 1458)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6498)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 450)^{2} \) Copy content Toggle raw display
$61$ \( (T - 40)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 3600)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 3042)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$79$ \( (T - 68)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 13122)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 648)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 11664)^{2} \) Copy content Toggle raw display
show more
show less