Properties

Label 1872.2.c.l.1585.4
Level $1872$
Weight $2$
Character 1872.1585
Analytic conductor $14.948$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,2,Mod(1585,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.4
Root \(-0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 1872.1585
Dual form 1872.2.c.l.1585.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23607i q^{5} +1.74806i q^{7} +3.23607i q^{11} +(-2.23607 - 2.82843i) q^{13} -5.65685 q^{17} -7.40492i q^{19} +9.15298 q^{23} +3.47214 q^{25} +3.49613 q^{29} -1.74806i q^{31} +2.16073 q^{35} -5.65685i q^{37} -7.70820i q^{41} +8.94427 q^{43} +7.23607i q^{47} +3.94427 q^{49} -9.15298 q^{53} +4.00000 q^{55} +1.70820i q^{59} +8.47214 q^{61} +(-3.49613 + 2.76393i) q^{65} -3.90879i q^{67} +5.70820i q^{71} -5.65685 q^{77} +0.944272 q^{79} -11.2361i q^{83} +6.99226i q^{85} -10.7639i q^{89} +(4.94427 - 3.90879i) q^{91} -9.15298 q^{95} -18.3060i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{25} - 40 q^{49} + 32 q^{55} + 32 q^{61} - 64 q^{79} - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.23607i 0.552786i −0.961045 0.276393i \(-0.910861\pi\)
0.961045 0.276393i \(-0.0891392\pi\)
\(6\) 0 0
\(7\) 1.74806i 0.660706i 0.943857 + 0.330353i \(0.107168\pi\)
−0.943857 + 0.330353i \(0.892832\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.23607i 0.975711i 0.872924 + 0.487856i \(0.162221\pi\)
−0.872924 + 0.487856i \(0.837779\pi\)
\(12\) 0 0
\(13\) −2.23607 2.82843i −0.620174 0.784465i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.65685 −1.37199 −0.685994 0.727607i \(-0.740633\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 7.40492i 1.69880i −0.527746 0.849402i \(-0.676963\pi\)
0.527746 0.849402i \(-0.323037\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 9.15298 1.90853 0.954264 0.298964i \(-0.0966411\pi\)
0.954264 + 0.298964i \(0.0966411\pi\)
\(24\) 0 0
\(25\) 3.47214 0.694427
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.49613 0.649215 0.324607 0.945849i \(-0.394768\pi\)
0.324607 + 0.945849i \(0.394768\pi\)
\(30\) 0 0
\(31\) 1.74806i 0.313962i −0.987602 0.156981i \(-0.949824\pi\)
0.987602 0.156981i \(-0.0501761\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.16073 0.365229
\(36\) 0 0
\(37\) 5.65685i 0.929981i −0.885316 0.464991i \(-0.846058\pi\)
0.885316 0.464991i \(-0.153942\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.70820i 1.20382i −0.798564 0.601910i \(-0.794407\pi\)
0.798564 0.601910i \(-0.205593\pi\)
\(42\) 0 0
\(43\) 8.94427 1.36399 0.681994 0.731357i \(-0.261113\pi\)
0.681994 + 0.731357i \(0.261113\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.23607i 1.05549i 0.849403 + 0.527744i \(0.176962\pi\)
−0.849403 + 0.527744i \(0.823038\pi\)
\(48\) 0 0
\(49\) 3.94427 0.563467
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.15298 −1.25726 −0.628629 0.777705i \(-0.716384\pi\)
−0.628629 + 0.777705i \(0.716384\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.70820i 0.222389i 0.993799 + 0.111195i \(0.0354677\pi\)
−0.993799 + 0.111195i \(0.964532\pi\)
\(60\) 0 0
\(61\) 8.47214 1.08475 0.542373 0.840138i \(-0.317526\pi\)
0.542373 + 0.840138i \(0.317526\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.49613 + 2.76393i −0.433641 + 0.342824i
\(66\) 0 0
\(67\) 3.90879i 0.477535i −0.971077 0.238767i \(-0.923257\pi\)
0.971077 0.238767i \(-0.0767433\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.70820i 0.677439i 0.940887 + 0.338720i \(0.109994\pi\)
−0.940887 + 0.338720i \(0.890006\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65685 −0.644658
\(78\) 0 0
\(79\) 0.944272 0.106239 0.0531194 0.998588i \(-0.483084\pi\)
0.0531194 + 0.998588i \(0.483084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.2361i 1.23332i −0.787230 0.616659i \(-0.788486\pi\)
0.787230 0.616659i \(-0.211514\pi\)
\(84\) 0 0
\(85\) 6.99226i 0.758417i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.7639i 1.14097i −0.821306 0.570487i \(-0.806754\pi\)
0.821306 0.570487i \(-0.193246\pi\)
\(90\) 0 0
\(91\) 4.94427 3.90879i 0.518301 0.409753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.15298 −0.939076
\(96\) 0 0
\(97\) 18.3060i 1.85869i −0.369214 0.929345i \(-0.620373\pi\)
0.369214 0.929345i \(-0.379627\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.16073 0.215000 0.107500 0.994205i \(-0.465715\pi\)
0.107500 + 0.994205i \(0.465715\pi\)
\(102\) 0 0
\(103\) −4.94427 −0.487174 −0.243587 0.969879i \(-0.578324\pi\)
−0.243587 + 0.969879i \(0.578324\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.16073 0.208885 0.104443 0.994531i \(-0.466694\pi\)
0.104443 + 0.994531i \(0.466694\pi\)
\(108\) 0 0
\(109\) 12.6491i 1.21157i −0.795630 0.605783i \(-0.792860\pi\)
0.795630 0.605783i \(-0.207140\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.6491 1.18993 0.594964 0.803752i \(-0.297166\pi\)
0.594964 + 0.803752i \(0.297166\pi\)
\(114\) 0 0
\(115\) 11.3137i 1.05501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.88854i 0.906481i
\(120\) 0 0
\(121\) 0.527864 0.0479876
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.4721i 0.936656i
\(126\) 0 0
\(127\) −8.94427 −0.793676 −0.396838 0.917889i \(-0.629892\pi\)
−0.396838 + 0.917889i \(0.629892\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.16073 −0.188784 −0.0943918 0.995535i \(-0.530091\pi\)
−0.0943918 + 0.995535i \(0.530091\pi\)
\(132\) 0 0
\(133\) 12.9443 1.12241
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.6525i 1.76446i 0.470819 + 0.882230i \(0.343959\pi\)
−0.470819 + 0.882230i \(0.656041\pi\)
\(138\) 0 0
\(139\) 16.9443 1.43719 0.718597 0.695427i \(-0.244785\pi\)
0.718597 + 0.695427i \(0.244785\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.15298 7.23607i 0.765411 0.605110i
\(144\) 0 0
\(145\) 4.32145i 0.358877i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.1803i 1.16170i 0.814011 + 0.580849i \(0.197279\pi\)
−0.814011 + 0.580849i \(0.802721\pi\)
\(150\) 0 0
\(151\) 1.74806i 0.142255i −0.997467 0.0711277i \(-0.977340\pi\)
0.997467 0.0711277i \(-0.0226598\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.16073 −0.173554
\(156\) 0 0
\(157\) −10.9443 −0.873448 −0.436724 0.899596i \(-0.643861\pi\)
−0.436724 + 0.899596i \(0.643861\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000i 1.26098i
\(162\) 0 0
\(163\) 0.412662i 0.0323222i −0.999869 0.0161611i \(-0.994856\pi\)
0.999869 0.0161611i \(-0.00514446\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.2361i 1.17900i 0.807768 + 0.589501i \(0.200676\pi\)
−0.807768 + 0.589501i \(0.799324\pi\)
\(168\) 0 0
\(169\) −3.00000 + 12.6491i −0.230769 + 0.973009i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.4667 1.55605 0.778027 0.628231i \(-0.216221\pi\)
0.778027 + 0.628231i \(0.216221\pi\)
\(174\) 0 0
\(175\) 6.06952i 0.458812i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.4667 −1.52975 −0.764876 0.644177i \(-0.777200\pi\)
−0.764876 + 0.644177i \(0.777200\pi\)
\(180\) 0 0
\(181\) 2.94427 0.218846 0.109423 0.993995i \(-0.465100\pi\)
0.109423 + 0.993995i \(0.465100\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.99226 −0.514081
\(186\) 0 0
\(187\) 18.3060i 1.33866i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.4744 −0.974976 −0.487488 0.873130i \(-0.662087\pi\)
−0.487488 + 0.873130i \(0.662087\pi\)
\(192\) 0 0
\(193\) 11.3137i 0.814379i 0.913344 + 0.407189i \(0.133491\pi\)
−0.913344 + 0.407189i \(0.866509\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.1803i 1.01031i −0.863029 0.505154i \(-0.831436\pi\)
0.863029 0.505154i \(-0.168564\pi\)
\(198\) 0 0
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.11146i 0.428940i
\(204\) 0 0
\(205\) −9.52786 −0.665455
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 23.9628 1.65754
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.0557i 0.753994i
\(216\) 0 0
\(217\) 3.05573 0.207436
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.6491 + 16.0000i 0.850871 + 1.07628i
\(222\) 0 0
\(223\) 16.5579i 1.10880i 0.832251 + 0.554400i \(0.187052\pi\)
−0.832251 + 0.554400i \(0.812948\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.70820i 0.644356i −0.946679 0.322178i \(-0.895585\pi\)
0.946679 0.322178i \(-0.104415\pi\)
\(228\) 0 0
\(229\) 12.6491i 0.835877i −0.908475 0.417938i \(-0.862753\pi\)
0.908475 0.417938i \(-0.137247\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3137 0.741186 0.370593 0.928795i \(-0.379155\pi\)
0.370593 + 0.928795i \(0.379155\pi\)
\(234\) 0 0
\(235\) 8.94427 0.583460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.1803i 1.82283i −0.411483 0.911417i \(-0.634989\pi\)
0.411483 0.911417i \(-0.365011\pi\)
\(240\) 0 0
\(241\) 18.3060i 1.17919i −0.807699 0.589595i \(-0.799287\pi\)
0.807699 0.589595i \(-0.200713\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.87539i 0.311477i
\(246\) 0 0
\(247\) −20.9443 + 16.5579i −1.33265 + 1.05355i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.3060 1.15546 0.577731 0.816227i \(-0.303938\pi\)
0.577731 + 0.816227i \(0.303938\pi\)
\(252\) 0 0
\(253\) 29.6197i 1.86217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.3137 −0.705730 −0.352865 0.935674i \(-0.614792\pi\)
−0.352865 + 0.935674i \(0.614792\pi\)
\(258\) 0 0
\(259\) 9.88854 0.614444
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.6274 −1.39527 −0.697633 0.716455i \(-0.745763\pi\)
−0.697633 + 0.716455i \(0.745763\pi\)
\(264\) 0 0
\(265\) 11.3137i 0.694996i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.8021 −1.32930 −0.664649 0.747156i \(-0.731419\pi\)
−0.664649 + 0.747156i \(0.731419\pi\)
\(270\) 0 0
\(271\) 24.3755i 1.48071i 0.672219 + 0.740353i \(0.265341\pi\)
−0.672219 + 0.740353i \(0.734659\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.2361i 0.677560i
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.29180i 0.494647i −0.968933 0.247324i \(-0.920449\pi\)
0.968933 0.247324i \(-0.0795511\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.4744 0.795371
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.7082i 0.684001i 0.939700 + 0.342000i \(0.111104\pi\)
−0.939700 + 0.342000i \(0.888896\pi\)
\(294\) 0 0
\(295\) 2.11146 0.122934
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.4667 25.8885i −1.18362 1.49717i
\(300\) 0 0
\(301\) 15.6352i 0.901196i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.4721i 0.599633i
\(306\) 0 0
\(307\) 22.2148i 1.26786i −0.773389 0.633932i \(-0.781440\pi\)
0.773389 0.633932i \(-0.218560\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.83153 −0.273971 −0.136985 0.990573i \(-0.543741\pi\)
−0.136985 + 0.990573i \(0.543741\pi\)
\(312\) 0 0
\(313\) −20.4721 −1.15715 −0.578577 0.815628i \(-0.696392\pi\)
−0.578577 + 0.815628i \(0.696392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.7639i 1.27855i 0.768978 + 0.639275i \(0.220765\pi\)
−0.768978 + 0.639275i \(0.779235\pi\)
\(318\) 0 0
\(319\) 11.3137i 0.633446i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.8885i 2.33074i
\(324\) 0 0
\(325\) −7.76393 9.82068i −0.430665 0.544754i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.6491 −0.697368
\(330\) 0 0
\(331\) 3.90879i 0.214847i −0.994213 0.107423i \(-0.965740\pi\)
0.994213 0.107423i \(-0.0342600\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.83153 −0.263975
\(336\) 0 0
\(337\) −13.4164 −0.730838 −0.365419 0.930843i \(-0.619074\pi\)
−0.365419 + 0.930843i \(0.619074\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.65685 0.306336
\(342\) 0 0
\(343\) 19.1313i 1.03299i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.3060 0.982716 0.491358 0.870958i \(-0.336501\pi\)
0.491358 + 0.870958i \(0.336501\pi\)
\(348\) 0 0
\(349\) 1.33540i 0.0714824i 0.999361 + 0.0357412i \(0.0113792\pi\)
−0.999361 + 0.0357412i \(0.988621\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.76393i 0.147109i −0.997291 0.0735546i \(-0.976566\pi\)
0.997291 0.0735546i \(-0.0234343\pi\)
\(354\) 0 0
\(355\) 7.05573 0.374479
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.1803i 1.06508i 0.846406 + 0.532539i \(0.178762\pi\)
−0.846406 + 0.532539i \(0.821238\pi\)
\(360\) 0 0
\(361\) −35.8328 −1.88594
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3.05573 0.159508 0.0797539 0.996815i \(-0.474587\pi\)
0.0797539 + 0.996815i \(0.474587\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.0000i 0.830679i
\(372\) 0 0
\(373\) 2.58359 0.133773 0.0668867 0.997761i \(-0.478693\pi\)
0.0668867 + 0.997761i \(0.478693\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.81758 9.88854i −0.402626 0.509286i
\(378\) 0 0
\(379\) 7.40492i 0.380365i −0.981749 0.190183i \(-0.939092\pi\)
0.981749 0.190183i \(-0.0609080\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.81966i 0.195176i −0.995227 0.0975878i \(-0.968887\pi\)
0.995227 0.0975878i \(-0.0311127\pi\)
\(384\) 0 0
\(385\) 6.99226i 0.356358i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.81758 0.396367 0.198184 0.980165i \(-0.436496\pi\)
0.198184 + 0.980165i \(0.436496\pi\)
\(390\) 0 0
\(391\) −51.7771 −2.61848
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.16718i 0.0587274i
\(396\) 0 0
\(397\) 30.9551i 1.55359i 0.629753 + 0.776795i \(0.283156\pi\)
−0.629753 + 0.776795i \(0.716844\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.7082i 1.58343i −0.610889 0.791716i \(-0.709188\pi\)
0.610889 0.791716i \(-0.290812\pi\)
\(402\) 0 0
\(403\) −4.94427 + 3.90879i −0.246292 + 0.194711i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.3060 0.907393
\(408\) 0 0
\(409\) 4.32145i 0.213682i 0.994276 + 0.106841i \(0.0340736\pi\)
−0.994276 + 0.106841i \(0.965926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.98605 −0.146934
\(414\) 0 0
\(415\) −13.8885 −0.681762
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.4512 1.68305 0.841526 0.540217i \(-0.181658\pi\)
0.841526 + 0.540217i \(0.181658\pi\)
\(420\) 0 0
\(421\) 5.65685i 0.275698i −0.990453 0.137849i \(-0.955981\pi\)
0.990453 0.137849i \(-0.0440189\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −19.6414 −0.952746
\(426\) 0 0
\(427\) 14.8098i 0.716698i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.2918i 0.881085i 0.897732 + 0.440542i \(0.145214\pi\)
−0.897732 + 0.440542i \(0.854786\pi\)
\(432\) 0 0
\(433\) 9.41641 0.452524 0.226262 0.974067i \(-0.427349\pi\)
0.226262 + 0.974067i \(0.427349\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 67.7771i 3.24222i
\(438\) 0 0
\(439\) −3.05573 −0.145842 −0.0729210 0.997338i \(-0.523232\pi\)
−0.0729210 + 0.997338i \(0.523232\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.1452 −0.767083 −0.383542 0.923524i \(-0.625296\pi\)
−0.383542 + 0.923524i \(0.625296\pi\)
\(444\) 0 0
\(445\) −13.3050 −0.630715
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.2918i 0.768857i 0.923155 + 0.384429i \(0.125602\pi\)
−0.923155 + 0.384429i \(0.874398\pi\)
\(450\) 0 0
\(451\) 24.9443 1.17458
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.83153 6.11146i −0.226506 0.286509i
\(456\) 0 0
\(457\) 18.3060i 0.856317i 0.903704 + 0.428158i \(0.140837\pi\)
−0.903704 + 0.428158i \(0.859163\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.76393i 0.315028i 0.987517 + 0.157514i \(0.0503479\pi\)
−0.987517 + 0.157514i \(0.949652\pi\)
\(462\) 0 0
\(463\) 35.6892i 1.65862i 0.558791 + 0.829309i \(0.311265\pi\)
−0.558791 + 0.829309i \(0.688735\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.6274 1.04707 0.523536 0.852004i \(-0.324613\pi\)
0.523536 + 0.852004i \(0.324613\pi\)
\(468\) 0 0
\(469\) 6.83282 0.315510
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 28.9443i 1.33086i
\(474\) 0 0
\(475\) 25.7109i 1.17970i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.7639i 1.13149i 0.824579 + 0.565746i \(0.191412\pi\)
−0.824579 + 0.565746i \(0.808588\pi\)
\(480\) 0 0
\(481\) −16.0000 + 12.6491i −0.729537 + 0.576750i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.6274 −1.02746
\(486\) 0 0
\(487\) 23.5502i 1.06716i 0.845750 + 0.533580i \(0.179154\pi\)
−0.845750 + 0.533580i \(0.820846\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.3060 0.826137 0.413068 0.910700i \(-0.364457\pi\)
0.413068 + 0.910700i \(0.364457\pi\)
\(492\) 0 0
\(493\) −19.7771 −0.890715
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.97831 −0.447588
\(498\) 0 0
\(499\) 21.3894i 0.957522i 0.877945 + 0.478761i \(0.158914\pi\)
−0.877945 + 0.478761i \(0.841086\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 2.67080i 0.118849i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.70820i 0.164363i 0.996617 + 0.0821816i \(0.0261888\pi\)
−0.996617 + 0.0821816i \(0.973811\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.11146i 0.269303i
\(516\) 0 0
\(517\) −23.4164 −1.02985
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.2843 −1.23916 −0.619578 0.784935i \(-0.712696\pi\)
−0.619578 + 0.784935i \(0.712696\pi\)
\(522\) 0 0
\(523\) 24.9443 1.09074 0.545368 0.838196i \(-0.316390\pi\)
0.545368 + 0.838196i \(0.316390\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.88854i 0.430752i
\(528\) 0 0
\(529\) 60.7771 2.64248
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.8021 + 17.2361i −0.944353 + 0.746577i
\(534\) 0 0
\(535\) 2.67080i 0.115469i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.7639i 0.549781i
\(540\) 0 0
\(541\) 9.97831i 0.429001i 0.976724 + 0.214500i \(0.0688123\pi\)
−0.976724 + 0.214500i \(0.931188\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.6352 −0.669737
\(546\) 0 0
\(547\) −8.94427 −0.382429 −0.191215 0.981548i \(-0.561243\pi\)
−0.191215 + 0.981548i \(0.561243\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.8885i 1.10289i
\(552\) 0 0
\(553\) 1.65065i 0.0701927i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.1803i 1.61775i −0.587979 0.808876i \(-0.700076\pi\)
0.587979 0.808876i \(-0.299924\pi\)
\(558\) 0 0
\(559\) −20.0000 25.2982i −0.845910 1.07000i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.4512 −1.45195 −0.725973 0.687724i \(-0.758610\pi\)
−0.725973 + 0.687724i \(0.758610\pi\)
\(564\) 0 0
\(565\) 15.6352i 0.657776i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.9334 1.71602 0.858008 0.513636i \(-0.171702\pi\)
0.858008 + 0.513636i \(0.171702\pi\)
\(570\) 0 0
\(571\) −24.0000 −1.00437 −0.502184 0.864761i \(-0.667470\pi\)
−0.502184 + 0.864761i \(0.667470\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 31.7804 1.32533
\(576\) 0 0
\(577\) 6.99226i 0.291091i 0.989352 + 0.145546i \(0.0464938\pi\)
−0.989352 + 0.145546i \(0.953506\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 19.6414 0.814861
\(582\) 0 0
\(583\) 29.6197i 1.22672i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.4853i 1.54718i 0.633684 + 0.773592i \(0.281542\pi\)
−0.633684 + 0.773592i \(0.718458\pi\)
\(588\) 0 0
\(589\) −12.9443 −0.533359
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.76393i 0.113501i −0.998388 0.0567505i \(-0.981926\pi\)
0.998388 0.0567505i \(-0.0180740\pi\)
\(594\) 0 0
\(595\) −12.2229 −0.501091
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.32145 −0.176570 −0.0882849 0.996095i \(-0.528139\pi\)
−0.0882849 + 0.996095i \(0.528139\pi\)
\(600\) 0 0
\(601\) 11.5279 0.470231 0.235116 0.971967i \(-0.424453\pi\)
0.235116 + 0.971967i \(0.424453\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.652476i 0.0265269i
\(606\) 0 0
\(607\) 11.0557 0.448738 0.224369 0.974504i \(-0.427968\pi\)
0.224369 + 0.974504i \(0.427968\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.4667 16.1803i 0.827994 0.654586i
\(612\) 0 0
\(613\) 42.2688i 1.70722i −0.520913 0.853610i \(-0.674408\pi\)
0.520913 0.853610i \(-0.325592\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.5967i 0.708418i −0.935166 0.354209i \(-0.884750\pi\)
0.935166 0.354209i \(-0.115250\pi\)
\(618\) 0 0
\(619\) 21.3894i 0.859714i 0.902897 + 0.429857i \(0.141436\pi\)
−0.902897 + 0.429857i \(0.858564\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.8160 0.753849
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.0000i 1.27592i
\(630\) 0 0
\(631\) 32.1931i 1.28159i 0.767714 + 0.640793i \(0.221394\pi\)
−0.767714 + 0.640793i \(0.778606\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.0557i 0.438733i
\(636\) 0 0
\(637\) −8.81966 11.1561i −0.349448 0.442020i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.2843 1.11716 0.558581 0.829450i \(-0.311346\pi\)
0.558581 + 0.829450i \(0.311346\pi\)
\(642\) 0 0
\(643\) 0.412662i 0.0162738i 0.999967 + 0.00813690i \(0.00259008\pi\)
−0.999967 + 0.00813690i \(0.997410\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.3060 0.719682 0.359841 0.933014i \(-0.382831\pi\)
0.359841 + 0.933014i \(0.382831\pi\)
\(648\) 0 0
\(649\) −5.52786 −0.216988
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.4806 −0.684070 −0.342035 0.939687i \(-0.611116\pi\)
−0.342035 + 0.939687i \(0.611116\pi\)
\(654\) 0 0
\(655\) 2.67080i 0.104357i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 19.6414i 0.763961i 0.924170 + 0.381980i \(0.124758\pi\)
−0.924170 + 0.381980i \(0.875242\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000i 0.620453i
\(666\) 0 0
\(667\) 32.0000 1.23904
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 27.4164i 1.05840i
\(672\) 0 0
\(673\) −21.0557 −0.811639 −0.405819 0.913953i \(-0.633014\pi\)
−0.405819 + 0.913953i \(0.633014\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.16073 −0.0830434 −0.0415217 0.999138i \(-0.513221\pi\)
−0.0415217 + 0.999138i \(0.513221\pi\)
\(678\) 0 0
\(679\) 32.0000 1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 43.5967i 1.66818i −0.551626 0.834092i \(-0.685992\pi\)
0.551626 0.834092i \(-0.314008\pi\)
\(684\) 0 0
\(685\) 25.5279 0.975370
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.4667 + 25.8885i 0.779719 + 0.986275i
\(690\) 0 0
\(691\) 3.90879i 0.148697i −0.997232 0.0743487i \(-0.976312\pi\)
0.997232 0.0743487i \(-0.0236878\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.9443i 0.794462i
\(696\) 0 0
\(697\) 43.6042i 1.65163i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.81758 −0.295266 −0.147633 0.989042i \(-0.547165\pi\)
−0.147633 + 0.989042i \(0.547165\pi\)
\(702\) 0 0
\(703\) −41.8885 −1.57986
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.77709i 0.142052i
\(708\) 0 0
\(709\) 28.2843i 1.06224i −0.847297 0.531119i \(-0.821772\pi\)
0.847297 0.531119i \(-0.178228\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) −8.94427 11.3137i −0.334497 0.423109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.7804 −1.18521 −0.592604 0.805494i \(-0.701900\pi\)
−0.592604 + 0.805494i \(0.701900\pi\)
\(720\) 0 0
\(721\) 8.64290i 0.321879i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.1390 0.450832
\(726\) 0 0
\(727\) 52.7214 1.95533 0.977663 0.210176i \(-0.0674038\pi\)
0.977663 + 0.210176i \(0.0674038\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −50.5964 −1.87138
\(732\) 0 0
\(733\) 49.2610i 1.81950i 0.415159 + 0.909749i \(0.363726\pi\)
−0.415159 + 0.909749i \(0.636274\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.6491 0.465936
\(738\) 0 0
\(739\) 40.5207i 1.49058i −0.666741 0.745289i \(-0.732311\pi\)
0.666741 0.745289i \(-0.267689\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.12461i 0.334750i −0.985893 0.167375i \(-0.946471\pi\)
0.985893 0.167375i \(-0.0535290\pi\)
\(744\) 0 0
\(745\) 17.5279 0.642171
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.77709i 0.138012i
\(750\) 0 0
\(751\) −12.9443 −0.472343 −0.236172 0.971711i \(-0.575893\pi\)
−0.236172 + 0.971711i \(0.575893\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.16073 −0.0786369
\(756\) 0 0
\(757\) 41.4164 1.50530 0.752652 0.658418i \(-0.228774\pi\)
0.752652 + 0.658418i \(0.228774\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.6525i 0.748652i 0.927297 + 0.374326i \(0.122126\pi\)
−0.927297 + 0.374326i \(0.877874\pi\)
\(762\) 0 0
\(763\) 22.1115 0.800488
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.83153 3.81966i 0.174456 0.137920i
\(768\) 0 0
\(769\) 11.3137i 0.407983i −0.978973 0.203991i \(-0.934609\pi\)
0.978973 0.203991i \(-0.0653915\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.1246i 0.400124i 0.979783 + 0.200062i \(0.0641144\pi\)
−0.979783 + 0.200062i \(0.935886\pi\)
\(774\) 0 0
\(775\) 6.06952i 0.218023i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −57.0786 −2.04505
\(780\) 0 0
\(781\) −18.4721 −0.660985
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.5279i 0.482830i
\(786\) 0 0
\(787\) 11.7264i 0.418000i 0.977916 + 0.209000i \(0.0670209\pi\)
−0.977916 + 0.209000i \(0.932979\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.1115i 0.786193i
\(792\) 0 0
\(793\) −18.9443 23.9628i −0.672731 0.850945i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.1235 −0.925343 −0.462672 0.886530i \(-0.653109\pi\)
−0.462672 + 0.886530i \(0.653109\pi\)
\(798\) 0 0
\(799\) 40.9334i 1.44812i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 19.7771 0.697051
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.2688 1.48609 0.743046 0.669241i \(-0.233381\pi\)
0.743046 + 0.669241i \(0.233381\pi\)
\(810\) 0 0
\(811\) 37.0246i 1.30011i −0.759887 0.650055i \(-0.774746\pi\)
0.759887 0.650055i \(-0.225254\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.510078 −0.0178673
\(816\) 0 0
\(817\) 66.2316i 2.31715i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.06888i 0.281606i 0.990038 + 0.140803i \(0.0449684\pi\)
−0.990038 + 0.140803i \(0.955032\pi\)
\(822\) 0 0
\(823\) −12.9443 −0.451209 −0.225604 0.974219i \(-0.572436\pi\)
−0.225604 + 0.974219i \(0.572436\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.70820i 0.0594001i −0.999559 0.0297000i \(-0.990545\pi\)
0.999559 0.0297000i \(-0.00945521\pi\)
\(828\) 0 0
\(829\) −24.4721 −0.849952 −0.424976 0.905205i \(-0.639718\pi\)
−0.424976 + 0.905205i \(0.639718\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.3122 −0.773071
\(834\) 0 0
\(835\) 18.8328 0.651736
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 35.0132i 1.20879i −0.796685 0.604394i \(-0.793415\pi\)
0.796685 0.604394i \(-0.206585\pi\)
\(840\) 0 0
\(841\) −16.7771 −0.578520
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.6352 + 3.70820i 0.537866 + 0.127566i
\(846\) 0 0
\(847\) 0.922740i 0.0317057i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 51.7771i 1.77490i
\(852\) 0 0
\(853\) 16.9706i 0.581061i −0.956866 0.290531i \(-0.906168\pi\)
0.956866 0.290531i \(-0.0938318\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.99226 −0.238851 −0.119425 0.992843i \(-0.538105\pi\)
−0.119425 + 0.992843i \(0.538105\pi\)
\(858\) 0 0
\(859\) 25.8885 0.883306 0.441653 0.897186i \(-0.354392\pi\)
0.441653 + 0.897186i \(0.354392\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.5410i 1.51619i −0.652142 0.758097i \(-0.726129\pi\)
0.652142 0.758097i \(-0.273871\pi\)
\(864\) 0 0
\(865\) 25.2982i 0.860165i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.05573i 0.103658i
\(870\) 0 0
\(871\) −11.0557 + 8.74032i −0.374609 + 0.296154i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 18.3060 0.618855
\(876\) 0 0
\(877\) 12.6491i 0.427130i −0.976929 0.213565i \(-0.931492\pi\)
0.976929 0.213565i \(-0.0685075\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −50.5964 −1.70464 −0.852319 0.523023i \(-0.824804\pi\)
−0.852319 + 0.523023i \(0.824804\pi\)
\(882\) 0 0
\(883\) −33.8885 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.4589 −0.921981 −0.460991 0.887405i \(-0.652506\pi\)
−0.460991 + 0.887405i \(0.652506\pi\)
\(888\) 0 0
\(889\) 15.6352i 0.524386i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 53.5825 1.79307
\(894\) 0 0
\(895\) 25.2982i 0.845626i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.11146i 0.203828i
\(900\) 0 0
\(901\) 51.7771 1.72494
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.63932i 0.120975i
\(906\) 0 0
\(907\) −57.8885 −1.92216 −0.961079 0.276274i \(-0.910900\pi\)
−0.961079 + 0.276274i \(0.910900\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −13.4744 −0.446428 −0.223214 0.974769i \(-0.571655\pi\)
−0.223214 + 0.974769i \(0.571655\pi\)
\(912\) 0 0
\(913\) 36.3607 1.20336
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.77709i 0.124730i
\(918\) 0 0
\(919\) 52.7214 1.73912 0.869559 0.493830i \(-0.164403\pi\)
0.869559 + 0.493830i \(0.164403\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.1452 12.7639i 0.531427 0.420130i
\(924\) 0 0
\(925\) 19.6414i 0.645804i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.1246i 0.758694i 0.925255 + 0.379347i \(0.123851\pi\)
−0.925255 + 0.379347i \(0.876149\pi\)
\(930\) 0 0
\(931\) 29.2070i 0.957221i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −22.6274 −0.739996
\(936\) 0 0
\(937\) −24.4721 −0.799470 −0.399735 0.916631i \(-0.630898\pi\)
−0.399735 + 0.916631i \(0.630898\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.81966i 0.320112i −0.987108 0.160056i \(-0.948833\pi\)
0.987108 0.160056i \(-0.0511674\pi\)
\(942\) 0 0
\(943\) 70.5531i 2.29752i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.70820i 0.315474i 0.987481 + 0.157737i \(0.0504199\pi\)
−0.987481 + 0.157737i \(0.949580\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.9768 0.679504 0.339752 0.940515i \(-0.389657\pi\)
0.339752 + 0.940515i \(0.389657\pi\)
\(954\) 0 0
\(955\) 16.6553i 0.538953i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.1019 −1.16579
\(960\) 0 0
\(961\) 27.9443 0.901428
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.9845 0.450177
\(966\) 0 0
\(967\) 16.5579i 0.532466i 0.963909 + 0.266233i \(0.0857791\pi\)
−0.963909 + 0.266233i \(0.914221\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.6274 −0.726148 −0.363074 0.931760i \(-0.618273\pi\)
−0.363074 + 0.931760i \(0.618273\pi\)
\(972\) 0 0
\(973\) 29.6197i 0.949563i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.6525i 0.404789i 0.979304 + 0.202394i \(0.0648723\pi\)
−0.979304 + 0.202394i \(0.935128\pi\)
\(978\) 0 0
\(979\) 34.8328 1.11326
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 46.4296i 1.48087i 0.672126 + 0.740437i \(0.265381\pi\)
−0.672126 + 0.740437i \(0.734619\pi\)
\(984\) 0 0
\(985\) −17.5279 −0.558484
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 81.8668 2.60321
\(990\) 0 0
\(991\) 35.0557 1.11358 0.556791 0.830653i \(-0.312032\pi\)
0.556791 + 0.830653i \(0.312032\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.0557i 0.350490i
\(996\) 0 0
\(997\) 57.7771 1.82982 0.914909 0.403659i \(-0.132262\pi\)
0.914909 + 0.403659i \(0.132262\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.c.l.1585.4 8
3.2 odd 2 inner 1872.2.c.l.1585.6 8
4.3 odd 2 936.2.c.e.649.3 8
12.11 even 2 936.2.c.e.649.5 yes 8
13.12 even 2 inner 1872.2.c.l.1585.5 8
39.38 odd 2 inner 1872.2.c.l.1585.3 8
52.51 odd 2 936.2.c.e.649.6 yes 8
156.155 even 2 936.2.c.e.649.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.c.e.649.3 8 4.3 odd 2
936.2.c.e.649.4 yes 8 156.155 even 2
936.2.c.e.649.5 yes 8 12.11 even 2
936.2.c.e.649.6 yes 8 52.51 odd 2
1872.2.c.l.1585.3 8 39.38 odd 2 inner
1872.2.c.l.1585.4 8 1.1 even 1 trivial
1872.2.c.l.1585.5 8 13.12 even 2 inner
1872.2.c.l.1585.6 8 3.2 odd 2 inner