Properties

Label 1872.2.by.g.1297.1
Level $1872$
Weight $2$
Character 1872.1297
Analytic conductor $14.948$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,2,Mod(433,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-6,0,0,0,-6,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1297.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1872.1297
Dual form 1872.2.by.g.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{5} +(-2.36603 - 1.36603i) q^{7} +(-2.36603 + 1.36603i) q^{11} +(-2.59808 - 2.50000i) q^{13} +(0.133975 - 0.232051i) q^{17} +(-4.09808 - 2.36603i) q^{19} +(4.09808 + 7.09808i) q^{23} +2.00000 q^{25} +(3.96410 + 6.86603i) q^{29} +1.46410i q^{31} +(-2.36603 + 4.09808i) q^{35} +(-1.33013 + 0.767949i) q^{37} +(-4.33013 + 2.50000i) q^{41} +(-6.09808 + 10.5622i) q^{43} +3.26795i q^{47} +(0.232051 + 0.401924i) q^{49} +7.92820 q^{53} +(2.36603 + 4.09808i) q^{55} +(3.13397 - 5.42820i) q^{61} +(-4.33013 + 4.50000i) q^{65} +(-7.56218 + 4.36603i) q^{67} +(-1.90192 - 1.09808i) q^{71} -9.19615i q^{73} +7.46410 q^{77} +8.39230 q^{79} -1.66025i q^{83} +(-0.401924 - 0.232051i) q^{85} +(-8.19615 + 4.73205i) q^{89} +(2.73205 + 9.46410i) q^{91} +(-4.09808 + 7.09808i) q^{95} +(8.66025 + 5.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{7} - 6 q^{11} + 4 q^{17} - 6 q^{19} + 6 q^{23} + 8 q^{25} + 2 q^{29} - 6 q^{35} + 12 q^{37} - 14 q^{43} - 6 q^{49} + 4 q^{53} + 6 q^{55} + 16 q^{61} - 6 q^{67} - 18 q^{71} + 16 q^{77} - 8 q^{79}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.73205i 0.774597i −0.921954 0.387298i \(-0.873408\pi\)
0.921954 0.387298i \(-0.126592\pi\)
\(6\) 0 0
\(7\) −2.36603 1.36603i −0.894274 0.516309i −0.0189356 0.999821i \(-0.506028\pi\)
−0.875338 + 0.483512i \(0.839361\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.36603 + 1.36603i −0.713384 + 0.411872i −0.812313 0.583222i \(-0.801792\pi\)
0.0989291 + 0.995094i \(0.468458\pi\)
\(12\) 0 0
\(13\) −2.59808 2.50000i −0.720577 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.133975 0.232051i 0.0324936 0.0562806i −0.849321 0.527876i \(-0.822988\pi\)
0.881815 + 0.471596i \(0.156322\pi\)
\(18\) 0 0
\(19\) −4.09808 2.36603i −0.940163 0.542803i −0.0501517 0.998742i \(-0.515970\pi\)
−0.890011 + 0.455938i \(0.849304\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.09808 + 7.09808i 0.854508 + 1.48005i 0.877101 + 0.480306i \(0.159475\pi\)
−0.0225928 + 0.999745i \(0.507192\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.96410 + 6.86603i 0.736115 + 1.27499i 0.954232 + 0.299066i \(0.0966752\pi\)
−0.218117 + 0.975923i \(0.569991\pi\)
\(30\) 0 0
\(31\) 1.46410i 0.262960i 0.991319 + 0.131480i \(0.0419730\pi\)
−0.991319 + 0.131480i \(0.958027\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.36603 + 4.09808i −0.399931 + 0.692701i
\(36\) 0 0
\(37\) −1.33013 + 0.767949i −0.218672 + 0.126250i −0.605335 0.795971i \(-0.706961\pi\)
0.386663 + 0.922221i \(0.373628\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.33013 + 2.50000i −0.676252 + 0.390434i −0.798441 0.602072i \(-0.794342\pi\)
0.122189 + 0.992507i \(0.461009\pi\)
\(42\) 0 0
\(43\) −6.09808 + 10.5622i −0.929948 + 1.61072i −0.146544 + 0.989204i \(0.546815\pi\)
−0.783404 + 0.621513i \(0.786518\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.26795i 0.476679i 0.971182 + 0.238340i \(0.0766032\pi\)
−0.971182 + 0.238340i \(0.923397\pi\)
\(48\) 0 0
\(49\) 0.232051 + 0.401924i 0.0331501 + 0.0574177i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.92820 1.08902 0.544511 0.838754i \(-0.316715\pi\)
0.544511 + 0.838754i \(0.316715\pi\)
\(54\) 0 0
\(55\) 2.36603 + 4.09808i 0.319035 + 0.552584i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 3.13397 5.42820i 0.401264 0.695010i −0.592614 0.805486i \(-0.701904\pi\)
0.993879 + 0.110476i \(0.0352375\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.33013 + 4.50000i −0.537086 + 0.558156i
\(66\) 0 0
\(67\) −7.56218 + 4.36603i −0.923867 + 0.533395i −0.884867 0.465844i \(-0.845751\pi\)
−0.0390004 + 0.999239i \(0.512417\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.90192 1.09808i −0.225717 0.130318i 0.382878 0.923799i \(-0.374933\pi\)
−0.608595 + 0.793481i \(0.708266\pi\)
\(72\) 0 0
\(73\) 9.19615i 1.07633i −0.842840 0.538164i \(-0.819118\pi\)
0.842840 0.538164i \(-0.180882\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.46410 0.850613
\(78\) 0 0
\(79\) 8.39230 0.944208 0.472104 0.881543i \(-0.343495\pi\)
0.472104 + 0.881543i \(0.343495\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.66025i 0.182237i −0.995840 0.0911183i \(-0.970956\pi\)
0.995840 0.0911183i \(-0.0290441\pi\)
\(84\) 0 0
\(85\) −0.401924 0.232051i −0.0435948 0.0251694i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.19615 + 4.73205i −0.868790 + 0.501596i −0.866946 0.498402i \(-0.833920\pi\)
−0.00184433 + 0.999998i \(0.500587\pi\)
\(90\) 0 0
\(91\) 2.73205 + 9.46410i 0.286397 + 0.992107i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.09808 + 7.09808i −0.420454 + 0.728247i
\(96\) 0 0
\(97\) 8.66025 + 5.00000i 0.879316 + 0.507673i 0.870433 0.492287i \(-0.163839\pi\)
0.00888289 + 0.999961i \(0.497172\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.76795 + 6.52628i 0.374925 + 0.649389i 0.990316 0.138833i \(-0.0443351\pi\)
−0.615391 + 0.788222i \(0.711002\pi\)
\(102\) 0 0
\(103\) 0.732051 0.0721311 0.0360656 0.999349i \(-0.488517\pi\)
0.0360656 + 0.999349i \(0.488517\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.56218 7.90192i −0.441042 0.763908i 0.556725 0.830697i \(-0.312058\pi\)
−0.997767 + 0.0667892i \(0.978724\pi\)
\(108\) 0 0
\(109\) 20.3923i 1.95323i 0.214999 + 0.976614i \(0.431025\pi\)
−0.214999 + 0.976614i \(0.568975\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.33013 + 10.9641i −0.595488 + 1.03142i 0.397990 + 0.917390i \(0.369708\pi\)
−0.993478 + 0.114026i \(0.963625\pi\)
\(114\) 0 0
\(115\) 12.2942 7.09808i 1.14644 0.661899i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.633975 + 0.366025i −0.0581164 + 0.0335535i
\(120\) 0 0
\(121\) −1.76795 + 3.06218i −0.160723 + 0.278380i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) −2.00000 3.46410i −0.177471 0.307389i 0.763542 0.645758i \(-0.223458\pi\)
−0.941014 + 0.338368i \(0.890125\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.3205 −1.33856 −0.669280 0.743011i \(-0.733397\pi\)
−0.669280 + 0.743011i \(0.733397\pi\)
\(132\) 0 0
\(133\) 6.46410 + 11.1962i 0.560509 + 0.970830i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.79423 2.76795i −0.409599 0.236482i 0.281019 0.959702i \(-0.409328\pi\)
−0.690617 + 0.723220i \(0.742661\pi\)
\(138\) 0 0
\(139\) 10.0000 17.3205i 0.848189 1.46911i −0.0346338 0.999400i \(-0.511026\pi\)
0.882823 0.469706i \(-0.155640\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.56218 + 2.36603i 0.799629 + 0.197857i
\(144\) 0 0
\(145\) 11.8923 6.86603i 0.987602 0.570192i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.6962 10.7942i −1.53165 0.884298i −0.999286 0.0377811i \(-0.987971\pi\)
−0.532362 0.846517i \(-0.678696\pi\)
\(150\) 0 0
\(151\) 17.2679i 1.40525i 0.711562 + 0.702623i \(0.247988\pi\)
−0.711562 + 0.702623i \(0.752012\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.53590 0.203688
\(156\) 0 0
\(157\) −23.0526 −1.83979 −0.919897 0.392159i \(-0.871728\pi\)
−0.919897 + 0.392159i \(0.871728\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.3923i 1.76476i
\(162\) 0 0
\(163\) −11.6603 6.73205i −0.913302 0.527295i −0.0318096 0.999494i \(-0.510127\pi\)
−0.881492 + 0.472199i \(0.843460\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.26795 + 0.732051i −0.0981169 + 0.0566478i −0.548256 0.836311i \(-0.684708\pi\)
0.450139 + 0.892959i \(0.351375\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.73205 + 15.1244i −0.663886 + 1.14988i 0.315701 + 0.948859i \(0.397760\pi\)
−0.979586 + 0.201025i \(0.935573\pi\)
\(174\) 0 0
\(175\) −4.73205 2.73205i −0.357709 0.206524i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3660 + 17.9545i 0.774793 + 1.34198i 0.934911 + 0.354883i \(0.115479\pi\)
−0.160118 + 0.987098i \(0.551187\pi\)
\(180\) 0 0
\(181\) −19.1962 −1.42684 −0.713419 0.700737i \(-0.752855\pi\)
−0.713419 + 0.700737i \(0.752855\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.33013 + 2.30385i 0.0977929 + 0.169382i
\(186\) 0 0
\(187\) 0.732051i 0.0535329i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.46410 12.9282i 0.540083 0.935452i −0.458815 0.888532i \(-0.651726\pi\)
0.998899 0.0469202i \(-0.0149407\pi\)
\(192\) 0 0
\(193\) −10.1603 + 5.86603i −0.731351 + 0.422246i −0.818916 0.573913i \(-0.805425\pi\)
0.0875652 + 0.996159i \(0.472091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.928203 0.535898i 0.0661317 0.0381812i −0.466570 0.884485i \(-0.654510\pi\)
0.532701 + 0.846303i \(0.321177\pi\)
\(198\) 0 0
\(199\) 0.169873 0.294229i 0.0120420 0.0208573i −0.859942 0.510392i \(-0.829500\pi\)
0.871984 + 0.489535i \(0.162833\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 21.6603i 1.52025i
\(204\) 0 0
\(205\) 4.33013 + 7.50000i 0.302429 + 0.523823i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.9282 0.894263
\(210\) 0 0
\(211\) −5.66025 9.80385i −0.389668 0.674925i 0.602737 0.797940i \(-0.294077\pi\)
−0.992405 + 0.123015i \(0.960744\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.2942 + 10.5622i 1.24766 + 0.720335i
\(216\) 0 0
\(217\) 2.00000 3.46410i 0.135769 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.928203 + 0.267949i −0.0624377 + 0.0180242i
\(222\) 0 0
\(223\) 14.5359 8.39230i 0.973396 0.561990i 0.0731260 0.997323i \(-0.476702\pi\)
0.900270 + 0.435332i \(0.143369\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.0981 11.0263i −1.26758 0.731840i −0.293054 0.956096i \(-0.594671\pi\)
−0.974530 + 0.224256i \(0.928005\pi\)
\(228\) 0 0
\(229\) 0.143594i 0.00948893i −0.999989 0.00474446i \(-0.998490\pi\)
0.999989 0.00474446i \(-0.00151022\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) 5.66025 0.369234
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.2679i 1.50508i 0.658547 + 0.752539i \(0.271171\pi\)
−0.658547 + 0.752539i \(0.728829\pi\)
\(240\) 0 0
\(241\) 4.62436 + 2.66987i 0.297881 + 0.171982i 0.641491 0.767131i \(-0.278316\pi\)
−0.343610 + 0.939113i \(0.611650\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.696152 0.401924i 0.0444755 0.0256780i
\(246\) 0 0
\(247\) 4.73205 + 16.3923i 0.301093 + 1.04302i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.26795 + 2.19615i −0.0800322 + 0.138620i −0.903264 0.429086i \(-0.858836\pi\)
0.823231 + 0.567706i \(0.192169\pi\)
\(252\) 0 0
\(253\) −19.3923 11.1962i −1.21918 0.703896i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.13397 + 12.3564i 0.445005 + 0.770771i 0.998053 0.0623783i \(-0.0198685\pi\)
−0.553047 + 0.833150i \(0.686535\pi\)
\(258\) 0 0
\(259\) 4.19615 0.260736
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.8301 25.6865i −0.914465 1.58390i −0.807683 0.589617i \(-0.799279\pi\)
−0.106782 0.994282i \(-0.534055\pi\)
\(264\) 0 0
\(265\) 13.7321i 0.843553i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.26795 2.19615i 0.0773082 0.133902i −0.824779 0.565455i \(-0.808701\pi\)
0.902088 + 0.431553i \(0.142034\pi\)
\(270\) 0 0
\(271\) 13.8564 8.00000i 0.841717 0.485965i −0.0161307 0.999870i \(-0.505135\pi\)
0.857847 + 0.513905i \(0.171801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.73205 + 2.73205i −0.285353 + 0.164749i
\(276\) 0 0
\(277\) 8.06218 13.9641i 0.484409 0.839022i −0.515430 0.856932i \(-0.672368\pi\)
0.999840 + 0.0179100i \(0.00570122\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.7128i 1.83217i 0.400981 + 0.916086i \(0.368669\pi\)
−0.400981 + 0.916086i \(0.631331\pi\)
\(282\) 0 0
\(283\) −11.7583 20.3660i −0.698960 1.21063i −0.968827 0.247737i \(-0.920313\pi\)
0.269867 0.962898i \(-0.413020\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.6603 0.806339
\(288\) 0 0
\(289\) 8.46410 + 14.6603i 0.497888 + 0.862368i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.1603 + 11.0622i 1.11935 + 0.646259i 0.941236 0.337750i \(-0.109666\pi\)
0.178118 + 0.984009i \(0.442999\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.09808 28.6865i 0.410492 1.65899i
\(300\) 0 0
\(301\) 28.8564 16.6603i 1.66326 0.960281i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.40192 5.42820i −0.538353 0.310818i
\(306\) 0 0
\(307\) 7.26795i 0.414804i −0.978256 0.207402i \(-0.933499\pi\)
0.978256 0.207402i \(-0.0665008\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.6603 1.22824 0.614120 0.789213i \(-0.289511\pi\)
0.614120 + 0.789213i \(0.289511\pi\)
\(312\) 0 0
\(313\) −31.3205 −1.77034 −0.885170 0.465268i \(-0.845958\pi\)
−0.885170 + 0.465268i \(0.845958\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.803848i 0.0451486i −0.999745 0.0225743i \(-0.992814\pi\)
0.999745 0.0225743i \(-0.00718623\pi\)
\(318\) 0 0
\(319\) −18.7583 10.8301i −1.05026 0.606371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.09808 + 0.633975i −0.0610986 + 0.0352753i
\(324\) 0 0
\(325\) −5.19615 5.00000i −0.288231 0.277350i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.46410 7.73205i 0.246114 0.426282i
\(330\) 0 0
\(331\) 10.3923 + 6.00000i 0.571213 + 0.329790i 0.757634 0.652680i \(-0.226355\pi\)
−0.186421 + 0.982470i \(0.559689\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.56218 + 13.0981i 0.413166 + 0.715624i
\(336\) 0 0
\(337\) 4.07180 0.221805 0.110902 0.993831i \(-0.464626\pi\)
0.110902 + 0.993831i \(0.464626\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.00000 3.46410i −0.108306 0.187592i
\(342\) 0 0
\(343\) 17.8564i 0.964155i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.75833 15.1699i 0.470172 0.814361i −0.529246 0.848468i \(-0.677525\pi\)
0.999418 + 0.0341067i \(0.0108586\pi\)
\(348\) 0 0
\(349\) −10.7321 + 6.19615i −0.574474 + 0.331672i −0.758934 0.651167i \(-0.774280\pi\)
0.184461 + 0.982840i \(0.440946\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.1865 8.76795i 0.808298 0.466671i −0.0380667 0.999275i \(-0.512120\pi\)
0.846364 + 0.532604i \(0.178787\pi\)
\(354\) 0 0
\(355\) −1.90192 + 3.29423i −0.100944 + 0.174840i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.5167i 1.34672i 0.739316 + 0.673359i \(0.235149\pi\)
−0.739316 + 0.673359i \(0.764851\pi\)
\(360\) 0 0
\(361\) 1.69615 + 2.93782i 0.0892712 + 0.154622i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −15.9282 −0.833720
\(366\) 0 0
\(367\) −0.562178 0.973721i −0.0293454 0.0508278i 0.850980 0.525199i \(-0.176009\pi\)
−0.880325 + 0.474371i \(0.842676\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.7583 10.8301i −0.973884 0.562272i
\(372\) 0 0
\(373\) 16.3301 28.2846i 0.845542 1.46452i −0.0396078 0.999215i \(-0.512611\pi\)
0.885150 0.465306i \(-0.154056\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.86603 27.7487i 0.353618 1.42913i
\(378\) 0 0
\(379\) −13.5167 + 7.80385i −0.694304 + 0.400857i −0.805222 0.592973i \(-0.797954\pi\)
0.110918 + 0.993830i \(0.464621\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.588457 + 0.339746i 0.0300688 + 0.0173602i 0.514959 0.857215i \(-0.327807\pi\)
−0.484890 + 0.874575i \(0.661140\pi\)
\(384\) 0 0
\(385\) 12.9282i 0.658882i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.5359 0.889105 0.444553 0.895753i \(-0.353363\pi\)
0.444553 + 0.895753i \(0.353363\pi\)
\(390\) 0 0
\(391\) 2.19615 0.111064
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.5359i 0.731380i
\(396\) 0 0
\(397\) 15.1244 + 8.73205i 0.759070 + 0.438249i 0.828962 0.559305i \(-0.188932\pi\)
−0.0698920 + 0.997555i \(0.522265\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.4545 11.2321i 0.971511 0.560902i 0.0718141 0.997418i \(-0.477121\pi\)
0.899696 + 0.436516i \(0.143788\pi\)
\(402\) 0 0
\(403\) 3.66025 3.80385i 0.182330 0.189483i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.09808 3.63397i 0.103998 0.180129i
\(408\) 0 0
\(409\) −28.7487 16.5981i −1.42153 0.820722i −0.425102 0.905145i \(-0.639762\pi\)
−0.996430 + 0.0844233i \(0.973095\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.87564 −0.141160
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.80385 + 10.0526i 0.283537 + 0.491100i 0.972253 0.233931i \(-0.0751590\pi\)
−0.688717 + 0.725031i \(0.741826\pi\)
\(420\) 0 0
\(421\) 5.00000i 0.243685i −0.992549 0.121843i \(-0.961120\pi\)
0.992549 0.121843i \(-0.0388803\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.267949 0.464102i 0.0129974 0.0225122i
\(426\) 0 0
\(427\) −14.8301 + 8.56218i −0.717680 + 0.414353i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.2942 + 14.0263i −1.17021 + 0.675622i −0.953730 0.300665i \(-0.902792\pi\)
−0.216482 + 0.976287i \(0.569458\pi\)
\(432\) 0 0
\(433\) −1.57180 + 2.72243i −0.0755357 + 0.130832i −0.901319 0.433156i \(-0.857400\pi\)
0.825783 + 0.563987i \(0.190733\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38.7846i 1.85532i
\(438\) 0 0
\(439\) −4.90192 8.49038i −0.233956 0.405224i 0.725013 0.688735i \(-0.241834\pi\)
−0.958969 + 0.283512i \(0.908501\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.3205 0.917945 0.458973 0.888450i \(-0.348218\pi\)
0.458973 + 0.888450i \(0.348218\pi\)
\(444\) 0 0
\(445\) 8.19615 + 14.1962i 0.388535 + 0.672962i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.87564 1.66025i −0.135710 0.0783522i 0.430608 0.902539i \(-0.358299\pi\)
−0.566318 + 0.824187i \(0.691633\pi\)
\(450\) 0 0
\(451\) 6.83013 11.8301i 0.321618 0.557059i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.3923 4.73205i 0.768483 0.221842i
\(456\) 0 0
\(457\) 34.1603 19.7224i 1.59795 0.922576i 0.606067 0.795413i \(-0.292746\pi\)
0.991882 0.127163i \(-0.0405872\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −29.0885 16.7942i −1.35478 0.782185i −0.365869 0.930666i \(-0.619228\pi\)
−0.988915 + 0.148481i \(0.952562\pi\)
\(462\) 0 0
\(463\) 6.33975i 0.294633i −0.989089 0.147316i \(-0.952936\pi\)
0.989089 0.147316i \(-0.0470636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.6603 −0.539572 −0.269786 0.962920i \(-0.586953\pi\)
−0.269786 + 0.962920i \(0.586953\pi\)
\(468\) 0 0
\(469\) 23.8564 1.10159
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.3205i 1.53208i
\(474\) 0 0
\(475\) −8.19615 4.73205i −0.376065 0.217121i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.26795 0.732051i 0.0579341 0.0334483i −0.470753 0.882265i \(-0.656018\pi\)
0.528687 + 0.848817i \(0.322684\pi\)
\(480\) 0 0
\(481\) 5.37564 + 1.33013i 0.245108 + 0.0606486i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.66025 15.0000i 0.393242 0.681115i
\(486\) 0 0
\(487\) −0.509619 0.294229i −0.0230930 0.0133328i 0.488409 0.872615i \(-0.337577\pi\)
−0.511502 + 0.859282i \(0.670911\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.9545 22.4378i −0.584628 1.01260i −0.994922 0.100651i \(-0.967907\pi\)
0.410294 0.911953i \(-0.365426\pi\)
\(492\) 0 0
\(493\) 2.12436 0.0956762
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) 0 0
\(499\) 13.8564i 0.620298i −0.950688 0.310149i \(-0.899621\pi\)
0.950688 0.310149i \(-0.100379\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.63397 + 8.02628i −0.206619 + 0.357874i −0.950647 0.310274i \(-0.899579\pi\)
0.744029 + 0.668148i \(0.232913\pi\)
\(504\) 0 0
\(505\) 11.3038 6.52628i 0.503015 0.290416i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.6244 + 14.7942i −1.13578 + 0.655743i −0.945382 0.325964i \(-0.894311\pi\)
−0.190398 + 0.981707i \(0.560978\pi\)
\(510\) 0 0
\(511\) −12.5622 + 21.7583i −0.555718 + 0.962532i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.26795i 0.0558725i
\(516\) 0 0
\(517\) −4.46410 7.73205i −0.196331 0.340055i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.9808 −0.875373 −0.437687 0.899128i \(-0.644202\pi\)
−0.437687 + 0.899128i \(0.644202\pi\)
\(522\) 0 0
\(523\) −4.29423 7.43782i −0.187774 0.325233i 0.756734 0.653723i \(-0.226794\pi\)
−0.944508 + 0.328490i \(0.893460\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.339746 + 0.196152i 0.0147996 + 0.00854453i
\(528\) 0 0
\(529\) −22.0885 + 38.2583i −0.960368 + 1.66341i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.5000 + 4.33013i 0.758009 + 0.187559i
\(534\) 0 0
\(535\) −13.6865 + 7.90192i −0.591720 + 0.341630i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.09808 0.633975i −0.0472975 0.0273072i
\(540\) 0 0
\(541\) 17.3923i 0.747754i 0.927478 + 0.373877i \(0.121972\pi\)
−0.927478 + 0.373877i \(0.878028\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 35.3205 1.51296
\(546\) 0 0
\(547\) 2.05256 0.0877611 0.0438805 0.999037i \(-0.486028\pi\)
0.0438805 + 0.999037i \(0.486028\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 37.5167i 1.59826i
\(552\) 0 0
\(553\) −19.8564 11.4641i −0.844380 0.487503i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.356406 + 0.205771i −0.0151014 + 0.00871881i −0.507532 0.861633i \(-0.669442\pi\)
0.492430 + 0.870352i \(0.336109\pi\)
\(558\) 0 0
\(559\) 42.2487 12.1962i 1.78693 0.515842i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.46410 + 16.3923i −0.398864 + 0.690853i −0.993586 0.113078i \(-0.963929\pi\)
0.594722 + 0.803932i \(0.297262\pi\)
\(564\) 0 0
\(565\) 18.9904 + 10.9641i 0.798931 + 0.461263i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.00000 + 13.8564i 0.335377 + 0.580891i 0.983557 0.180597i \(-0.0578028\pi\)
−0.648180 + 0.761487i \(0.724469\pi\)
\(570\) 0 0
\(571\) −13.6603 −0.571664 −0.285832 0.958280i \(-0.592270\pi\)
−0.285832 + 0.958280i \(0.592270\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.19615 + 14.1962i 0.341803 + 0.592020i
\(576\) 0 0
\(577\) 25.5885i 1.06526i −0.846348 0.532631i \(-0.821203\pi\)
0.846348 0.532631i \(-0.178797\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.26795 + 3.92820i −0.0940904 + 0.162969i
\(582\) 0 0
\(583\) −18.7583 + 10.8301i −0.776891 + 0.448538i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.8564 + 14.9282i −1.06721 + 0.616153i −0.927417 0.374028i \(-0.877976\pi\)
−0.139791 + 0.990181i \(0.544643\pi\)
\(588\) 0 0
\(589\) 3.46410 6.00000i 0.142736 0.247226i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.1769i 1.15709i 0.815651 + 0.578544i \(0.196379\pi\)
−0.815651 + 0.578544i \(0.803621\pi\)
\(594\) 0 0
\(595\) 0.633975 + 1.09808i 0.0259904 + 0.0450167i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.5359 −1.08423 −0.542114 0.840305i \(-0.682376\pi\)
−0.542114 + 0.840305i \(0.682376\pi\)
\(600\) 0 0
\(601\) 20.8205 + 36.0622i 0.849286 + 1.47101i 0.881846 + 0.471537i \(0.156301\pi\)
−0.0325600 + 0.999470i \(0.510366\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.30385 + 3.06218i 0.215632 + 0.124495i
\(606\) 0 0
\(607\) 0.392305 0.679492i 0.0159232 0.0275797i −0.857954 0.513726i \(-0.828265\pi\)
0.873877 + 0.486147i \(0.161598\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.16987 8.49038i 0.330518 0.343484i
\(612\) 0 0
\(613\) 31.4545 18.1603i 1.27043 0.733486i 0.295365 0.955385i \(-0.404559\pi\)
0.975070 + 0.221899i \(0.0712255\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.7224 18.8923i −1.31736 0.760576i −0.334053 0.942554i \(-0.608416\pi\)
−0.983302 + 0.181979i \(0.941750\pi\)
\(618\) 0 0
\(619\) 44.3923i 1.78428i 0.451762 + 0.892139i \(0.350796\pi\)
−0.451762 + 0.892139i \(0.649204\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.411543i 0.0164093i
\(630\) 0 0
\(631\) 29.3205 + 16.9282i 1.16723 + 0.673901i 0.953026 0.302888i \(-0.0979507\pi\)
0.214205 + 0.976789i \(0.431284\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.00000 + 3.46410i −0.238103 + 0.137469i
\(636\) 0 0
\(637\) 0.401924 1.62436i 0.0159248 0.0643593i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.25833 10.8397i 0.247189 0.428144i −0.715556 0.698556i \(-0.753826\pi\)
0.962745 + 0.270412i \(0.0871598\pi\)
\(642\) 0 0
\(643\) 24.0000 + 13.8564i 0.946468 + 0.546443i 0.891982 0.452071i \(-0.149315\pi\)
0.0544858 + 0.998515i \(0.482648\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.12436 12.3397i −0.280087 0.485125i 0.691319 0.722550i \(-0.257030\pi\)
−0.971406 + 0.237425i \(0.923697\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.7321 + 28.9808i 0.654776 + 1.13410i 0.981950 + 0.189141i \(0.0605703\pi\)
−0.327174 + 0.944964i \(0.606096\pi\)
\(654\) 0 0
\(655\) 26.5359i 1.03684i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.33975 7.51666i 0.169053 0.292808i −0.769034 0.639207i \(-0.779263\pi\)
0.938087 + 0.346400i \(0.112596\pi\)
\(660\) 0 0
\(661\) −4.66987 + 2.69615i −0.181637 + 0.104868i −0.588062 0.808816i \(-0.700109\pi\)
0.406425 + 0.913684i \(0.366775\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.3923 11.1962i 0.752001 0.434168i
\(666\) 0 0
\(667\) −32.4904 + 56.2750i −1.25803 + 2.17898i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.1244i 0.661078i
\(672\) 0 0
\(673\) −23.8923 41.3827i −0.920981 1.59519i −0.797901 0.602789i \(-0.794056\pi\)
−0.123080 0.992397i \(-0.539277\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.4641 −0.824932 −0.412466 0.910973i \(-0.635333\pi\)
−0.412466 + 0.910973i \(0.635333\pi\)
\(678\) 0 0
\(679\) −13.6603 23.6603i −0.524232 0.907997i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −32.7846 18.9282i −1.25447 0.724268i −0.282475 0.959275i \(-0.591155\pi\)
−0.971994 + 0.235007i \(0.924489\pi\)
\(684\) 0 0
\(685\) −4.79423 + 8.30385i −0.183178 + 0.317274i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −20.5981 19.8205i −0.784724 0.755101i
\(690\) 0 0
\(691\) 23.9545 13.8301i 0.911271 0.526123i 0.0304314 0.999537i \(-0.490312\pi\)
0.880840 + 0.473414i \(0.156979\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30.0000 17.3205i −1.13796 0.657004i
\(696\) 0 0
\(697\) 1.33975i 0.0507465i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −44.1051 −1.66583 −0.832914 0.553403i \(-0.813329\pi\)
−0.832914 + 0.553403i \(0.813329\pi\)
\(702\) 0 0
\(703\) 7.26795 0.274116
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.5885i 0.774309i
\(708\) 0 0
\(709\) 6.18653 + 3.57180i 0.232340 + 0.134142i 0.611651 0.791128i \(-0.290506\pi\)
−0.379311 + 0.925269i \(0.623839\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10.3923 + 6.00000i −0.389195 + 0.224702i
\(714\) 0 0
\(715\) 4.09808 16.5622i 0.153259 0.619390i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.5885 + 21.8038i −0.469470 + 0.813146i −0.999391 0.0349010i \(-0.988888\pi\)
0.529921 + 0.848047i \(0.322222\pi\)
\(720\) 0 0
\(721\) −1.73205 1.00000i −0.0645049 0.0372419i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.92820 + 13.7321i 0.294446 + 0.509996i
\(726\) 0 0
\(727\) 4.73205 0.175502 0.0877510 0.996142i \(-0.472032\pi\)
0.0877510 + 0.996142i \(0.472032\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.63397 + 2.83013i 0.0604347 + 0.104676i
\(732\) 0 0
\(733\) 35.0000i 1.29275i −0.763018 0.646377i \(-0.776283\pi\)
0.763018 0.646377i \(-0.223717\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.9282 20.6603i 0.439381 0.761030i
\(738\) 0 0
\(739\) 14.5359 8.39230i 0.534712 0.308716i −0.208221 0.978082i \(-0.566767\pi\)
0.742933 + 0.669366i \(0.233434\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.1962 22.0526i 1.40128 0.809030i 0.406757 0.913537i \(-0.366660\pi\)
0.994524 + 0.104507i \(0.0333263\pi\)
\(744\) 0 0
\(745\) −18.6962 + 32.3827i −0.684974 + 1.18641i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.9282i 0.910857i
\(750\) 0 0
\(751\) −7.83013 13.5622i −0.285725 0.494891i 0.687059 0.726601i \(-0.258901\pi\)
−0.972785 + 0.231710i \(0.925568\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 29.9090 1.08850
\(756\) 0 0
\(757\) 3.39230 + 5.87564i 0.123295 + 0.213554i 0.921065 0.389408i \(-0.127320\pi\)
−0.797770 + 0.602962i \(0.793987\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.19615 + 1.26795i 0.0796105 + 0.0459631i 0.539277 0.842129i \(-0.318698\pi\)
−0.459666 + 0.888092i \(0.652031\pi\)
\(762\) 0 0
\(763\) 27.8564 48.2487i 1.00847 1.74672i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.7321 + 21.7846i −1.36065 + 0.785573i −0.989711 0.143083i \(-0.954298\pi\)
−0.370942 + 0.928656i \(0.620965\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.51666 + 2.60770i 0.162453 + 0.0937923i 0.579022 0.815312i \(-0.303434\pi\)
−0.416569 + 0.909104i \(0.636768\pi\)
\(774\) 0 0
\(775\) 2.92820i 0.105184i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.6603 0.847717
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 39.9282i 1.42510i
\(786\) 0 0
\(787\) −37.5167 21.6603i −1.33732 0.772105i −0.350915 0.936407i \(-0.614129\pi\)
−0.986410 + 0.164303i \(0.947463\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 29.9545 17.2942i 1.06506 0.614912i
\(792\) 0 0
\(793\) −21.7128 + 6.26795i −0.771045 + 0.222581i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.00000 + 5.19615i −0.106265 + 0.184057i −0.914255 0.405140i \(-0.867223\pi\)
0.807989 + 0.589197i \(0.200556\pi\)
\(798\) 0 0
\(799\) 0.758330 + 0.437822i 0.0268278 + 0.0154890i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.5622 + 21.7583i 0.443310 + 0.767835i
\(804\) 0 0
\(805\) −38.7846 −1.36698
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.86603 + 4.96410i 0.100764 + 0.174529i 0.912000 0.410191i \(-0.134538\pi\)
−0.811236 + 0.584719i \(0.801205\pi\)
\(810\) 0 0
\(811\) 1.75129i 0.0614961i 0.999527 + 0.0307480i \(0.00978895\pi\)
−0.999527 + 0.0307480i \(0.990211\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.6603 + 20.1962i −0.408441 + 0.707440i
\(816\) 0 0
\(817\) 49.9808 28.8564i 1.74861 1.00956i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.0526 7.53590i 0.455537 0.263005i −0.254629 0.967039i \(-0.581953\pi\)
0.710166 + 0.704034i \(0.248620\pi\)
\(822\) 0 0
\(823\) 12.0000 20.7846i 0.418294 0.724506i −0.577474 0.816409i \(-0.695962\pi\)
0.995768 + 0.0919029i \(0.0292950\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.3923i 1.96095i 0.196637 + 0.980476i \(0.436998\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(828\) 0 0
\(829\) 12.8660 + 22.2846i 0.446856 + 0.773976i 0.998179 0.0603148i \(-0.0192105\pi\)
−0.551324 + 0.834291i \(0.685877\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.124356 0.00430867
\(834\) 0 0
\(835\) 1.26795 + 2.19615i 0.0438792 + 0.0760010i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.4641 + 8.92820i 0.533880 + 0.308236i 0.742595 0.669741i \(-0.233595\pi\)
−0.208715 + 0.977977i \(0.566928\pi\)
\(840\) 0 0
\(841\) −16.9282 + 29.3205i −0.583731 + 1.01105i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.5000 0.866025i 0.774024 0.0297922i
\(846\) 0 0
\(847\) 8.36603 4.83013i 0.287460 0.165965i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10.9019 6.29423i −0.373713 0.215763i
\(852\) 0 0
\(853\) 34.0333i 1.16528i 0.812731 + 0.582639i \(0.197980\pi\)
−0.812731 + 0.582639i \(0.802020\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.5167 −1.17907 −0.589533 0.807744i \(-0.700688\pi\)
−0.589533 + 0.807744i \(0.700688\pi\)
\(858\) 0 0
\(859\) −34.4449 −1.17524 −0.587622 0.809136i \(-0.699936\pi\)
−0.587622 + 0.809136i \(0.699936\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.6603i 0.941566i −0.882249 0.470783i \(-0.843971\pi\)
0.882249 0.470783i \(-0.156029\pi\)
\(864\) 0 0
\(865\) 26.1962 + 15.1244i 0.890696 + 0.514244i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.8564 + 11.4641i −0.673582 + 0.388893i
\(870\) 0 0
\(871\) 30.5622 + 7.56218i 1.03556 + 0.256235i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.5622 + 28.6865i −0.559904 + 0.969782i
\(876\) 0 0
\(877\) −16.4545 9.50000i −0.555628 0.320792i 0.195761 0.980652i \(-0.437282\pi\)
−0.751389 + 0.659860i \(0.770616\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.2583 + 21.2321i 0.412994 + 0.715326i 0.995216 0.0977040i \(-0.0311498\pi\)
−0.582222 + 0.813030i \(0.697817\pi\)
\(882\) 0 0
\(883\) −8.78461 −0.295626 −0.147813 0.989015i \(-0.547223\pi\)
−0.147813 + 0.989015i \(0.547223\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.9282 + 25.8564i 0.501240 + 0.868173i 0.999999 + 0.00143243i \(0.000455957\pi\)
−0.498759 + 0.866741i \(0.666211\pi\)
\(888\) 0 0
\(889\) 10.9282i 0.366520i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.73205 13.3923i 0.258743 0.448156i
\(894\) 0 0
\(895\) 31.0981 17.9545i 1.03949 0.600152i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.0526 + 5.80385i −0.335272 + 0.193569i
\(900\) 0 0
\(901\) 1.06218 1.83975i 0.0353863 0.0612908i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.2487i 1.10522i
\(906\) 0 0
\(907\) 25.5167 + 44.1962i 0.847267 + 1.46751i 0.883638 + 0.468171i \(0.155087\pi\)
−0.0363712 + 0.999338i \(0.511580\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.53590 −0.0840181 −0.0420090 0.999117i \(-0.513376\pi\)
−0.0420090 + 0.999117i \(0.513376\pi\)
\(912\) 0 0
\(913\) 2.26795 + 3.92820i 0.0750582 + 0.130005i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.2487 + 20.9282i 1.19704 + 0.691110i
\(918\) 0 0
\(919\) 6.19615 10.7321i 0.204392 0.354018i −0.745547 0.666453i \(-0.767812\pi\)
0.949939 + 0.312436i \(0.101145\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.19615 + 7.60770i 0.0722872 + 0.250410i
\(924\) 0 0
\(925\) −2.66025 + 1.53590i −0.0874686 + 0.0505000i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34.5788 + 19.9641i 1.13449 + 0.655001i 0.945061 0.326893i \(-0.106002\pi\)
0.189433 + 0.981894i \(0.439335\pi\)
\(930\) 0 0
\(931\) 2.19615i 0.0719760i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.26795 0.0414664
\(936\) 0 0
\(937\) −19.6795 −0.642901 −0.321450 0.946926i \(-0.604170\pi\)
−0.321450 + 0.946926i \(0.604170\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.7846i 0.873153i −0.899667 0.436577i \(-0.856191\pi\)
0.899667 0.436577i \(-0.143809\pi\)
\(942\) 0 0
\(943\) −35.4904 20.4904i −1.15573 0.667259i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.3205 13.4641i 0.757815 0.437525i −0.0706959 0.997498i \(-0.522522\pi\)
0.828511 + 0.559973i \(0.189189\pi\)
\(948\) 0 0
\(949\) −22.9904 + 23.8923i −0.746299 + 0.775577i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.3923 + 28.3923i −0.530999 + 0.919717i 0.468347 + 0.883545i \(0.344850\pi\)
−0.999346 + 0.0361722i \(0.988484\pi\)
\(954\) 0 0
\(955\) −22.3923 12.9282i −0.724598 0.418347i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.56218 + 13.0981i 0.244195 + 0.422959i
\(960\) 0 0
\(961\) 28.8564 0.930852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.1603 + 17.5981i 0.327070 + 0.566502i
\(966\) 0 0
\(967\) 2.73205i 0.0878568i 0.999035 + 0.0439284i \(0.0139873\pi\)
−0.999035 + 0.0439284i \(0.986013\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.196152 + 0.339746i −0.00629483 + 0.0109030i −0.869156 0.494539i \(-0.835337\pi\)
0.862861 + 0.505442i \(0.168670\pi\)
\(972\) 0 0
\(973\) −47.3205 + 27.3205i −1.51703 + 0.875855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.4019 24.4808i 1.35656 0.783209i 0.367400 0.930063i \(-0.380248\pi\)
0.989158 + 0.146854i \(0.0469148\pi\)
\(978\) 0 0
\(979\) 12.9282 22.3923i 0.413187 0.715661i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.6410i 1.36004i 0.733195 + 0.680019i \(0.238028\pi\)
−0.733195 + 0.680019i \(0.761972\pi\)
\(984\) 0 0
\(985\) −0.928203 1.60770i −0.0295750 0.0512254i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −99.9615 −3.17859
\(990\) 0 0
\(991\) −18.5622 32.1506i −0.589647 1.02130i −0.994279 0.106819i \(-0.965934\pi\)
0.404631 0.914480i \(-0.367400\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.509619 0.294229i −0.0161560 0.00932767i
\(996\) 0 0
\(997\) −9.99038 + 17.3038i −0.316399 + 0.548018i −0.979734 0.200304i \(-0.935807\pi\)
0.663335 + 0.748322i \(0.269140\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.by.g.1297.1 4
3.2 odd 2 624.2.bv.c.49.1 4
4.3 odd 2 936.2.bi.a.361.2 4
12.11 even 2 312.2.bf.a.49.2 4
13.4 even 6 inner 1872.2.by.g.433.1 4
39.2 even 12 8112.2.a.br.1.2 2
39.11 even 12 8112.2.a.bw.1.1 2
39.17 odd 6 624.2.bv.c.433.1 4
52.43 odd 6 936.2.bi.a.433.2 4
156.11 odd 12 4056.2.a.t.1.1 2
156.23 even 6 4056.2.c.k.337.2 4
156.95 even 6 312.2.bf.a.121.2 yes 4
156.107 even 6 4056.2.c.k.337.3 4
156.119 odd 12 4056.2.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.a.49.2 4 12.11 even 2
312.2.bf.a.121.2 yes 4 156.95 even 6
624.2.bv.c.49.1 4 3.2 odd 2
624.2.bv.c.433.1 4 39.17 odd 6
936.2.bi.a.361.2 4 4.3 odd 2
936.2.bi.a.433.2 4 52.43 odd 6
1872.2.by.g.433.1 4 13.4 even 6 inner
1872.2.by.g.1297.1 4 1.1 even 1 trivial
4056.2.a.t.1.1 2 156.11 odd 12
4056.2.a.u.1.2 2 156.119 odd 12
4056.2.c.k.337.2 4 156.23 even 6
4056.2.c.k.337.3 4 156.107 even 6
8112.2.a.br.1.2 2 39.2 even 12
8112.2.a.bw.1.1 2 39.11 even 12