Properties

Label 312.2.bf.a.49.2
Level $312$
Weight $2$
Character 312.49
Analytic conductor $2.491$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(49,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 312.49
Dual form 312.2.bf.a.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +1.73205i q^{5} +(2.36603 + 1.36603i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-2.36603 + 1.36603i) q^{11} +(-2.59808 - 2.50000i) q^{13} +(-1.50000 + 0.866025i) q^{15} +(-0.133975 + 0.232051i) q^{17} +(4.09808 + 2.36603i) q^{19} +2.73205i q^{21} +(4.09808 + 7.09808i) q^{23} +2.00000 q^{25} -1.00000 q^{27} +(-3.96410 - 6.86603i) q^{29} -1.46410i q^{31} +(-2.36603 - 1.36603i) q^{33} +(-2.36603 + 4.09808i) q^{35} +(-1.33013 + 0.767949i) q^{37} +(0.866025 - 3.50000i) q^{39} +(4.33013 - 2.50000i) q^{41} +(6.09808 - 10.5622i) q^{43} +(-1.50000 - 0.866025i) q^{45} +3.26795i q^{47} +(0.232051 + 0.401924i) q^{49} -0.267949 q^{51} -7.92820 q^{53} +(-2.36603 - 4.09808i) q^{55} +4.73205i q^{57} +(3.13397 - 5.42820i) q^{61} +(-2.36603 + 1.36603i) q^{63} +(4.33013 - 4.50000i) q^{65} +(7.56218 - 4.36603i) q^{67} +(-4.09808 + 7.09808i) q^{69} +(-1.90192 - 1.09808i) q^{71} -9.19615i q^{73} +(1.00000 + 1.73205i) q^{75} -7.46410 q^{77} -8.39230 q^{79} +(-0.500000 - 0.866025i) q^{81} -1.66025i q^{83} +(-0.401924 - 0.232051i) q^{85} +(3.96410 - 6.86603i) q^{87} +(8.19615 - 4.73205i) q^{89} +(-2.73205 - 9.46410i) q^{91} +(1.26795 - 0.732051i) q^{93} +(-4.09808 + 7.09808i) q^{95} +(8.66025 + 5.00000i) q^{97} -2.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{7} - 2 q^{9} - 6 q^{11} - 6 q^{15} - 4 q^{17} + 6 q^{19} + 6 q^{23} + 8 q^{25} - 4 q^{27} - 2 q^{29} - 6 q^{33} - 6 q^{35} + 12 q^{37} + 14 q^{43} - 6 q^{45} - 6 q^{49} - 8 q^{51} - 4 q^{53}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.73205i 0.774597i 0.921954 + 0.387298i \(0.126592\pi\)
−0.921954 + 0.387298i \(0.873408\pi\)
\(6\) 0 0
\(7\) 2.36603 + 1.36603i 0.894274 + 0.516309i 0.875338 0.483512i \(-0.160639\pi\)
0.0189356 + 0.999821i \(0.493972\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −2.36603 + 1.36603i −0.713384 + 0.411872i −0.812313 0.583222i \(-0.801792\pi\)
0.0989291 + 0.995094i \(0.468458\pi\)
\(12\) 0 0
\(13\) −2.59808 2.50000i −0.720577 0.693375i
\(14\) 0 0
\(15\) −1.50000 + 0.866025i −0.387298 + 0.223607i
\(16\) 0 0
\(17\) −0.133975 + 0.232051i −0.0324936 + 0.0562806i −0.881815 0.471596i \(-0.843678\pi\)
0.849321 + 0.527876i \(0.177012\pi\)
\(18\) 0 0
\(19\) 4.09808 + 2.36603i 0.940163 + 0.542803i 0.890011 0.455938i \(-0.150696\pi\)
0.0501517 + 0.998742i \(0.484030\pi\)
\(20\) 0 0
\(21\) 2.73205i 0.596182i
\(22\) 0 0
\(23\) 4.09808 + 7.09808i 0.854508 + 1.48005i 0.877101 + 0.480306i \(0.159475\pi\)
−0.0225928 + 0.999745i \(0.507192\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.96410 6.86603i −0.736115 1.27499i −0.954232 0.299066i \(-0.903325\pi\)
0.218117 0.975923i \(-0.430009\pi\)
\(30\) 0 0
\(31\) 1.46410i 0.262960i −0.991319 0.131480i \(-0.958027\pi\)
0.991319 0.131480i \(-0.0419730\pi\)
\(32\) 0 0
\(33\) −2.36603 1.36603i −0.411872 0.237795i
\(34\) 0 0
\(35\) −2.36603 + 4.09808i −0.399931 + 0.692701i
\(36\) 0 0
\(37\) −1.33013 + 0.767949i −0.218672 + 0.126250i −0.605335 0.795971i \(-0.706961\pi\)
0.386663 + 0.922221i \(0.373628\pi\)
\(38\) 0 0
\(39\) 0.866025 3.50000i 0.138675 0.560449i
\(40\) 0 0
\(41\) 4.33013 2.50000i 0.676252 0.390434i −0.122189 0.992507i \(-0.538991\pi\)
0.798441 + 0.602072i \(0.205658\pi\)
\(42\) 0 0
\(43\) 6.09808 10.5622i 0.929948 1.61072i 0.146544 0.989204i \(-0.453185\pi\)
0.783404 0.621513i \(-0.213482\pi\)
\(44\) 0 0
\(45\) −1.50000 0.866025i −0.223607 0.129099i
\(46\) 0 0
\(47\) 3.26795i 0.476679i 0.971182 + 0.238340i \(0.0766032\pi\)
−0.971182 + 0.238340i \(0.923397\pi\)
\(48\) 0 0
\(49\) 0.232051 + 0.401924i 0.0331501 + 0.0574177i
\(50\) 0 0
\(51\) −0.267949 −0.0375204
\(52\) 0 0
\(53\) −7.92820 −1.08902 −0.544511 0.838754i \(-0.683285\pi\)
−0.544511 + 0.838754i \(0.683285\pi\)
\(54\) 0 0
\(55\) −2.36603 4.09808i −0.319035 0.552584i
\(56\) 0 0
\(57\) 4.73205i 0.626775i
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 3.13397 5.42820i 0.401264 0.695010i −0.592614 0.805486i \(-0.701904\pi\)
0.993879 + 0.110476i \(0.0352375\pi\)
\(62\) 0 0
\(63\) −2.36603 + 1.36603i −0.298091 + 0.172103i
\(64\) 0 0
\(65\) 4.33013 4.50000i 0.537086 0.558156i
\(66\) 0 0
\(67\) 7.56218 4.36603i 0.923867 0.533395i 0.0390004 0.999239i \(-0.487583\pi\)
0.884867 + 0.465844i \(0.154249\pi\)
\(68\) 0 0
\(69\) −4.09808 + 7.09808i −0.493350 + 0.854508i
\(70\) 0 0
\(71\) −1.90192 1.09808i −0.225717 0.130318i 0.382878 0.923799i \(-0.374933\pi\)
−0.608595 + 0.793481i \(0.708266\pi\)
\(72\) 0 0
\(73\) 9.19615i 1.07633i −0.842840 0.538164i \(-0.819118\pi\)
0.842840 0.538164i \(-0.180882\pi\)
\(74\) 0 0
\(75\) 1.00000 + 1.73205i 0.115470 + 0.200000i
\(76\) 0 0
\(77\) −7.46410 −0.850613
\(78\) 0 0
\(79\) −8.39230 −0.944208 −0.472104 0.881543i \(-0.656505\pi\)
−0.472104 + 0.881543i \(0.656505\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 1.66025i 0.182237i −0.995840 0.0911183i \(-0.970956\pi\)
0.995840 0.0911183i \(-0.0290441\pi\)
\(84\) 0 0
\(85\) −0.401924 0.232051i −0.0435948 0.0251694i
\(86\) 0 0
\(87\) 3.96410 6.86603i 0.424996 0.736115i
\(88\) 0 0
\(89\) 8.19615 4.73205i 0.868790 0.501596i 0.00184433 0.999998i \(-0.499413\pi\)
0.866946 + 0.498402i \(0.166080\pi\)
\(90\) 0 0
\(91\) −2.73205 9.46410i −0.286397 0.992107i
\(92\) 0 0
\(93\) 1.26795 0.732051i 0.131480 0.0759101i
\(94\) 0 0
\(95\) −4.09808 + 7.09808i −0.420454 + 0.728247i
\(96\) 0 0
\(97\) 8.66025 + 5.00000i 0.879316 + 0.507673i 0.870433 0.492287i \(-0.163839\pi\)
0.00888289 + 0.999961i \(0.497172\pi\)
\(98\) 0 0
\(99\) 2.73205i 0.274581i
\(100\) 0 0
\(101\) −3.76795 6.52628i −0.374925 0.649389i 0.615391 0.788222i \(-0.288998\pi\)
−0.990316 + 0.138833i \(0.955665\pi\)
\(102\) 0 0
\(103\) −0.732051 −0.0721311 −0.0360656 0.999349i \(-0.511483\pi\)
−0.0360656 + 0.999349i \(0.511483\pi\)
\(104\) 0 0
\(105\) −4.73205 −0.461801
\(106\) 0 0
\(107\) −4.56218 7.90192i −0.441042 0.763908i 0.556725 0.830697i \(-0.312058\pi\)
−0.997767 + 0.0667892i \(0.978724\pi\)
\(108\) 0 0
\(109\) 20.3923i 1.95323i 0.214999 + 0.976614i \(0.431025\pi\)
−0.214999 + 0.976614i \(0.568975\pi\)
\(110\) 0 0
\(111\) −1.33013 0.767949i −0.126250 0.0728905i
\(112\) 0 0
\(113\) 6.33013 10.9641i 0.595488 1.03142i −0.397990 0.917390i \(-0.630292\pi\)
0.993478 0.114026i \(-0.0363747\pi\)
\(114\) 0 0
\(115\) −12.2942 + 7.09808i −1.14644 + 0.661899i
\(116\) 0 0
\(117\) 3.46410 1.00000i 0.320256 0.0924500i
\(118\) 0 0
\(119\) −0.633975 + 0.366025i −0.0581164 + 0.0335535i
\(120\) 0 0
\(121\) −1.76795 + 3.06218i −0.160723 + 0.278380i
\(122\) 0 0
\(123\) 4.33013 + 2.50000i 0.390434 + 0.225417i
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 2.00000 + 3.46410i 0.177471 + 0.307389i 0.941014 0.338368i \(-0.109875\pi\)
−0.763542 + 0.645758i \(0.776542\pi\)
\(128\) 0 0
\(129\) 12.1962 1.07381
\(130\) 0 0
\(131\) −15.3205 −1.33856 −0.669280 0.743011i \(-0.733397\pi\)
−0.669280 + 0.743011i \(0.733397\pi\)
\(132\) 0 0
\(133\) 6.46410 + 11.1962i 0.560509 + 0.970830i
\(134\) 0 0
\(135\) 1.73205i 0.149071i
\(136\) 0 0
\(137\) 4.79423 + 2.76795i 0.409599 + 0.236482i 0.690617 0.723220i \(-0.257339\pi\)
−0.281019 + 0.959702i \(0.590672\pi\)
\(138\) 0 0
\(139\) −10.0000 + 17.3205i −0.848189 + 1.46911i 0.0346338 + 0.999400i \(0.488974\pi\)
−0.882823 + 0.469706i \(0.844360\pi\)
\(140\) 0 0
\(141\) −2.83013 + 1.63397i −0.238340 + 0.137605i
\(142\) 0 0
\(143\) 9.56218 + 2.36603i 0.799629 + 0.197857i
\(144\) 0 0
\(145\) 11.8923 6.86603i 0.987602 0.570192i
\(146\) 0 0
\(147\) −0.232051 + 0.401924i −0.0191392 + 0.0331501i
\(148\) 0 0
\(149\) 18.6962 + 10.7942i 1.53165 + 0.884298i 0.999286 + 0.0377811i \(0.0120290\pi\)
0.532362 + 0.846517i \(0.321304\pi\)
\(150\) 0 0
\(151\) 17.2679i 1.40525i −0.711562 0.702623i \(-0.752012\pi\)
0.711562 0.702623i \(-0.247988\pi\)
\(152\) 0 0
\(153\) −0.133975 0.232051i −0.0108312 0.0187602i
\(154\) 0 0
\(155\) 2.53590 0.203688
\(156\) 0 0
\(157\) −23.0526 −1.83979 −0.919897 0.392159i \(-0.871728\pi\)
−0.919897 + 0.392159i \(0.871728\pi\)
\(158\) 0 0
\(159\) −3.96410 6.86603i −0.314374 0.544511i
\(160\) 0 0
\(161\) 22.3923i 1.76476i
\(162\) 0 0
\(163\) 11.6603 + 6.73205i 0.913302 + 0.527295i 0.881492 0.472199i \(-0.156540\pi\)
0.0318096 + 0.999494i \(0.489873\pi\)
\(164\) 0 0
\(165\) 2.36603 4.09808i 0.184195 0.319035i
\(166\) 0 0
\(167\) −1.26795 + 0.732051i −0.0981169 + 0.0566478i −0.548256 0.836311i \(-0.684708\pi\)
0.450139 + 0.892959i \(0.351375\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) −4.09808 + 2.36603i −0.313388 + 0.180934i
\(172\) 0 0
\(173\) 8.73205 15.1244i 0.663886 1.14988i −0.315701 0.948859i \(-0.602240\pi\)
0.979586 0.201025i \(-0.0644271\pi\)
\(174\) 0 0
\(175\) 4.73205 + 2.73205i 0.357709 + 0.206524i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3660 + 17.9545i 0.774793 + 1.34198i 0.934911 + 0.354883i \(0.115479\pi\)
−0.160118 + 0.987098i \(0.551187\pi\)
\(180\) 0 0
\(181\) −19.1962 −1.42684 −0.713419 0.700737i \(-0.752855\pi\)
−0.713419 + 0.700737i \(0.752855\pi\)
\(182\) 0 0
\(183\) 6.26795 0.463340
\(184\) 0 0
\(185\) −1.33013 2.30385i −0.0977929 0.169382i
\(186\) 0 0
\(187\) 0.732051i 0.0535329i
\(188\) 0 0
\(189\) −2.36603 1.36603i −0.172103 0.0993637i
\(190\) 0 0
\(191\) 7.46410 12.9282i 0.540083 0.935452i −0.458815 0.888532i \(-0.651726\pi\)
0.998899 0.0469202i \(-0.0149407\pi\)
\(192\) 0 0
\(193\) −10.1603 + 5.86603i −0.731351 + 0.422246i −0.818916 0.573913i \(-0.805425\pi\)
0.0875652 + 0.996159i \(0.472091\pi\)
\(194\) 0 0
\(195\) 6.06218 + 1.50000i 0.434122 + 0.107417i
\(196\) 0 0
\(197\) −0.928203 + 0.535898i −0.0661317 + 0.0381812i −0.532701 0.846303i \(-0.678823\pi\)
0.466570 + 0.884485i \(0.345490\pi\)
\(198\) 0 0
\(199\) −0.169873 + 0.294229i −0.0120420 + 0.0208573i −0.871984 0.489535i \(-0.837167\pi\)
0.859942 + 0.510392i \(0.170500\pi\)
\(200\) 0 0
\(201\) 7.56218 + 4.36603i 0.533395 + 0.307956i
\(202\) 0 0
\(203\) 21.6603i 1.52025i
\(204\) 0 0
\(205\) 4.33013 + 7.50000i 0.302429 + 0.523823i
\(206\) 0 0
\(207\) −8.19615 −0.569672
\(208\) 0 0
\(209\) −12.9282 −0.894263
\(210\) 0 0
\(211\) 5.66025 + 9.80385i 0.389668 + 0.674925i 0.992405 0.123015i \(-0.0392564\pi\)
−0.602737 + 0.797940i \(0.705923\pi\)
\(212\) 0 0
\(213\) 2.19615i 0.150478i
\(214\) 0 0
\(215\) 18.2942 + 10.5622i 1.24766 + 0.720335i
\(216\) 0 0
\(217\) 2.00000 3.46410i 0.135769 0.235159i
\(218\) 0 0
\(219\) 7.96410 4.59808i 0.538164 0.310709i
\(220\) 0 0
\(221\) 0.928203 0.267949i 0.0624377 0.0180242i
\(222\) 0 0
\(223\) −14.5359 + 8.39230i −0.973396 + 0.561990i −0.900270 0.435332i \(-0.856631\pi\)
−0.0731260 + 0.997323i \(0.523298\pi\)
\(224\) 0 0
\(225\) −1.00000 + 1.73205i −0.0666667 + 0.115470i
\(226\) 0 0
\(227\) −19.0981 11.0263i −1.26758 0.731840i −0.293054 0.956096i \(-0.594671\pi\)
−0.974530 + 0.224256i \(0.928005\pi\)
\(228\) 0 0
\(229\) 0.143594i 0.00948893i −0.999989 0.00474446i \(-0.998490\pi\)
0.999989 0.00474446i \(-0.00151022\pi\)
\(230\) 0 0
\(231\) −3.73205 6.46410i −0.245551 0.425307i
\(232\) 0 0
\(233\) 2.00000 0.131024 0.0655122 0.997852i \(-0.479132\pi\)
0.0655122 + 0.997852i \(0.479132\pi\)
\(234\) 0 0
\(235\) −5.66025 −0.369234
\(236\) 0 0
\(237\) −4.19615 7.26795i −0.272569 0.472104i
\(238\) 0 0
\(239\) 23.2679i 1.50508i 0.658547 + 0.752539i \(0.271171\pi\)
−0.658547 + 0.752539i \(0.728829\pi\)
\(240\) 0 0
\(241\) 4.62436 + 2.66987i 0.297881 + 0.171982i 0.641491 0.767131i \(-0.278316\pi\)
−0.343610 + 0.939113i \(0.611650\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −0.696152 + 0.401924i −0.0444755 + 0.0256780i
\(246\) 0 0
\(247\) −4.73205 16.3923i −0.301093 1.04302i
\(248\) 0 0
\(249\) 1.43782 0.830127i 0.0911183 0.0526072i
\(250\) 0 0
\(251\) −1.26795 + 2.19615i −0.0800322 + 0.138620i −0.903264 0.429086i \(-0.858836\pi\)
0.823231 + 0.567706i \(0.192169\pi\)
\(252\) 0 0
\(253\) −19.3923 11.1962i −1.21918 0.703896i
\(254\) 0 0
\(255\) 0.464102i 0.0290632i
\(256\) 0 0
\(257\) −7.13397 12.3564i −0.445005 0.770771i 0.553047 0.833150i \(-0.313465\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 0 0
\(259\) −4.19615 −0.260736
\(260\) 0 0
\(261\) 7.92820 0.490743
\(262\) 0 0
\(263\) −14.8301 25.6865i −0.914465 1.58390i −0.807683 0.589617i \(-0.799279\pi\)
−0.106782 0.994282i \(-0.534055\pi\)
\(264\) 0 0
\(265\) 13.7321i 0.843553i
\(266\) 0 0
\(267\) 8.19615 + 4.73205i 0.501596 + 0.289597i
\(268\) 0 0
\(269\) −1.26795 + 2.19615i −0.0773082 + 0.133902i −0.902088 0.431553i \(-0.857966\pi\)
0.824779 + 0.565455i \(0.191299\pi\)
\(270\) 0 0
\(271\) −13.8564 + 8.00000i −0.841717 + 0.485965i −0.857847 0.513905i \(-0.828199\pi\)
0.0161307 + 0.999870i \(0.494865\pi\)
\(272\) 0 0
\(273\) 6.83013 7.09808i 0.413378 0.429595i
\(274\) 0 0
\(275\) −4.73205 + 2.73205i −0.285353 + 0.164749i
\(276\) 0 0
\(277\) 8.06218 13.9641i 0.484409 0.839022i −0.515430 0.856932i \(-0.672368\pi\)
0.999840 + 0.0179100i \(0.00570122\pi\)
\(278\) 0 0
\(279\) 1.26795 + 0.732051i 0.0759101 + 0.0438267i
\(280\) 0 0
\(281\) 30.7128i 1.83217i −0.400981 0.916086i \(-0.631331\pi\)
0.400981 0.916086i \(-0.368669\pi\)
\(282\) 0 0
\(283\) 11.7583 + 20.3660i 0.698960 + 1.21063i 0.968827 + 0.247737i \(0.0796869\pi\)
−0.269867 + 0.962898i \(0.586980\pi\)
\(284\) 0 0
\(285\) −8.19615 −0.485498
\(286\) 0 0
\(287\) 13.6603 0.806339
\(288\) 0 0
\(289\) 8.46410 + 14.6603i 0.497888 + 0.862368i
\(290\) 0 0
\(291\) 10.0000i 0.586210i
\(292\) 0 0
\(293\) −19.1603 11.0622i −1.11935 0.646259i −0.178118 0.984009i \(-0.557001\pi\)
−0.941236 + 0.337750i \(0.890334\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.36603 1.36603i 0.137291 0.0792648i
\(298\) 0 0
\(299\) 7.09808 28.6865i 0.410492 1.65899i
\(300\) 0 0
\(301\) 28.8564 16.6603i 1.66326 0.960281i
\(302\) 0 0
\(303\) 3.76795 6.52628i 0.216463 0.374925i
\(304\) 0 0
\(305\) 9.40192 + 5.42820i 0.538353 + 0.310818i
\(306\) 0 0
\(307\) 7.26795i 0.414804i 0.978256 + 0.207402i \(0.0665008\pi\)
−0.978256 + 0.207402i \(0.933499\pi\)
\(308\) 0 0
\(309\) −0.366025 0.633975i −0.0208225 0.0360656i
\(310\) 0 0
\(311\) 21.6603 1.22824 0.614120 0.789213i \(-0.289511\pi\)
0.614120 + 0.789213i \(0.289511\pi\)
\(312\) 0 0
\(313\) −31.3205 −1.77034 −0.885170 0.465268i \(-0.845958\pi\)
−0.885170 + 0.465268i \(0.845958\pi\)
\(314\) 0 0
\(315\) −2.36603 4.09808i −0.133310 0.230900i
\(316\) 0 0
\(317\) 0.803848i 0.0451486i 0.999745 + 0.0225743i \(0.00718623\pi\)
−0.999745 + 0.0225743i \(0.992814\pi\)
\(318\) 0 0
\(319\) 18.7583 + 10.8301i 1.05026 + 0.606371i
\(320\) 0 0
\(321\) 4.56218 7.90192i 0.254636 0.441042i
\(322\) 0 0
\(323\) −1.09808 + 0.633975i −0.0610986 + 0.0352753i
\(324\) 0 0
\(325\) −5.19615 5.00000i −0.288231 0.277350i
\(326\) 0 0
\(327\) −17.6603 + 10.1962i −0.976614 + 0.563849i
\(328\) 0 0
\(329\) −4.46410 + 7.73205i −0.246114 + 0.426282i
\(330\) 0 0
\(331\) −10.3923 6.00000i −0.571213 0.329790i 0.186421 0.982470i \(-0.440311\pi\)
−0.757634 + 0.652680i \(0.773645\pi\)
\(332\) 0 0
\(333\) 1.53590i 0.0841667i
\(334\) 0 0
\(335\) 7.56218 + 13.0981i 0.413166 + 0.715624i
\(336\) 0 0
\(337\) 4.07180 0.221805 0.110902 0.993831i \(-0.464626\pi\)
0.110902 + 0.993831i \(0.464626\pi\)
\(338\) 0 0
\(339\) 12.6603 0.687611
\(340\) 0 0
\(341\) 2.00000 + 3.46410i 0.108306 + 0.187592i
\(342\) 0 0
\(343\) 17.8564i 0.964155i
\(344\) 0 0
\(345\) −12.2942 7.09808i −0.661899 0.382148i
\(346\) 0 0
\(347\) 8.75833 15.1699i 0.470172 0.814361i −0.529246 0.848468i \(-0.677525\pi\)
0.999418 + 0.0341067i \(0.0108586\pi\)
\(348\) 0 0
\(349\) −10.7321 + 6.19615i −0.574474 + 0.331672i −0.758934 0.651167i \(-0.774280\pi\)
0.184461 + 0.982840i \(0.440946\pi\)
\(350\) 0 0
\(351\) 2.59808 + 2.50000i 0.138675 + 0.133440i
\(352\) 0 0
\(353\) −15.1865 + 8.76795i −0.808298 + 0.466671i −0.846364 0.532604i \(-0.821213\pi\)
0.0380667 + 0.999275i \(0.487880\pi\)
\(354\) 0 0
\(355\) 1.90192 3.29423i 0.100944 0.174840i
\(356\) 0 0
\(357\) −0.633975 0.366025i −0.0335535 0.0193721i
\(358\) 0 0
\(359\) 25.5167i 1.34672i 0.739316 + 0.673359i \(0.235149\pi\)
−0.739316 + 0.673359i \(0.764851\pi\)
\(360\) 0 0
\(361\) 1.69615 + 2.93782i 0.0892712 + 0.154622i
\(362\) 0 0
\(363\) −3.53590 −0.185587
\(364\) 0 0
\(365\) 15.9282 0.833720
\(366\) 0 0
\(367\) 0.562178 + 0.973721i 0.0293454 + 0.0508278i 0.880325 0.474371i \(-0.157324\pi\)
−0.850980 + 0.525199i \(0.823991\pi\)
\(368\) 0 0
\(369\) 5.00000i 0.260290i
\(370\) 0 0
\(371\) −18.7583 10.8301i −0.973884 0.562272i
\(372\) 0 0
\(373\) 16.3301 28.2846i 0.845542 1.46452i −0.0396078 0.999215i \(-0.512611\pi\)
0.885150 0.465306i \(-0.154056\pi\)
\(374\) 0 0
\(375\) −10.5000 + 6.06218i −0.542218 + 0.313050i
\(376\) 0 0
\(377\) −6.86603 + 27.7487i −0.353618 + 1.42913i
\(378\) 0 0
\(379\) 13.5167 7.80385i 0.694304 0.400857i −0.110918 0.993830i \(-0.535379\pi\)
0.805222 + 0.592973i \(0.202046\pi\)
\(380\) 0 0
\(381\) −2.00000 + 3.46410i −0.102463 + 0.177471i
\(382\) 0 0
\(383\) 0.588457 + 0.339746i 0.0300688 + 0.0173602i 0.514959 0.857215i \(-0.327807\pi\)
−0.484890 + 0.874575i \(0.661140\pi\)
\(384\) 0 0
\(385\) 12.9282i 0.658882i
\(386\) 0 0
\(387\) 6.09808 + 10.5622i 0.309983 + 0.536906i
\(388\) 0 0
\(389\) −17.5359 −0.889105 −0.444553 0.895753i \(-0.646637\pi\)
−0.444553 + 0.895753i \(0.646637\pi\)
\(390\) 0 0
\(391\) −2.19615 −0.111064
\(392\) 0 0
\(393\) −7.66025 13.2679i −0.386409 0.669280i
\(394\) 0 0
\(395\) 14.5359i 0.731380i
\(396\) 0 0
\(397\) 15.1244 + 8.73205i 0.759070 + 0.438249i 0.828962 0.559305i \(-0.188932\pi\)
−0.0698920 + 0.997555i \(0.522265\pi\)
\(398\) 0 0
\(399\) −6.46410 + 11.1962i −0.323610 + 0.560509i
\(400\) 0 0
\(401\) −19.4545 + 11.2321i −0.971511 + 0.560902i −0.899696 0.436516i \(-0.856212\pi\)
−0.0718141 + 0.997418i \(0.522879\pi\)
\(402\) 0 0
\(403\) −3.66025 + 3.80385i −0.182330 + 0.189483i
\(404\) 0 0
\(405\) 1.50000 0.866025i 0.0745356 0.0430331i
\(406\) 0 0
\(407\) 2.09808 3.63397i 0.103998 0.180129i
\(408\) 0 0
\(409\) −28.7487 16.5981i −1.42153 0.820722i −0.425102 0.905145i \(-0.639762\pi\)
−0.996430 + 0.0844233i \(0.973095\pi\)
\(410\) 0 0
\(411\) 5.53590i 0.273066i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.87564 0.141160
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 5.80385 + 10.0526i 0.283537 + 0.491100i 0.972253 0.233931i \(-0.0751590\pi\)
−0.688717 + 0.725031i \(0.741826\pi\)
\(420\) 0 0
\(421\) 5.00000i 0.243685i −0.992549 0.121843i \(-0.961120\pi\)
0.992549 0.121843i \(-0.0388803\pi\)
\(422\) 0 0
\(423\) −2.83013 1.63397i −0.137605 0.0794466i
\(424\) 0 0
\(425\) −0.267949 + 0.464102i −0.0129974 + 0.0225122i
\(426\) 0 0
\(427\) 14.8301 8.56218i 0.717680 0.414353i
\(428\) 0 0
\(429\) 2.73205 + 9.46410i 0.131905 + 0.456931i
\(430\) 0 0
\(431\) −24.2942 + 14.0263i −1.17021 + 0.675622i −0.953730 0.300665i \(-0.902792\pi\)
−0.216482 + 0.976287i \(0.569458\pi\)
\(432\) 0 0
\(433\) −1.57180 + 2.72243i −0.0755357 + 0.130832i −0.901319 0.433156i \(-0.857400\pi\)
0.825783 + 0.563987i \(0.190733\pi\)
\(434\) 0 0
\(435\) 11.8923 + 6.86603i 0.570192 + 0.329201i
\(436\) 0 0
\(437\) 38.7846i 1.85532i
\(438\) 0 0
\(439\) 4.90192 + 8.49038i 0.233956 + 0.405224i 0.958969 0.283512i \(-0.0914995\pi\)
−0.725013 + 0.688735i \(0.758166\pi\)
\(440\) 0 0
\(441\) −0.464102 −0.0221001
\(442\) 0 0
\(443\) 19.3205 0.917945 0.458973 0.888450i \(-0.348218\pi\)
0.458973 + 0.888450i \(0.348218\pi\)
\(444\) 0 0
\(445\) 8.19615 + 14.1962i 0.388535 + 0.672962i
\(446\) 0 0
\(447\) 21.5885i 1.02110i
\(448\) 0 0
\(449\) 2.87564 + 1.66025i 0.135710 + 0.0783522i 0.566318 0.824187i \(-0.308367\pi\)
−0.430608 + 0.902539i \(0.641701\pi\)
\(450\) 0 0
\(451\) −6.83013 + 11.8301i −0.321618 + 0.557059i
\(452\) 0 0
\(453\) 14.9545 8.63397i 0.702623 0.405660i
\(454\) 0 0
\(455\) 16.3923 4.73205i 0.768483 0.221842i
\(456\) 0 0
\(457\) 34.1603 19.7224i 1.59795 0.922576i 0.606067 0.795413i \(-0.292746\pi\)
0.991882 0.127163i \(-0.0405872\pi\)
\(458\) 0 0
\(459\) 0.133975 0.232051i 0.00625340 0.0108312i
\(460\) 0 0
\(461\) 29.0885 + 16.7942i 1.35478 + 0.782185i 0.988915 0.148481i \(-0.0474384\pi\)
0.365869 + 0.930666i \(0.380772\pi\)
\(462\) 0 0
\(463\) 6.33975i 0.294633i 0.989089 + 0.147316i \(0.0470636\pi\)
−0.989089 + 0.147316i \(0.952936\pi\)
\(464\) 0 0
\(465\) 1.26795 + 2.19615i 0.0587997 + 0.101844i
\(466\) 0 0
\(467\) −11.6603 −0.539572 −0.269786 0.962920i \(-0.586953\pi\)
−0.269786 + 0.962920i \(0.586953\pi\)
\(468\) 0 0
\(469\) 23.8564 1.10159
\(470\) 0 0
\(471\) −11.5263 19.9641i −0.531103 0.919897i
\(472\) 0 0
\(473\) 33.3205i 1.53208i
\(474\) 0 0
\(475\) 8.19615 + 4.73205i 0.376065 + 0.217121i
\(476\) 0 0
\(477\) 3.96410 6.86603i 0.181504 0.314374i
\(478\) 0 0
\(479\) 1.26795 0.732051i 0.0579341 0.0334483i −0.470753 0.882265i \(-0.656018\pi\)
0.528687 + 0.848817i \(0.322684\pi\)
\(480\) 0 0
\(481\) 5.37564 + 1.33013i 0.245108 + 0.0606486i
\(482\) 0 0
\(483\) −19.3923 + 11.1962i −0.882380 + 0.509443i
\(484\) 0 0
\(485\) −8.66025 + 15.0000i −0.393242 + 0.681115i
\(486\) 0 0
\(487\) 0.509619 + 0.294229i 0.0230930 + 0.0133328i 0.511502 0.859282i \(-0.329089\pi\)
−0.488409 + 0.872615i \(0.662423\pi\)
\(488\) 0 0
\(489\) 13.4641i 0.608868i
\(490\) 0 0
\(491\) −12.9545 22.4378i −0.584628 1.01260i −0.994922 0.100651i \(-0.967907\pi\)
0.410294 0.911953i \(-0.365426\pi\)
\(492\) 0 0
\(493\) 2.12436 0.0956762
\(494\) 0 0
\(495\) 4.73205 0.212690
\(496\) 0 0
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 0 0
\(499\) 13.8564i 0.620298i 0.950688 + 0.310149i \(0.100379\pi\)
−0.950688 + 0.310149i \(0.899621\pi\)
\(500\) 0 0
\(501\) −1.26795 0.732051i −0.0566478 0.0327056i
\(502\) 0 0
\(503\) −4.63397 + 8.02628i −0.206619 + 0.357874i −0.950647 0.310274i \(-0.899579\pi\)
0.744029 + 0.668148i \(0.232913\pi\)
\(504\) 0 0
\(505\) 11.3038 6.52628i 0.503015 0.290416i
\(506\) 0 0
\(507\) −11.0000 + 6.92820i −0.488527 + 0.307692i
\(508\) 0 0
\(509\) 25.6244 14.7942i 1.13578 0.655743i 0.190398 0.981707i \(-0.439022\pi\)
0.945382 + 0.325964i \(0.105689\pi\)
\(510\) 0 0
\(511\) 12.5622 21.7583i 0.555718 0.962532i
\(512\) 0 0
\(513\) −4.09808 2.36603i −0.180934 0.104463i
\(514\) 0 0
\(515\) 1.26795i 0.0558725i
\(516\) 0 0
\(517\) −4.46410 7.73205i −0.196331 0.340055i
\(518\) 0 0
\(519\) 17.4641 0.766589
\(520\) 0 0
\(521\) 19.9808 0.875373 0.437687 0.899128i \(-0.355798\pi\)
0.437687 + 0.899128i \(0.355798\pi\)
\(522\) 0 0
\(523\) 4.29423 + 7.43782i 0.187774 + 0.325233i 0.944508 0.328490i \(-0.106540\pi\)
−0.756734 + 0.653723i \(0.773206\pi\)
\(524\) 0 0
\(525\) 5.46410i 0.238473i
\(526\) 0 0
\(527\) 0.339746 + 0.196152i 0.0147996 + 0.00854453i
\(528\) 0 0
\(529\) −22.0885 + 38.2583i −0.960368 + 1.66341i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.5000 4.33013i −0.758009 0.187559i
\(534\) 0 0
\(535\) 13.6865 7.90192i 0.591720 0.341630i
\(536\) 0 0
\(537\) −10.3660 + 17.9545i −0.447327 + 0.774793i
\(538\) 0 0
\(539\) −1.09808 0.633975i −0.0472975 0.0273072i
\(540\) 0 0
\(541\) 17.3923i 0.747754i 0.927478 + 0.373877i \(0.121972\pi\)
−0.927478 + 0.373877i \(0.878028\pi\)
\(542\) 0 0
\(543\) −9.59808 16.6244i −0.411893 0.713419i
\(544\) 0 0
\(545\) −35.3205 −1.51296
\(546\) 0 0
\(547\) −2.05256 −0.0877611 −0.0438805 0.999037i \(-0.513972\pi\)
−0.0438805 + 0.999037i \(0.513972\pi\)
\(548\) 0 0
\(549\) 3.13397 + 5.42820i 0.133755 + 0.231670i
\(550\) 0 0
\(551\) 37.5167i 1.59826i
\(552\) 0 0
\(553\) −19.8564 11.4641i −0.844380 0.487503i
\(554\) 0 0
\(555\) 1.33013 2.30385i 0.0564607 0.0977929i
\(556\) 0 0
\(557\) 0.356406 0.205771i 0.0151014 0.00871881i −0.492430 0.870352i \(-0.663891\pi\)
0.507532 + 0.861633i \(0.330558\pi\)
\(558\) 0 0
\(559\) −42.2487 + 12.1962i −1.78693 + 0.515842i
\(560\) 0 0
\(561\) 0.633975 0.366025i 0.0267664 0.0154536i
\(562\) 0 0
\(563\) −9.46410 + 16.3923i −0.398864 + 0.690853i −0.993586 0.113078i \(-0.963929\pi\)
0.594722 + 0.803932i \(0.297262\pi\)
\(564\) 0 0
\(565\) 18.9904 + 10.9641i 0.798931 + 0.461263i
\(566\) 0 0
\(567\) 2.73205i 0.114735i
\(568\) 0 0
\(569\) −8.00000 13.8564i −0.335377 0.580891i 0.648180 0.761487i \(-0.275531\pi\)
−0.983557 + 0.180597i \(0.942197\pi\)
\(570\) 0 0
\(571\) 13.6603 0.571664 0.285832 0.958280i \(-0.407730\pi\)
0.285832 + 0.958280i \(0.407730\pi\)
\(572\) 0 0
\(573\) 14.9282 0.623635
\(574\) 0 0
\(575\) 8.19615 + 14.1962i 0.341803 + 0.592020i
\(576\) 0 0
\(577\) 25.5885i 1.06526i −0.846348 0.532631i \(-0.821203\pi\)
0.846348 0.532631i \(-0.178797\pi\)
\(578\) 0 0
\(579\) −10.1603 5.86603i −0.422246 0.243784i
\(580\) 0 0
\(581\) 2.26795 3.92820i 0.0940904 0.162969i
\(582\) 0 0
\(583\) 18.7583 10.8301i 0.776891 0.448538i
\(584\) 0 0
\(585\) 1.73205 + 6.00000i 0.0716115 + 0.248069i
\(586\) 0 0
\(587\) −25.8564 + 14.9282i −1.06721 + 0.616153i −0.927417 0.374028i \(-0.877976\pi\)
−0.139791 + 0.990181i \(0.544643\pi\)
\(588\) 0 0
\(589\) 3.46410 6.00000i 0.142736 0.247226i
\(590\) 0 0
\(591\) −0.928203 0.535898i −0.0381812 0.0220439i
\(592\) 0 0
\(593\) 28.1769i 1.15709i −0.815651 0.578544i \(-0.803621\pi\)
0.815651 0.578544i \(-0.196379\pi\)
\(594\) 0 0
\(595\) −0.633975 1.09808i −0.0259904 0.0450167i
\(596\) 0 0
\(597\) −0.339746 −0.0139049
\(598\) 0 0
\(599\) −26.5359 −1.08423 −0.542114 0.840305i \(-0.682376\pi\)
−0.542114 + 0.840305i \(0.682376\pi\)
\(600\) 0 0
\(601\) 20.8205 + 36.0622i 0.849286 + 1.47101i 0.881846 + 0.471537i \(0.156301\pi\)
−0.0325600 + 0.999470i \(0.510366\pi\)
\(602\) 0 0
\(603\) 8.73205i 0.355597i
\(604\) 0 0
\(605\) −5.30385 3.06218i −0.215632 0.124495i
\(606\) 0 0
\(607\) −0.392305 + 0.679492i −0.0159232 + 0.0275797i −0.873877 0.486147i \(-0.838402\pi\)
0.857954 + 0.513726i \(0.171735\pi\)
\(608\) 0 0
\(609\) 18.7583 10.8301i 0.760126 0.438859i
\(610\) 0 0
\(611\) 8.16987 8.49038i 0.330518 0.343484i
\(612\) 0 0
\(613\) 31.4545 18.1603i 1.27043 0.733486i 0.295365 0.955385i \(-0.404559\pi\)
0.975070 + 0.221899i \(0.0712255\pi\)
\(614\) 0 0
\(615\) −4.33013 + 7.50000i −0.174608 + 0.302429i
\(616\) 0 0
\(617\) 32.7224 + 18.8923i 1.31736 + 0.760576i 0.983302 0.181979i \(-0.0582502\pi\)
0.334053 + 0.942554i \(0.391584\pi\)
\(618\) 0 0
\(619\) 44.3923i 1.78428i −0.451762 0.892139i \(-0.649204\pi\)
0.451762 0.892139i \(-0.350796\pi\)
\(620\) 0 0
\(621\) −4.09808 7.09808i −0.164450 0.284836i
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −6.46410 11.1962i −0.258151 0.447131i
\(628\) 0 0
\(629\) 0.411543i 0.0164093i
\(630\) 0 0
\(631\) −29.3205 16.9282i −1.16723 0.673901i −0.214205 0.976789i \(-0.568716\pi\)
−0.953026 + 0.302888i \(0.902049\pi\)
\(632\) 0 0
\(633\) −5.66025 + 9.80385i −0.224975 + 0.389668i
\(634\) 0 0
\(635\) −6.00000 + 3.46410i −0.238103 + 0.137469i
\(636\) 0 0
\(637\) 0.401924 1.62436i 0.0159248 0.0643593i
\(638\) 0 0
\(639\) 1.90192 1.09808i 0.0752389 0.0434392i
\(640\) 0 0
\(641\) −6.25833 + 10.8397i −0.247189 + 0.428144i −0.962745 0.270412i \(-0.912840\pi\)
0.715556 + 0.698556i \(0.246174\pi\)
\(642\) 0 0
\(643\) −24.0000 13.8564i −0.946468 0.546443i −0.0544858 0.998515i \(-0.517352\pi\)
−0.891982 + 0.452071i \(0.850685\pi\)
\(644\) 0 0
\(645\) 21.1244i 0.831771i
\(646\) 0 0
\(647\) −7.12436 12.3397i −0.280087 0.485125i 0.691319 0.722550i \(-0.257030\pi\)
−0.971406 + 0.237425i \(0.923697\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −16.7321 28.9808i −0.654776 1.13410i −0.981950 0.189141i \(-0.939430\pi\)
0.327174 0.944964i \(-0.393904\pi\)
\(654\) 0 0
\(655\) 26.5359i 1.03684i
\(656\) 0 0
\(657\) 7.96410 + 4.59808i 0.310709 + 0.179388i
\(658\) 0 0
\(659\) 4.33975 7.51666i 0.169053 0.292808i −0.769034 0.639207i \(-0.779263\pi\)
0.938087 + 0.346400i \(0.112596\pi\)
\(660\) 0 0
\(661\) −4.66987 + 2.69615i −0.181637 + 0.104868i −0.588062 0.808816i \(-0.700109\pi\)
0.406425 + 0.913684i \(0.366775\pi\)
\(662\) 0 0
\(663\) 0.696152 + 0.669873i 0.0270363 + 0.0260157i
\(664\) 0 0
\(665\) −19.3923 + 11.1962i −0.752001 + 0.434168i
\(666\) 0 0
\(667\) 32.4904 56.2750i 1.25803 2.17898i
\(668\) 0 0
\(669\) −14.5359 8.39230i −0.561990 0.324465i
\(670\) 0 0
\(671\) 17.1244i 0.661078i
\(672\) 0 0
\(673\) −23.8923 41.3827i −0.920981 1.59519i −0.797901 0.602789i \(-0.794056\pi\)
−0.123080 0.992397i \(-0.539277\pi\)
\(674\) 0 0
\(675\) −2.00000 −0.0769800
\(676\) 0 0
\(677\) 21.4641 0.824932 0.412466 0.910973i \(-0.364667\pi\)
0.412466 + 0.910973i \(0.364667\pi\)
\(678\) 0 0
\(679\) 13.6603 + 23.6603i 0.524232 + 0.907997i
\(680\) 0 0
\(681\) 22.0526i 0.845056i
\(682\) 0 0
\(683\) −32.7846 18.9282i −1.25447 0.724268i −0.282475 0.959275i \(-0.591155\pi\)
−0.971994 + 0.235007i \(0.924489\pi\)
\(684\) 0 0
\(685\) −4.79423 + 8.30385i −0.183178 + 0.317274i
\(686\) 0 0
\(687\) 0.124356 0.0717968i 0.00474446 0.00273922i
\(688\) 0 0
\(689\) 20.5981 + 19.8205i 0.784724 + 0.755101i
\(690\) 0 0
\(691\) −23.9545 + 13.8301i −0.911271 + 0.526123i −0.880840 0.473414i \(-0.843021\pi\)
−0.0304314 + 0.999537i \(0.509688\pi\)
\(692\) 0 0
\(693\) 3.73205 6.46410i 0.141769 0.245551i
\(694\) 0 0
\(695\) −30.0000 17.3205i −1.13796 0.657004i
\(696\) 0 0
\(697\) 1.33975i 0.0507465i
\(698\) 0 0
\(699\) 1.00000 + 1.73205i 0.0378235 + 0.0655122i
\(700\) 0 0
\(701\) 44.1051 1.66583 0.832914 0.553403i \(-0.186671\pi\)
0.832914 + 0.553403i \(0.186671\pi\)
\(702\) 0 0
\(703\) −7.26795 −0.274116
\(704\) 0 0
\(705\) −2.83013 4.90192i −0.106589 0.184617i
\(706\) 0 0
\(707\) 20.5885i 0.774309i
\(708\) 0 0
\(709\) 6.18653 + 3.57180i 0.232340 + 0.134142i 0.611651 0.791128i \(-0.290506\pi\)
−0.379311 + 0.925269i \(0.623839\pi\)
\(710\) 0 0
\(711\) 4.19615 7.26795i 0.157368 0.272569i
\(712\) 0 0
\(713\) 10.3923 6.00000i 0.389195 0.224702i
\(714\) 0 0
\(715\) −4.09808 + 16.5622i −0.153259 + 0.619390i
\(716\) 0 0
\(717\) −20.1506 + 11.6340i −0.752539 + 0.434479i
\(718\) 0 0
\(719\) −12.5885 + 21.8038i −0.469470 + 0.813146i −0.999391 0.0349010i \(-0.988888\pi\)
0.529921 + 0.848047i \(0.322222\pi\)
\(720\) 0 0
\(721\) −1.73205 1.00000i −0.0645049 0.0372419i
\(722\) 0 0
\(723\) 5.33975i 0.198587i
\(724\) 0 0
\(725\) −7.92820 13.7321i −0.294446 0.509996i
\(726\) 0 0
\(727\) −4.73205 −0.175502 −0.0877510 0.996142i \(-0.527968\pi\)
−0.0877510 + 0.996142i \(0.527968\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.63397 + 2.83013i 0.0604347 + 0.104676i
\(732\) 0 0
\(733\) 35.0000i 1.29275i −0.763018 0.646377i \(-0.776283\pi\)
0.763018 0.646377i \(-0.223717\pi\)
\(734\) 0 0
\(735\) −0.696152 0.401924i −0.0256780 0.0148252i
\(736\) 0 0
\(737\) −11.9282 + 20.6603i −0.439381 + 0.761030i
\(738\) 0 0
\(739\) −14.5359 + 8.39230i −0.534712 + 0.308716i −0.742933 0.669366i \(-0.766566\pi\)
0.208221 + 0.978082i \(0.433233\pi\)
\(740\) 0 0
\(741\) 11.8301 12.2942i 0.434591 0.451640i
\(742\) 0 0
\(743\) 38.1962 22.0526i 1.40128 0.809030i 0.406757 0.913537i \(-0.366660\pi\)
0.994524 + 0.104507i \(0.0333263\pi\)
\(744\) 0 0
\(745\) −18.6962 + 32.3827i −0.684974 + 1.18641i
\(746\) 0 0
\(747\) 1.43782 + 0.830127i 0.0526072 + 0.0303728i
\(748\) 0 0
\(749\) 24.9282i 0.910857i
\(750\) 0 0
\(751\) 7.83013 + 13.5622i 0.285725 + 0.494891i 0.972785 0.231710i \(-0.0744321\pi\)
−0.687059 + 0.726601i \(0.741099\pi\)
\(752\) 0 0
\(753\) −2.53590 −0.0924133
\(754\) 0 0
\(755\) 29.9090 1.08850
\(756\) 0 0
\(757\) 3.39230 + 5.87564i 0.123295 + 0.213554i 0.921065 0.389408i \(-0.127320\pi\)
−0.797770 + 0.602962i \(0.793987\pi\)
\(758\) 0 0
\(759\) 22.3923i 0.812789i
\(760\) 0 0
\(761\) −2.19615 1.26795i −0.0796105 0.0459631i 0.459666 0.888092i \(-0.347969\pi\)
−0.539277 + 0.842129i \(0.681302\pi\)
\(762\) 0 0
\(763\) −27.8564 + 48.2487i −1.00847 + 1.74672i
\(764\) 0 0
\(765\) 0.401924 0.232051i 0.0145316 0.00838981i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.7321 + 21.7846i −1.36065 + 0.785573i −0.989711 0.143083i \(-0.954298\pi\)
−0.370942 + 0.928656i \(0.620965\pi\)
\(770\) 0 0
\(771\) 7.13397 12.3564i 0.256924 0.445005i
\(772\) 0 0
\(773\) −4.51666 2.60770i −0.162453 0.0937923i 0.416569 0.909104i \(-0.363232\pi\)
−0.579022 + 0.815312i \(0.696566\pi\)
\(774\) 0 0
\(775\) 2.92820i 0.105184i
\(776\) 0 0
\(777\) −2.09808 3.63397i −0.0752681 0.130368i
\(778\) 0 0
\(779\) 23.6603 0.847717
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 3.96410 + 6.86603i 0.141665 + 0.245372i
\(784\) 0 0
\(785\) 39.9282i 1.42510i
\(786\) 0 0
\(787\) 37.5167 + 21.6603i 1.33732 + 0.772105i 0.986410 0.164303i \(-0.0525374\pi\)
0.350915 + 0.936407i \(0.385871\pi\)
\(788\) 0 0
\(789\) 14.8301 25.6865i 0.527967 0.914465i
\(790\) 0 0
\(791\) 29.9545 17.2942i 1.06506 0.614912i
\(792\) 0 0
\(793\) −21.7128 + 6.26795i −0.771045 + 0.222581i
\(794\) 0 0
\(795\) 11.8923 6.86603i 0.421777 0.243513i
\(796\) 0 0
\(797\) 3.00000 5.19615i 0.106265 0.184057i −0.807989 0.589197i \(-0.799444\pi\)
0.914255 + 0.405140i \(0.132777\pi\)
\(798\) 0 0
\(799\) −0.758330 0.437822i −0.0268278 0.0154890i
\(800\) 0 0
\(801\) 9.46410i 0.334398i
\(802\) 0 0
\(803\) 12.5622 + 21.7583i 0.443310 + 0.767835i
\(804\) 0 0
\(805\) −38.7846 −1.36698
\(806\) 0 0
\(807\) −2.53590 −0.0892679
\(808\) 0 0
\(809\) −2.86603 4.96410i −0.100764 0.174529i 0.811236 0.584719i \(-0.198795\pi\)
−0.912000 + 0.410191i \(0.865462\pi\)
\(810\) 0 0
\(811\) 1.75129i 0.0614961i −0.999527 0.0307480i \(-0.990211\pi\)
0.999527 0.0307480i \(-0.00978895\pi\)
\(812\) 0 0
\(813\) −13.8564 8.00000i −0.485965 0.280572i
\(814\) 0 0
\(815\) −11.6603 + 20.1962i −0.408441 + 0.707440i
\(816\) 0 0
\(817\) 49.9808 28.8564i 1.74861 1.00956i
\(818\) 0 0
\(819\) 9.56218 + 2.36603i 0.334130 + 0.0826756i
\(820\) 0 0
\(821\) −13.0526 + 7.53590i −0.455537 + 0.263005i −0.710166 0.704034i \(-0.751380\pi\)
0.254629 + 0.967039i \(0.418047\pi\)
\(822\) 0 0
\(823\) −12.0000 + 20.7846i −0.418294 + 0.724506i −0.995768 0.0919029i \(-0.970705\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(824\) 0 0
\(825\) −4.73205 2.73205i −0.164749 0.0951178i
\(826\) 0 0
\(827\) 56.3923i 1.96095i 0.196637 + 0.980476i \(0.436998\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(828\) 0 0
\(829\) 12.8660 + 22.2846i 0.446856 + 0.773976i 0.998179 0.0603148i \(-0.0192105\pi\)
−0.551324 + 0.834291i \(0.685877\pi\)
\(830\) 0 0
\(831\) 16.1244 0.559348
\(832\) 0 0
\(833\) −0.124356 −0.00430867
\(834\) 0 0
\(835\) −1.26795 2.19615i −0.0438792 0.0760010i
\(836\) 0 0
\(837\) 1.46410i 0.0506068i
\(838\) 0 0
\(839\) 15.4641 + 8.92820i 0.533880 + 0.308236i 0.742595 0.669741i \(-0.233595\pi\)
−0.208715 + 0.977977i \(0.566928\pi\)
\(840\) 0 0
\(841\) −16.9282 + 29.3205i −0.583731 + 1.01105i
\(842\) 0 0
\(843\) 26.5981 15.3564i 0.916086 0.528903i
\(844\) 0 0
\(845\) −22.5000 + 0.866025i −0.774024 + 0.0297922i
\(846\) 0 0
\(847\) −8.36603 + 4.83013i −0.287460 + 0.165965i
\(848\) 0 0
\(849\) −11.7583 + 20.3660i −0.403545 + 0.698960i
\(850\) 0 0
\(851\) −10.9019 6.29423i −0.373713 0.215763i
\(852\) 0 0
\(853\) 34.0333i 1.16528i 0.812731 + 0.582639i \(0.197980\pi\)
−0.812731 + 0.582639i \(0.802020\pi\)
\(854\) 0 0
\(855\) −4.09808 7.09808i −0.140151 0.242749i
\(856\) 0 0
\(857\) 34.5167 1.17907 0.589533 0.807744i \(-0.299312\pi\)
0.589533 + 0.807744i \(0.299312\pi\)
\(858\) 0 0
\(859\) 34.4449 1.17524 0.587622 0.809136i \(-0.300064\pi\)
0.587622 + 0.809136i \(0.300064\pi\)
\(860\) 0 0
\(861\) 6.83013 + 11.8301i 0.232770 + 0.403170i
\(862\) 0 0
\(863\) 27.6603i 0.941566i −0.882249 0.470783i \(-0.843971\pi\)
0.882249 0.470783i \(-0.156029\pi\)
\(864\) 0 0
\(865\) 26.1962 + 15.1244i 0.890696 + 0.514244i
\(866\) 0 0
\(867\) −8.46410 + 14.6603i −0.287456 + 0.497888i
\(868\) 0 0
\(869\) 19.8564 11.4641i 0.673582 0.388893i
\(870\) 0 0
\(871\) −30.5622 7.56218i −1.03556 0.256235i
\(872\) 0 0
\(873\) −8.66025 + 5.00000i −0.293105 + 0.169224i
\(874\) 0 0
\(875\) −16.5622 + 28.6865i −0.559904 + 0.969782i
\(876\) 0 0
\(877\) −16.4545 9.50000i −0.555628 0.320792i 0.195761 0.980652i \(-0.437282\pi\)
−0.751389 + 0.659860i \(0.770616\pi\)
\(878\) 0 0
\(879\) 22.1244i 0.746236i
\(880\) 0 0
\(881\) −12.2583 21.2321i −0.412994 0.715326i 0.582222 0.813030i \(-0.302183\pi\)
−0.995216 + 0.0977040i \(0.968850\pi\)
\(882\) 0 0
\(883\) 8.78461 0.295626 0.147813 0.989015i \(-0.452777\pi\)
0.147813 + 0.989015i \(0.452777\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.9282 + 25.8564i 0.501240 + 0.868173i 0.999999 + 0.00143243i \(0.000455957\pi\)
−0.498759 + 0.866741i \(0.666211\pi\)
\(888\) 0 0
\(889\) 10.9282i 0.366520i
\(890\) 0 0
\(891\) 2.36603 + 1.36603i 0.0792648 + 0.0457636i
\(892\) 0 0
\(893\) −7.73205 + 13.3923i −0.258743 + 0.448156i
\(894\) 0 0
\(895\) −31.0981 + 17.9545i −1.03949 + 0.600152i
\(896\) 0 0
\(897\) 28.3923 8.19615i 0.947991 0.273662i
\(898\) 0 0
\(899\) −10.0526 + 5.80385i −0.335272 + 0.193569i
\(900\) 0 0
\(901\) 1.06218 1.83975i 0.0353863 0.0612908i
\(902\) 0 0
\(903\) 28.8564 + 16.6603i 0.960281 + 0.554419i
\(904\) 0 0
\(905\) 33.2487i 1.10522i
\(906\) 0 0
\(907\) −25.5167 44.1962i −0.847267 1.46751i −0.883638 0.468171i \(-0.844913\pi\)
0.0363712 0.999338i \(-0.488420\pi\)
\(908\) 0 0
\(909\) 7.53590 0.249950
\(910\) 0 0
\(911\) −2.53590 −0.0840181 −0.0420090 0.999117i \(-0.513376\pi\)
−0.0420090 + 0.999117i \(0.513376\pi\)
\(912\) 0 0
\(913\) 2.26795 + 3.92820i 0.0750582 + 0.130005i
\(914\) 0 0
\(915\) 10.8564i 0.358902i
\(916\) 0 0
\(917\) −36.2487 20.9282i −1.19704 0.691110i
\(918\) 0 0
\(919\) −6.19615 + 10.7321i −0.204392 + 0.354018i −0.949939 0.312436i \(-0.898855\pi\)
0.745547 + 0.666453i \(0.232188\pi\)
\(920\) 0 0
\(921\) −6.29423 + 3.63397i −0.207402 + 0.119744i
\(922\) 0 0
\(923\) 2.19615 + 7.60770i 0.0722872 + 0.250410i
\(924\) 0 0
\(925\) −2.66025 + 1.53590i −0.0874686 + 0.0505000i
\(926\) 0 0
\(927\) 0.366025 0.633975i 0.0120219 0.0208225i
\(928\) 0 0
\(929\) −34.5788 19.9641i −1.13449 0.655001i −0.189433 0.981894i \(-0.560665\pi\)
−0.945061 + 0.326893i \(0.893998\pi\)
\(930\) 0 0
\(931\) 2.19615i 0.0719760i
\(932\) 0 0
\(933\) 10.8301 + 18.7583i 0.354562 + 0.614120i
\(934\) 0 0
\(935\) 1.26795 0.0414664
\(936\) 0 0
\(937\) −19.6795 −0.642901 −0.321450 0.946926i \(-0.604170\pi\)
−0.321450 + 0.946926i \(0.604170\pi\)
\(938\) 0 0
\(939\) −15.6603 27.1244i −0.511053 0.885170i
\(940\) 0 0
\(941\) 26.7846i 0.873153i 0.899667 + 0.436577i \(0.143809\pi\)
−0.899667 + 0.436577i \(0.856191\pi\)
\(942\) 0 0
\(943\) 35.4904 + 20.4904i 1.15573 + 0.667259i
\(944\) 0 0
\(945\) 2.36603 4.09808i 0.0769668 0.133310i
\(946\) 0 0
\(947\) 23.3205 13.4641i 0.757815 0.437525i −0.0706959 0.997498i \(-0.522522\pi\)
0.828511 + 0.559973i \(0.189189\pi\)
\(948\) 0 0
\(949\) −22.9904 + 23.8923i −0.746299 + 0.775577i
\(950\) 0 0
\(951\) −0.696152 + 0.401924i −0.0225743 + 0.0130333i
\(952\) 0 0
\(953\) 16.3923 28.3923i 0.530999 0.919717i −0.468347 0.883545i \(-0.655150\pi\)
0.999346 0.0361722i \(-0.0115165\pi\)
\(954\) 0 0
\(955\) 22.3923 + 12.9282i 0.724598 + 0.418347i
\(956\) 0 0
\(957\) 21.6603i 0.700177i
\(958\) 0 0
\(959\) 7.56218 + 13.0981i 0.244195 + 0.422959i
\(960\) 0 0
\(961\) 28.8564 0.930852
\(962\) 0 0
\(963\) 9.12436 0.294028
\(964\) 0 0
\(965\) −10.1603 17.5981i −0.327070 0.566502i
\(966\) 0 0
\(967\) 2.73205i 0.0878568i −0.999035 0.0439284i \(-0.986013\pi\)
0.999035 0.0439284i \(-0.0139873\pi\)
\(968\) 0 0
\(969\) −1.09808 0.633975i −0.0352753 0.0203662i
\(970\) 0 0
\(971\) −0.196152 + 0.339746i −0.00629483 + 0.0109030i −0.869156 0.494539i \(-0.835337\pi\)
0.862861 + 0.505442i \(0.168670\pi\)
\(972\) 0 0
\(973\) −47.3205 + 27.3205i −1.51703 + 0.875855i
\(974\) 0 0
\(975\) 1.73205 7.00000i 0.0554700 0.224179i
\(976\) 0 0
\(977\) −42.4019 + 24.4808i −1.35656 + 0.783209i −0.989158 0.146854i \(-0.953085\pi\)
−0.367400 + 0.930063i \(0.619752\pi\)
\(978\) 0 0
\(979\) −12.9282 + 22.3923i −0.413187 + 0.715661i
\(980\) 0 0
\(981\) −17.6603 10.1962i −0.563849 0.325538i
\(982\) 0 0
\(983\) 42.6410i 1.36004i 0.733195 + 0.680019i \(0.238028\pi\)
−0.733195 + 0.680019i \(0.761972\pi\)
\(984\) 0 0
\(985\) −0.928203 1.60770i −0.0295750 0.0512254i
\(986\) 0 0
\(987\) −8.92820 −0.284188
\(988\) 0 0
\(989\) 99.9615 3.17859
\(990\) 0 0
\(991\) 18.5622 + 32.1506i 0.589647 + 1.02130i 0.994279 + 0.106819i \(0.0340665\pi\)
−0.404631 + 0.914480i \(0.632600\pi\)
\(992\) 0 0
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) −0.509619 0.294229i −0.0161560 0.00932767i
\(996\) 0 0
\(997\) −9.99038 + 17.3038i −0.316399 + 0.548018i −0.979734 0.200304i \(-0.935807\pi\)
0.663335 + 0.748322i \(0.269140\pi\)
\(998\) 0 0
\(999\) 1.33013 0.767949i 0.0420834 0.0242968i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.bf.a.49.2 4
3.2 odd 2 936.2.bi.a.361.2 4
4.3 odd 2 624.2.bv.c.49.1 4
12.11 even 2 1872.2.by.g.1297.1 4
13.2 odd 12 4056.2.a.u.1.2 2
13.3 even 3 4056.2.c.k.337.3 4
13.4 even 6 inner 312.2.bf.a.121.2 yes 4
13.10 even 6 4056.2.c.k.337.2 4
13.11 odd 12 4056.2.a.t.1.1 2
39.17 odd 6 936.2.bi.a.433.2 4
52.11 even 12 8112.2.a.bw.1.1 2
52.15 even 12 8112.2.a.br.1.2 2
52.43 odd 6 624.2.bv.c.433.1 4
156.95 even 6 1872.2.by.g.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.a.49.2 4 1.1 even 1 trivial
312.2.bf.a.121.2 yes 4 13.4 even 6 inner
624.2.bv.c.49.1 4 4.3 odd 2
624.2.bv.c.433.1 4 52.43 odd 6
936.2.bi.a.361.2 4 3.2 odd 2
936.2.bi.a.433.2 4 39.17 odd 6
1872.2.by.g.433.1 4 156.95 even 6
1872.2.by.g.1297.1 4 12.11 even 2
4056.2.a.t.1.1 2 13.11 odd 12
4056.2.a.u.1.2 2 13.2 odd 12
4056.2.c.k.337.2 4 13.10 even 6
4056.2.c.k.337.3 4 13.3 even 3
8112.2.a.br.1.2 2 52.15 even 12
8112.2.a.bw.1.1 2 52.11 even 12