Properties

Label 1870.2.a.r.1.3
Level $1870$
Weight $2$
Character 1870.1
Self dual yes
Analytic conductor $14.932$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,2,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,-3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9320251780\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.89511\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.89511 q^{3} +1.00000 q^{4} -1.00000 q^{5} +2.89511 q^{6} -1.48654 q^{7} +1.00000 q^{8} +5.38164 q^{9} -1.00000 q^{10} -1.00000 q^{11} +2.89511 q^{12} +3.40857 q^{13} -1.48654 q^{14} -2.89511 q^{15} +1.00000 q^{16} -1.00000 q^{17} +5.38164 q^{18} +6.38164 q^{19} -1.00000 q^{20} -4.30368 q^{21} -1.00000 q^{22} +0.513465 q^{23} +2.89511 q^{24} +1.00000 q^{25} +3.40857 q^{26} +6.89511 q^{27} -1.48654 q^{28} +7.40857 q^{29} -2.89511 q^{30} -1.40857 q^{31} +1.00000 q^{32} -2.89511 q^{33} -1.00000 q^{34} +1.48654 q^{35} +5.38164 q^{36} +3.79021 q^{37} +6.38164 q^{38} +9.86818 q^{39} -1.00000 q^{40} -1.48654 q^{41} -4.30368 q^{42} -5.79021 q^{43} -1.00000 q^{44} -5.38164 q^{45} +0.513465 q^{46} +3.61836 q^{47} +2.89511 q^{48} -4.79021 q^{49} +1.00000 q^{50} -2.89511 q^{51} +3.40857 q^{52} -2.89511 q^{53} +6.89511 q^{54} +1.00000 q^{55} -1.48654 q^{56} +18.4755 q^{57} +7.40857 q^{58} +0.0779639 q^{59} -2.89511 q^{60} -5.19878 q^{61} -1.40857 q^{62} -8.00000 q^{63} +1.00000 q^{64} -3.40857 q^{65} -2.89511 q^{66} -12.2498 q^{67} -1.00000 q^{68} +1.48654 q^{69} +1.48654 q^{70} +8.38164 q^{71} +5.38164 q^{72} -15.4486 q^{73} +3.79021 q^{74} +2.89511 q^{75} +6.38164 q^{76} +1.48654 q^{77} +9.86818 q^{78} -1.23672 q^{79} -1.00000 q^{80} +3.81714 q^{81} -1.48654 q^{82} +9.48654 q^{83} -4.30368 q^{84} +1.00000 q^{85} -5.79021 q^{86} +21.4486 q^{87} -1.00000 q^{88} -2.38164 q^{89} -5.38164 q^{90} -5.06696 q^{91} +0.513465 q^{92} -4.07796 q^{93} +3.61836 q^{94} -6.38164 q^{95} +2.89511 q^{96} -10.5914 q^{97} -4.79021 q^{98} -5.38164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{5} - 2 q^{7} + 3 q^{8} + 5 q^{9} - 3 q^{10} - 3 q^{11} + 4 q^{13} - 2 q^{14} + 3 q^{16} - 3 q^{17} + 5 q^{18} + 8 q^{19} - 3 q^{20} + 2 q^{21} - 3 q^{22} + 4 q^{23} + 3 q^{25}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.89511 1.67149 0.835745 0.549117i \(-0.185036\pi\)
0.835745 + 0.549117i \(0.185036\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 2.89511 1.18192
\(7\) −1.48654 −0.561858 −0.280929 0.959729i \(-0.590642\pi\)
−0.280929 + 0.959729i \(0.590642\pi\)
\(8\) 1.00000 0.353553
\(9\) 5.38164 1.79388
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 2.89511 0.835745
\(13\) 3.40857 0.945368 0.472684 0.881232i \(-0.343285\pi\)
0.472684 + 0.881232i \(0.343285\pi\)
\(14\) −1.48654 −0.397293
\(15\) −2.89511 −0.747513
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 5.38164 1.26847
\(19\) 6.38164 1.46405 0.732025 0.681278i \(-0.238576\pi\)
0.732025 + 0.681278i \(0.238576\pi\)
\(20\) −1.00000 −0.223607
\(21\) −4.30368 −0.939139
\(22\) −1.00000 −0.213201
\(23\) 0.513465 0.107065 0.0535324 0.998566i \(-0.482952\pi\)
0.0535324 + 0.998566i \(0.482952\pi\)
\(24\) 2.89511 0.590961
\(25\) 1.00000 0.200000
\(26\) 3.40857 0.668476
\(27\) 6.89511 1.32696
\(28\) −1.48654 −0.280929
\(29\) 7.40857 1.37574 0.687869 0.725835i \(-0.258547\pi\)
0.687869 + 0.725835i \(0.258547\pi\)
\(30\) −2.89511 −0.528572
\(31\) −1.40857 −0.252987 −0.126493 0.991967i \(-0.540372\pi\)
−0.126493 + 0.991967i \(0.540372\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.89511 −0.503973
\(34\) −1.00000 −0.171499
\(35\) 1.48654 0.251270
\(36\) 5.38164 0.896940
\(37\) 3.79021 0.623107 0.311554 0.950229i \(-0.399151\pi\)
0.311554 + 0.950229i \(0.399151\pi\)
\(38\) 6.38164 1.03524
\(39\) 9.86818 1.58017
\(40\) −1.00000 −0.158114
\(41\) −1.48654 −0.232158 −0.116079 0.993240i \(-0.537033\pi\)
−0.116079 + 0.993240i \(0.537033\pi\)
\(42\) −4.30368 −0.664072
\(43\) −5.79021 −0.882999 −0.441500 0.897261i \(-0.645553\pi\)
−0.441500 + 0.897261i \(0.645553\pi\)
\(44\) −1.00000 −0.150756
\(45\) −5.38164 −0.802248
\(46\) 0.513465 0.0757063
\(47\) 3.61836 0.527792 0.263896 0.964551i \(-0.414992\pi\)
0.263896 + 0.964551i \(0.414992\pi\)
\(48\) 2.89511 0.417873
\(49\) −4.79021 −0.684316
\(50\) 1.00000 0.141421
\(51\) −2.89511 −0.405396
\(52\) 3.40857 0.472684
\(53\) −2.89511 −0.397673 −0.198837 0.980033i \(-0.563716\pi\)
−0.198837 + 0.980033i \(0.563716\pi\)
\(54\) 6.89511 0.938305
\(55\) 1.00000 0.134840
\(56\) −1.48654 −0.198647
\(57\) 18.4755 2.44714
\(58\) 7.40857 0.972793
\(59\) 0.0779639 0.0101500 0.00507502 0.999987i \(-0.498385\pi\)
0.00507502 + 0.999987i \(0.498385\pi\)
\(60\) −2.89511 −0.373757
\(61\) −5.19878 −0.665636 −0.332818 0.942991i \(-0.607999\pi\)
−0.332818 + 0.942991i \(0.607999\pi\)
\(62\) −1.40857 −0.178889
\(63\) −8.00000 −1.00791
\(64\) 1.00000 0.125000
\(65\) −3.40857 −0.422781
\(66\) −2.89511 −0.356363
\(67\) −12.2498 −1.49655 −0.748277 0.663387i \(-0.769118\pi\)
−0.748277 + 0.663387i \(0.769118\pi\)
\(68\) −1.00000 −0.121268
\(69\) 1.48654 0.178958
\(70\) 1.48654 0.177675
\(71\) 8.38164 0.994718 0.497359 0.867545i \(-0.334303\pi\)
0.497359 + 0.867545i \(0.334303\pi\)
\(72\) 5.38164 0.634233
\(73\) −15.4486 −1.80812 −0.904061 0.427403i \(-0.859428\pi\)
−0.904061 + 0.427403i \(0.859428\pi\)
\(74\) 3.79021 0.440603
\(75\) 2.89511 0.334298
\(76\) 6.38164 0.732025
\(77\) 1.48654 0.169406
\(78\) 9.86818 1.11735
\(79\) −1.23672 −0.139141 −0.0695707 0.997577i \(-0.522163\pi\)
−0.0695707 + 0.997577i \(0.522163\pi\)
\(80\) −1.00000 −0.111803
\(81\) 3.81714 0.424127
\(82\) −1.48654 −0.164160
\(83\) 9.48654 1.04128 0.520641 0.853776i \(-0.325693\pi\)
0.520641 + 0.853776i \(0.325693\pi\)
\(84\) −4.30368 −0.469570
\(85\) 1.00000 0.108465
\(86\) −5.79021 −0.624375
\(87\) 21.4486 2.29953
\(88\) −1.00000 −0.106600
\(89\) −2.38164 −0.252454 −0.126227 0.992001i \(-0.540287\pi\)
−0.126227 + 0.992001i \(0.540287\pi\)
\(90\) −5.38164 −0.567275
\(91\) −5.06696 −0.531162
\(92\) 0.513465 0.0535324
\(93\) −4.07796 −0.422865
\(94\) 3.61836 0.373205
\(95\) −6.38164 −0.654743
\(96\) 2.89511 0.295481
\(97\) −10.5914 −1.07540 −0.537698 0.843137i \(-0.680706\pi\)
−0.537698 + 0.843137i \(0.680706\pi\)
\(98\) −4.79021 −0.483885
\(99\) −5.38164 −0.540875
\(100\) 1.00000 0.100000
\(101\) 9.33061 0.928430 0.464215 0.885723i \(-0.346336\pi\)
0.464215 + 0.885723i \(0.346336\pi\)
\(102\) −2.89511 −0.286658
\(103\) 1.18286 0.116550 0.0582752 0.998301i \(-0.481440\pi\)
0.0582752 + 0.998301i \(0.481440\pi\)
\(104\) 3.40857 0.334238
\(105\) 4.30368 0.419996
\(106\) −2.89511 −0.281198
\(107\) −7.73635 −0.747902 −0.373951 0.927449i \(-0.621997\pi\)
−0.373951 + 0.927449i \(0.621997\pi\)
\(108\) 6.89511 0.663482
\(109\) −8.43550 −0.807974 −0.403987 0.914765i \(-0.632376\pi\)
−0.403987 + 0.914765i \(0.632376\pi\)
\(110\) 1.00000 0.0953463
\(111\) 10.9731 1.04152
\(112\) −1.48654 −0.140464
\(113\) −9.14493 −0.860282 −0.430141 0.902762i \(-0.641536\pi\)
−0.430141 + 0.902762i \(0.641536\pi\)
\(114\) 18.4755 1.73039
\(115\) −0.513465 −0.0478808
\(116\) 7.40857 0.687869
\(117\) 18.3437 1.69588
\(118\) 0.0779639 0.00717716
\(119\) 1.48654 0.136270
\(120\) −2.89511 −0.264286
\(121\) 1.00000 0.0909091
\(122\) −5.19878 −0.470676
\(123\) −4.30368 −0.388050
\(124\) −1.40857 −0.126493
\(125\) −1.00000 −0.0894427
\(126\) −8.00000 −0.712697
\(127\) 12.8412 1.13948 0.569738 0.821826i \(-0.307045\pi\)
0.569738 + 0.821826i \(0.307045\pi\)
\(128\) 1.00000 0.0883883
\(129\) −16.7633 −1.47592
\(130\) −3.40857 −0.298951
\(131\) −18.8572 −1.64756 −0.823779 0.566910i \(-0.808139\pi\)
−0.823779 + 0.566910i \(0.808139\pi\)
\(132\) −2.89511 −0.251987
\(133\) −9.48654 −0.822587
\(134\) −12.2498 −1.05822
\(135\) −6.89511 −0.593436
\(136\) −1.00000 −0.0857493
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 1.48654 0.126542
\(139\) 1.48654 0.126086 0.0630431 0.998011i \(-0.479919\pi\)
0.0630431 + 0.998011i \(0.479919\pi\)
\(140\) 1.48654 0.125635
\(141\) 10.4755 0.882199
\(142\) 8.38164 0.703372
\(143\) −3.40857 −0.285039
\(144\) 5.38164 0.448470
\(145\) −7.40857 −0.615248
\(146\) −15.4486 −1.27854
\(147\) −13.8682 −1.14383
\(148\) 3.79021 0.311554
\(149\) 6.97307 0.571256 0.285628 0.958341i \(-0.407798\pi\)
0.285628 + 0.958341i \(0.407798\pi\)
\(150\) 2.89511 0.236384
\(151\) 0.155928 0.0126892 0.00634461 0.999980i \(-0.497980\pi\)
0.00634461 + 0.999980i \(0.497980\pi\)
\(152\) 6.38164 0.517619
\(153\) −5.38164 −0.435080
\(154\) 1.48654 0.119788
\(155\) 1.40857 0.113139
\(156\) 9.86818 0.790086
\(157\) −19.4245 −1.55024 −0.775122 0.631812i \(-0.782312\pi\)
−0.775122 + 0.631812i \(0.782312\pi\)
\(158\) −1.23672 −0.0983879
\(159\) −8.38164 −0.664707
\(160\) −1.00000 −0.0790569
\(161\) −0.763283 −0.0601552
\(162\) 3.81714 0.299903
\(163\) −18.5535 −1.45322 −0.726611 0.687049i \(-0.758906\pi\)
−0.726611 + 0.687049i \(0.758906\pi\)
\(164\) −1.48654 −0.116079
\(165\) 2.89511 0.225384
\(166\) 9.48654 0.736298
\(167\) 19.3168 1.49478 0.747389 0.664387i \(-0.231307\pi\)
0.747389 + 0.664387i \(0.231307\pi\)
\(168\) −4.30368 −0.332036
\(169\) −1.38164 −0.106280
\(170\) 1.00000 0.0766965
\(171\) 34.3437 2.62633
\(172\) −5.79021 −0.441500
\(173\) 2.45961 0.187000 0.0935002 0.995619i \(-0.470194\pi\)
0.0935002 + 0.995619i \(0.470194\pi\)
\(174\) 21.4486 1.62601
\(175\) −1.48654 −0.112372
\(176\) −1.00000 −0.0753778
\(177\) 0.225714 0.0169657
\(178\) −2.38164 −0.178512
\(179\) −4.15593 −0.310629 −0.155314 0.987865i \(-0.549639\pi\)
−0.155314 + 0.987865i \(0.549639\pi\)
\(180\) −5.38164 −0.401124
\(181\) 3.02693 0.224990 0.112495 0.993652i \(-0.464116\pi\)
0.112495 + 0.993652i \(0.464116\pi\)
\(182\) −5.06696 −0.375588
\(183\) −15.0510 −1.11260
\(184\) 0.513465 0.0378531
\(185\) −3.79021 −0.278662
\(186\) −4.07796 −0.299011
\(187\) 1.00000 0.0731272
\(188\) 3.61836 0.263896
\(189\) −10.2498 −0.745565
\(190\) −6.38164 −0.462973
\(191\) −4.45961 −0.322686 −0.161343 0.986898i \(-0.551582\pi\)
−0.161343 + 0.986898i \(0.551582\pi\)
\(192\) 2.89511 0.208936
\(193\) 10.3437 0.744557 0.372278 0.928121i \(-0.378577\pi\)
0.372278 + 0.928121i \(0.378577\pi\)
\(194\) −10.5914 −0.760420
\(195\) −9.86818 −0.706675
\(196\) −4.79021 −0.342158
\(197\) −21.3168 −1.51876 −0.759379 0.650649i \(-0.774497\pi\)
−0.759379 + 0.650649i \(0.774497\pi\)
\(198\) −5.38164 −0.382457
\(199\) 1.40857 0.0998510 0.0499255 0.998753i \(-0.484102\pi\)
0.0499255 + 0.998753i \(0.484102\pi\)
\(200\) 1.00000 0.0707107
\(201\) −35.4645 −2.50148
\(202\) 9.33061 0.656499
\(203\) −11.0131 −0.772968
\(204\) −2.89511 −0.202698
\(205\) 1.48654 0.103824
\(206\) 1.18286 0.0824136
\(207\) 2.76328 0.192061
\(208\) 3.40857 0.236342
\(209\) −6.38164 −0.441427
\(210\) 4.30368 0.296982
\(211\) −18.3976 −1.26654 −0.633270 0.773931i \(-0.718288\pi\)
−0.633270 + 0.773931i \(0.718288\pi\)
\(212\) −2.89511 −0.198837
\(213\) 24.2657 1.66266
\(214\) −7.73635 −0.528846
\(215\) 5.79021 0.394889
\(216\) 6.89511 0.469153
\(217\) 2.09389 0.142143
\(218\) −8.43550 −0.571324
\(219\) −44.7254 −3.02226
\(220\) 1.00000 0.0674200
\(221\) −3.40857 −0.229285
\(222\) 10.9731 0.736464
\(223\) −0.537570 −0.0359983 −0.0179992 0.999838i \(-0.505730\pi\)
−0.0179992 + 0.999838i \(0.505730\pi\)
\(224\) −1.48654 −0.0993233
\(225\) 5.38164 0.358776
\(226\) −9.14493 −0.608311
\(227\) 2.32778 0.154500 0.0772502 0.997012i \(-0.475386\pi\)
0.0772502 + 0.997012i \(0.475386\pi\)
\(228\) 18.4755 1.22357
\(229\) 5.58043 0.368765 0.184382 0.982855i \(-0.440971\pi\)
0.184382 + 0.982855i \(0.440971\pi\)
\(230\) −0.513465 −0.0338569
\(231\) 4.30368 0.283161
\(232\) 7.40857 0.486397
\(233\) 24.8192 1.62596 0.812981 0.582290i \(-0.197843\pi\)
0.812981 + 0.582290i \(0.197843\pi\)
\(234\) 18.3437 1.19917
\(235\) −3.61836 −0.236036
\(236\) 0.0779639 0.00507502
\(237\) −3.58043 −0.232574
\(238\) 1.48654 0.0963578
\(239\) 6.09389 0.394181 0.197091 0.980385i \(-0.436851\pi\)
0.197091 + 0.980385i \(0.436851\pi\)
\(240\) −2.89511 −0.186878
\(241\) 19.7364 1.27133 0.635665 0.771965i \(-0.280726\pi\)
0.635665 + 0.771965i \(0.280726\pi\)
\(242\) 1.00000 0.0642824
\(243\) −9.63429 −0.618040
\(244\) −5.19878 −0.332818
\(245\) 4.79021 0.306035
\(246\) −4.30368 −0.274392
\(247\) 21.7523 1.38406
\(248\) −1.40857 −0.0894444
\(249\) 27.4645 1.74049
\(250\) −1.00000 −0.0632456
\(251\) −17.5266 −1.10627 −0.553134 0.833093i \(-0.686568\pi\)
−0.553134 + 0.833093i \(0.686568\pi\)
\(252\) −8.00000 −0.503953
\(253\) −0.513465 −0.0322813
\(254\) 12.8412 0.805732
\(255\) 2.89511 0.181299
\(256\) 1.00000 0.0625000
\(257\) 18.6474 1.16319 0.581596 0.813478i \(-0.302428\pi\)
0.581596 + 0.813478i \(0.302428\pi\)
\(258\) −16.7633 −1.04364
\(259\) −5.63429 −0.350097
\(260\) −3.40857 −0.211391
\(261\) 39.8703 2.46791
\(262\) −18.8572 −1.16500
\(263\) −11.7661 −0.725529 −0.362765 0.931881i \(-0.618167\pi\)
−0.362765 + 0.931881i \(0.618167\pi\)
\(264\) −2.89511 −0.178181
\(265\) 2.89511 0.177845
\(266\) −9.48654 −0.581657
\(267\) −6.89511 −0.421974
\(268\) −12.2498 −0.748277
\(269\) −25.5025 −1.55491 −0.777456 0.628937i \(-0.783490\pi\)
−0.777456 + 0.628937i \(0.783490\pi\)
\(270\) −6.89511 −0.419623
\(271\) −1.22289 −0.0742852 −0.0371426 0.999310i \(-0.511826\pi\)
−0.0371426 + 0.999310i \(0.511826\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −14.6694 −0.887832
\(274\) 2.00000 0.120824
\(275\) −1.00000 −0.0603023
\(276\) 1.48654 0.0894789
\(277\) 23.9862 1.44119 0.720595 0.693357i \(-0.243869\pi\)
0.720595 + 0.693357i \(0.243869\pi\)
\(278\) 1.48654 0.0891565
\(279\) −7.58043 −0.453828
\(280\) 1.48654 0.0888375
\(281\) 15.8682 0.946616 0.473308 0.880897i \(-0.343060\pi\)
0.473308 + 0.880897i \(0.343060\pi\)
\(282\) 10.4755 0.623809
\(283\) 31.2788 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(284\) 8.38164 0.497359
\(285\) −18.4755 −1.09440
\(286\) −3.40857 −0.201553
\(287\) 2.20979 0.130440
\(288\) 5.38164 0.317116
\(289\) 1.00000 0.0588235
\(290\) −7.40857 −0.435046
\(291\) −30.6633 −1.79752
\(292\) −15.4486 −0.904061
\(293\) −5.19878 −0.303716 −0.151858 0.988402i \(-0.548526\pi\)
−0.151858 + 0.988402i \(0.548526\pi\)
\(294\) −13.8682 −0.808809
\(295\) −0.0779639 −0.00453924
\(296\) 3.79021 0.220302
\(297\) −6.89511 −0.400095
\(298\) 6.97307 0.403939
\(299\) 1.75018 0.101216
\(300\) 2.89511 0.167149
\(301\) 8.60736 0.496120
\(302\) 0.155928 0.00897264
\(303\) 27.0131 1.55186
\(304\) 6.38164 0.366012
\(305\) 5.19878 0.297682
\(306\) −5.38164 −0.307648
\(307\) 25.0670 1.43065 0.715324 0.698793i \(-0.246279\pi\)
0.715324 + 0.698793i \(0.246279\pi\)
\(308\) 1.48654 0.0847032
\(309\) 3.42450 0.194813
\(310\) 1.40857 0.0800015
\(311\) −30.7413 −1.74318 −0.871589 0.490237i \(-0.836910\pi\)
−0.871589 + 0.490237i \(0.836910\pi\)
\(312\) 9.86818 0.558676
\(313\) −32.6074 −1.84308 −0.921538 0.388287i \(-0.873067\pi\)
−0.921538 + 0.388287i \(0.873067\pi\)
\(314\) −19.4245 −1.09619
\(315\) 8.00000 0.450749
\(316\) −1.23672 −0.0695707
\(317\) 28.5935 1.60597 0.802986 0.595998i \(-0.203243\pi\)
0.802986 + 0.595998i \(0.203243\pi\)
\(318\) −8.38164 −0.470019
\(319\) −7.40857 −0.414800
\(320\) −1.00000 −0.0559017
\(321\) −22.3976 −1.25011
\(322\) −0.763283 −0.0425361
\(323\) −6.38164 −0.355084
\(324\) 3.81714 0.212063
\(325\) 3.40857 0.189074
\(326\) −18.5535 −1.02758
\(327\) −24.4217 −1.35052
\(328\) −1.48654 −0.0820802
\(329\) −5.37882 −0.296544
\(330\) 2.89511 0.159370
\(331\) 29.2927 1.61007 0.805036 0.593227i \(-0.202146\pi\)
0.805036 + 0.593227i \(0.202146\pi\)
\(332\) 9.48654 0.520641
\(333\) 20.3976 1.11778
\(334\) 19.3168 1.05697
\(335\) 12.2498 0.669279
\(336\) −4.30368 −0.234785
\(337\) 9.39474 0.511764 0.255882 0.966708i \(-0.417634\pi\)
0.255882 + 0.966708i \(0.417634\pi\)
\(338\) −1.38164 −0.0751514
\(339\) −26.4755 −1.43795
\(340\) 1.00000 0.0542326
\(341\) 1.40857 0.0762784
\(342\) 34.3437 1.85710
\(343\) 17.5266 0.946346
\(344\) −5.79021 −0.312187
\(345\) −1.48654 −0.0800324
\(346\) 2.45961 0.132229
\(347\) 15.0429 0.807543 0.403771 0.914860i \(-0.367699\pi\)
0.403771 + 0.914860i \(0.367699\pi\)
\(348\) 21.4486 1.14977
\(349\) 17.6343 0.943942 0.471971 0.881614i \(-0.343543\pi\)
0.471971 + 0.881614i \(0.343543\pi\)
\(350\) −1.48654 −0.0794586
\(351\) 23.5025 1.25447
\(352\) −1.00000 −0.0533002
\(353\) 4.36571 0.232364 0.116182 0.993228i \(-0.462934\pi\)
0.116182 + 0.993228i \(0.462934\pi\)
\(354\) 0.225714 0.0119966
\(355\) −8.38164 −0.444851
\(356\) −2.38164 −0.126227
\(357\) 4.30368 0.227775
\(358\) −4.15593 −0.219648
\(359\) 18.2899 0.965301 0.482651 0.875813i \(-0.339674\pi\)
0.482651 + 0.875813i \(0.339674\pi\)
\(360\) −5.38164 −0.283637
\(361\) 21.7254 1.14344
\(362\) 3.02693 0.159092
\(363\) 2.89511 0.151954
\(364\) −5.06696 −0.265581
\(365\) 15.4486 0.808617
\(366\) −15.0510 −0.786730
\(367\) −7.06696 −0.368892 −0.184446 0.982843i \(-0.559049\pi\)
−0.184446 + 0.982843i \(0.559049\pi\)
\(368\) 0.513465 0.0267662
\(369\) −8.00000 −0.416463
\(370\) −3.79021 −0.197044
\(371\) 4.30368 0.223436
\(372\) −4.07796 −0.211433
\(373\) −18.3437 −0.949801 −0.474901 0.880039i \(-0.657516\pi\)
−0.474901 + 0.880039i \(0.657516\pi\)
\(374\) 1.00000 0.0517088
\(375\) −2.89511 −0.149503
\(376\) 3.61836 0.186603
\(377\) 25.2526 1.30058
\(378\) −10.2498 −0.527194
\(379\) −12.9192 −0.663615 −0.331808 0.943347i \(-0.607658\pi\)
−0.331808 + 0.943347i \(0.607658\pi\)
\(380\) −6.38164 −0.327371
\(381\) 37.1768 1.90462
\(382\) −4.45961 −0.228173
\(383\) 10.9351 0.558759 0.279380 0.960181i \(-0.409871\pi\)
0.279380 + 0.960181i \(0.409871\pi\)
\(384\) 2.89511 0.147740
\(385\) −1.48654 −0.0757609
\(386\) 10.3437 0.526481
\(387\) −31.1609 −1.58400
\(388\) −10.5914 −0.537698
\(389\) 10.0400 0.509050 0.254525 0.967066i \(-0.418081\pi\)
0.254525 + 0.967066i \(0.418081\pi\)
\(390\) −9.86818 −0.499695
\(391\) −0.513465 −0.0259670
\(392\) −4.79021 −0.241942
\(393\) −54.5935 −2.75388
\(394\) −21.3168 −1.07392
\(395\) 1.23672 0.0622260
\(396\) −5.38164 −0.270438
\(397\) −35.2547 −1.76938 −0.884692 0.466175i \(-0.845632\pi\)
−0.884692 + 0.466175i \(0.845632\pi\)
\(398\) 1.40857 0.0706053
\(399\) −27.4645 −1.37495
\(400\) 1.00000 0.0500000
\(401\) 19.2229 0.959945 0.479973 0.877283i \(-0.340647\pi\)
0.479973 + 0.877283i \(0.340647\pi\)
\(402\) −35.4645 −1.76881
\(403\) −4.80122 −0.239166
\(404\) 9.33061 0.464215
\(405\) −3.81714 −0.189675
\(406\) −11.0131 −0.546571
\(407\) −3.79021 −0.187874
\(408\) −2.89511 −0.143329
\(409\) 8.31960 0.411378 0.205689 0.978617i \(-0.434056\pi\)
0.205689 + 0.978617i \(0.434056\pi\)
\(410\) 1.48654 0.0734147
\(411\) 5.79021 0.285610
\(412\) 1.18286 0.0582752
\(413\) −0.115896 −0.00570288
\(414\) 2.76328 0.135808
\(415\) −9.48654 −0.465676
\(416\) 3.40857 0.167119
\(417\) 4.30368 0.210752
\(418\) −6.38164 −0.312136
\(419\) 24.3437 1.18927 0.594634 0.803997i \(-0.297297\pi\)
0.594634 + 0.803997i \(0.297297\pi\)
\(420\) 4.30368 0.209998
\(421\) 1.12900 0.0550240 0.0275120 0.999621i \(-0.491242\pi\)
0.0275120 + 0.999621i \(0.491242\pi\)
\(422\) −18.3976 −0.895580
\(423\) 19.4727 0.946795
\(424\) −2.89511 −0.140599
\(425\) −1.00000 −0.0485071
\(426\) 24.2657 1.17568
\(427\) 7.72818 0.373993
\(428\) −7.73635 −0.373951
\(429\) −9.86818 −0.476440
\(430\) 5.79021 0.279229
\(431\) −2.34371 −0.112893 −0.0564463 0.998406i \(-0.517977\pi\)
−0.0564463 + 0.998406i \(0.517977\pi\)
\(432\) 6.89511 0.331741
\(433\) −21.0131 −1.00983 −0.504913 0.863170i \(-0.668475\pi\)
−0.504913 + 0.863170i \(0.668475\pi\)
\(434\) 2.09389 0.100510
\(435\) −21.4486 −1.02838
\(436\) −8.43550 −0.403987
\(437\) 3.27675 0.156748
\(438\) −44.7254 −2.13706
\(439\) −26.0801 −1.24473 −0.622367 0.782726i \(-0.713829\pi\)
−0.622367 + 0.782726i \(0.713829\pi\)
\(440\) 1.00000 0.0476731
\(441\) −25.7792 −1.22758
\(442\) −3.40857 −0.162129
\(443\) −0.0938908 −0.00446089 −0.00223044 0.999998i \(-0.500710\pi\)
−0.00223044 + 0.999998i \(0.500710\pi\)
\(444\) 10.9731 0.520759
\(445\) 2.38164 0.112901
\(446\) −0.537570 −0.0254547
\(447\) 20.1878 0.954849
\(448\) −1.48654 −0.0702322
\(449\) −27.5184 −1.29867 −0.649337 0.760501i \(-0.724953\pi\)
−0.649337 + 0.760501i \(0.724953\pi\)
\(450\) 5.38164 0.253693
\(451\) 1.48654 0.0699982
\(452\) −9.14493 −0.430141
\(453\) 0.451428 0.0212099
\(454\) 2.32778 0.109248
\(455\) 5.06696 0.237543
\(456\) 18.4755 0.865196
\(457\) −29.1690 −1.36447 −0.682235 0.731133i \(-0.738992\pi\)
−0.682235 + 0.731133i \(0.738992\pi\)
\(458\) 5.58043 0.260756
\(459\) −6.89511 −0.321836
\(460\) −0.513465 −0.0239404
\(461\) 19.1290 0.890926 0.445463 0.895300i \(-0.353039\pi\)
0.445463 + 0.895300i \(0.353039\pi\)
\(462\) 4.30368 0.200225
\(463\) 9.67222 0.449506 0.224753 0.974416i \(-0.427842\pi\)
0.224753 + 0.974416i \(0.427842\pi\)
\(464\) 7.40857 0.343934
\(465\) 4.07796 0.189111
\(466\) 24.8192 1.14973
\(467\) −1.12082 −0.0518654 −0.0259327 0.999664i \(-0.508256\pi\)
−0.0259327 + 0.999664i \(0.508256\pi\)
\(468\) 18.3437 0.847938
\(469\) 18.2098 0.840850
\(470\) −3.61836 −0.166902
\(471\) −56.2360 −2.59122
\(472\) 0.0779639 0.00358858
\(473\) 5.79021 0.266234
\(474\) −3.58043 −0.164454
\(475\) 6.38164 0.292810
\(476\) 1.48654 0.0681352
\(477\) −15.5804 −0.713379
\(478\) 6.09389 0.278728
\(479\) −6.42167 −0.293414 −0.146707 0.989180i \(-0.546867\pi\)
−0.146707 + 0.989180i \(0.546867\pi\)
\(480\) −2.89511 −0.132143
\(481\) 12.9192 0.589065
\(482\) 19.7364 0.898966
\(483\) −2.20979 −0.100549
\(484\) 1.00000 0.0454545
\(485\) 10.5914 0.480932
\(486\) −9.63429 −0.437020
\(487\) −5.39264 −0.244364 −0.122182 0.992508i \(-0.538989\pi\)
−0.122182 + 0.992508i \(0.538989\pi\)
\(488\) −5.19878 −0.235338
\(489\) −53.7143 −2.42905
\(490\) 4.79021 0.216400
\(491\) 18.3816 0.829552 0.414776 0.909924i \(-0.363860\pi\)
0.414776 + 0.909924i \(0.363860\pi\)
\(492\) −4.30368 −0.194025
\(493\) −7.40857 −0.333665
\(494\) 21.7523 0.978681
\(495\) 5.38164 0.241887
\(496\) −1.40857 −0.0632467
\(497\) −12.4596 −0.558890
\(498\) 27.4645 1.23072
\(499\) −30.8171 −1.37956 −0.689782 0.724017i \(-0.742294\pi\)
−0.689782 + 0.724017i \(0.742294\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 55.9241 2.49851
\(502\) −17.5266 −0.782249
\(503\) 27.4727 1.22495 0.612474 0.790491i \(-0.290175\pi\)
0.612474 + 0.790491i \(0.290175\pi\)
\(504\) −8.00000 −0.356348
\(505\) −9.33061 −0.415207
\(506\) −0.513465 −0.0228263
\(507\) −4.00000 −0.177646
\(508\) 12.8412 0.569738
\(509\) 32.9054 1.45851 0.729253 0.684244i \(-0.239868\pi\)
0.729253 + 0.684244i \(0.239868\pi\)
\(510\) 2.89511 0.128197
\(511\) 22.9649 1.01591
\(512\) 1.00000 0.0441942
\(513\) 44.0021 1.94274
\(514\) 18.6474 0.822501
\(515\) −1.18286 −0.0521229
\(516\) −16.7633 −0.737962
\(517\) −3.61836 −0.159135
\(518\) −5.63429 −0.247556
\(519\) 7.12082 0.312569
\(520\) −3.40857 −0.149476
\(521\) −8.62936 −0.378059 −0.189030 0.981971i \(-0.560534\pi\)
−0.189030 + 0.981971i \(0.560534\pi\)
\(522\) 39.8703 1.74507
\(523\) −11.1690 −0.488388 −0.244194 0.969726i \(-0.578523\pi\)
−0.244194 + 0.969726i \(0.578523\pi\)
\(524\) −18.8572 −0.823779
\(525\) −4.30368 −0.187828
\(526\) −11.7661 −0.513027
\(527\) 1.40857 0.0613583
\(528\) −2.89511 −0.125993
\(529\) −22.7364 −0.988537
\(530\) 2.89511 0.125755
\(531\) 0.419574 0.0182080
\(532\) −9.48654 −0.411293
\(533\) −5.06696 −0.219474
\(534\) −6.89511 −0.298380
\(535\) 7.73635 0.334472
\(536\) −12.2498 −0.529112
\(537\) −12.0319 −0.519213
\(538\) −25.5025 −1.09949
\(539\) 4.79021 0.206329
\(540\) −6.89511 −0.296718
\(541\) 13.8441 0.595203 0.297602 0.954690i \(-0.403813\pi\)
0.297602 + 0.954690i \(0.403813\pi\)
\(542\) −1.22289 −0.0525276
\(543\) 8.76328 0.376068
\(544\) −1.00000 −0.0428746
\(545\) 8.43550 0.361337
\(546\) −14.6694 −0.627792
\(547\) −29.7523 −1.27212 −0.636058 0.771641i \(-0.719436\pi\)
−0.636058 + 0.771641i \(0.719436\pi\)
\(548\) 2.00000 0.0854358
\(549\) −27.9780 −1.19407
\(550\) −1.00000 −0.0426401
\(551\) 47.2788 2.01415
\(552\) 1.48654 0.0632711
\(553\) 1.83842 0.0781777
\(554\) 23.9862 1.01907
\(555\) −10.9731 −0.465781
\(556\) 1.48654 0.0630431
\(557\) −37.5425 −1.59073 −0.795363 0.606133i \(-0.792720\pi\)
−0.795363 + 0.606133i \(0.792720\pi\)
\(558\) −7.58043 −0.320905
\(559\) −19.7364 −0.834759
\(560\) 1.48654 0.0628176
\(561\) 2.89511 0.122231
\(562\) 15.8682 0.669359
\(563\) −5.22289 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(564\) 10.4755 0.441099
\(565\) 9.14493 0.384730
\(566\) 31.2788 1.31475
\(567\) −5.67432 −0.238299
\(568\) 8.38164 0.351686
\(569\) −28.8951 −1.21135 −0.605673 0.795714i \(-0.707096\pi\)
−0.605673 + 0.795714i \(0.707096\pi\)
\(570\) −18.4755 −0.773855
\(571\) 21.1829 0.886475 0.443237 0.896404i \(-0.353830\pi\)
0.443237 + 0.896404i \(0.353830\pi\)
\(572\) −3.40857 −0.142520
\(573\) −12.9110 −0.539366
\(574\) 2.20979 0.0922347
\(575\) 0.513465 0.0214130
\(576\) 5.38164 0.224235
\(577\) 25.4245 1.05844 0.529218 0.848486i \(-0.322485\pi\)
0.529218 + 0.848486i \(0.322485\pi\)
\(578\) 1.00000 0.0415945
\(579\) 29.9461 1.24452
\(580\) −7.40857 −0.307624
\(581\) −14.1021 −0.585052
\(582\) −30.6633 −1.27104
\(583\) 2.89511 0.119903
\(584\) −15.4486 −0.639268
\(585\) −18.3437 −0.758419
\(586\) −5.19878 −0.214760
\(587\) 14.4196 0.595160 0.297580 0.954697i \(-0.403821\pi\)
0.297580 + 0.954697i \(0.403821\pi\)
\(588\) −13.8682 −0.571914
\(589\) −8.98900 −0.370385
\(590\) −0.0779639 −0.00320972
\(591\) −61.7143 −2.53859
\(592\) 3.79021 0.155777
\(593\) −13.3845 −0.549634 −0.274817 0.961497i \(-0.588617\pi\)
−0.274817 + 0.961497i \(0.588617\pi\)
\(594\) −6.89511 −0.282910
\(595\) −1.48654 −0.0609420
\(596\) 6.97307 0.285628
\(597\) 4.07796 0.166900
\(598\) 1.75018 0.0715702
\(599\) 13.2229 0.540273 0.270136 0.962822i \(-0.412931\pi\)
0.270136 + 0.962822i \(0.412931\pi\)
\(600\) 2.89511 0.118192
\(601\) 10.2498 0.418099 0.209049 0.977905i \(-0.432963\pi\)
0.209049 + 0.977905i \(0.432963\pi\)
\(602\) 8.60736 0.350810
\(603\) −65.9241 −2.68464
\(604\) 0.155928 0.00634461
\(605\) −1.00000 −0.0406558
\(606\) 27.0131 1.09733
\(607\) −27.2091 −1.10438 −0.552191 0.833718i \(-0.686208\pi\)
−0.552191 + 0.833718i \(0.686208\pi\)
\(608\) 6.38164 0.258810
\(609\) −31.8841 −1.29201
\(610\) 5.19878 0.210493
\(611\) 12.3334 0.498957
\(612\) −5.38164 −0.217540
\(613\) −42.4135 −1.71306 −0.856532 0.516093i \(-0.827386\pi\)
−0.856532 + 0.516093i \(0.827386\pi\)
\(614\) 25.0670 1.01162
\(615\) 4.30368 0.173541
\(616\) 1.48654 0.0598942
\(617\) 15.0110 0.604320 0.302160 0.953257i \(-0.402292\pi\)
0.302160 + 0.953257i \(0.402292\pi\)
\(618\) 3.42450 0.137754
\(619\) −5.17468 −0.207988 −0.103994 0.994578i \(-0.533162\pi\)
−0.103994 + 0.994578i \(0.533162\pi\)
\(620\) 1.40857 0.0565696
\(621\) 3.54039 0.142071
\(622\) −30.7413 −1.23261
\(623\) 3.54039 0.141843
\(624\) 9.86818 0.395043
\(625\) 1.00000 0.0400000
\(626\) −32.6074 −1.30325
\(627\) −18.4755 −0.737842
\(628\) −19.4245 −0.775122
\(629\) −3.79021 −0.151126
\(630\) 8.00000 0.318728
\(631\) 22.5535 0.897841 0.448920 0.893572i \(-0.351809\pi\)
0.448920 + 0.893572i \(0.351809\pi\)
\(632\) −1.23672 −0.0491939
\(633\) −53.2629 −2.11701
\(634\) 28.5935 1.13559
\(635\) −12.8412 −0.509589
\(636\) −8.38164 −0.332354
\(637\) −16.3278 −0.646930
\(638\) −7.40857 −0.293308
\(639\) 45.1070 1.78441
\(640\) −1.00000 −0.0395285
\(641\) 11.9862 0.473425 0.236713 0.971580i \(-0.423930\pi\)
0.236713 + 0.971580i \(0.423930\pi\)
\(642\) −22.3976 −0.883962
\(643\) −15.1609 −0.597886 −0.298943 0.954271i \(-0.596634\pi\)
−0.298943 + 0.954271i \(0.596634\pi\)
\(644\) −0.763283 −0.0300776
\(645\) 16.7633 0.660054
\(646\) −6.38164 −0.251082
\(647\) −23.5425 −0.925551 −0.462775 0.886476i \(-0.653146\pi\)
−0.462775 + 0.886476i \(0.653146\pi\)
\(648\) 3.81714 0.149952
\(649\) −0.0779639 −0.00306035
\(650\) 3.40857 0.133695
\(651\) 6.06204 0.237590
\(652\) −18.5535 −0.726611
\(653\) −43.5985 −1.70614 −0.853070 0.521797i \(-0.825262\pi\)
−0.853070 + 0.521797i \(0.825262\pi\)
\(654\) −24.4217 −0.954963
\(655\) 18.8572 0.736811
\(656\) −1.48654 −0.0580394
\(657\) −83.1388 −3.24356
\(658\) −5.37882 −0.209688
\(659\) 47.4886 1.84989 0.924947 0.380095i \(-0.124109\pi\)
0.924947 + 0.380095i \(0.124109\pi\)
\(660\) 2.89511 0.112692
\(661\) −12.4057 −0.482528 −0.241264 0.970460i \(-0.577562\pi\)
−0.241264 + 0.970460i \(0.577562\pi\)
\(662\) 29.2927 1.13849
\(663\) −9.86818 −0.383248
\(664\) 9.48654 0.368149
\(665\) 9.48654 0.367872
\(666\) 20.3976 0.790390
\(667\) 3.80404 0.147293
\(668\) 19.3168 0.747389
\(669\) −1.55632 −0.0601709
\(670\) 12.2498 0.473252
\(671\) 5.19878 0.200697
\(672\) −4.30368 −0.166018
\(673\) −36.9270 −1.42343 −0.711715 0.702468i \(-0.752081\pi\)
−0.711715 + 0.702468i \(0.752081\pi\)
\(674\) 9.39474 0.361872
\(675\) 6.89511 0.265393
\(676\) −1.38164 −0.0531401
\(677\) 1.12082 0.0430766 0.0215383 0.999768i \(-0.493144\pi\)
0.0215383 + 0.999768i \(0.493144\pi\)
\(678\) −26.4755 −1.01679
\(679\) 15.7445 0.604220
\(680\) 1.00000 0.0383482
\(681\) 6.73918 0.258246
\(682\) 1.40857 0.0539370
\(683\) 15.3147 0.586000 0.293000 0.956112i \(-0.405346\pi\)
0.293000 + 0.956112i \(0.405346\pi\)
\(684\) 34.3437 1.31316
\(685\) −2.00000 −0.0764161
\(686\) 17.5266 0.669167
\(687\) 16.1559 0.616387
\(688\) −5.79021 −0.220750
\(689\) −9.86818 −0.375948
\(690\) −1.48654 −0.0565914
\(691\) 24.9110 0.947660 0.473830 0.880616i \(-0.342871\pi\)
0.473830 + 0.880616i \(0.342871\pi\)
\(692\) 2.45961 0.0935002
\(693\) 8.00000 0.303895
\(694\) 15.0429 0.571019
\(695\) −1.48654 −0.0563875
\(696\) 21.4486 0.813007
\(697\) 1.48654 0.0563065
\(698\) 17.6343 0.667468
\(699\) 71.8543 2.71778
\(700\) −1.48654 −0.0561858
\(701\) −40.1201 −1.51532 −0.757658 0.652652i \(-0.773656\pi\)
−0.757658 + 0.652652i \(0.773656\pi\)
\(702\) 23.5025 0.887043
\(703\) 24.1878 0.912259
\(704\) −1.00000 −0.0376889
\(705\) −10.4755 −0.394531
\(706\) 4.36571 0.164306
\(707\) −13.8703 −0.521645
\(708\) 0.225714 0.00848285
\(709\) 39.0290 1.46577 0.732883 0.680355i \(-0.238174\pi\)
0.732883 + 0.680355i \(0.238174\pi\)
\(710\) −8.38164 −0.314557
\(711\) −6.65557 −0.249603
\(712\) −2.38164 −0.0892558
\(713\) −0.723252 −0.0270860
\(714\) 4.30368 0.161061
\(715\) 3.40857 0.127473
\(716\) −4.15593 −0.155314
\(717\) 17.6425 0.658870
\(718\) 18.2899 0.682571
\(719\) 10.9351 0.407812 0.203906 0.978990i \(-0.434636\pi\)
0.203906 + 0.978990i \(0.434636\pi\)
\(720\) −5.38164 −0.200562
\(721\) −1.75836 −0.0654847
\(722\) 21.7254 0.808534
\(723\) 57.1388 2.12502
\(724\) 3.02693 0.112495
\(725\) 7.40857 0.275147
\(726\) 2.89511 0.107447
\(727\) −2.09179 −0.0775802 −0.0387901 0.999247i \(-0.512350\pi\)
−0.0387901 + 0.999247i \(0.512350\pi\)
\(728\) −5.06696 −0.187794
\(729\) −39.3437 −1.45717
\(730\) 15.4486 0.571778
\(731\) 5.79021 0.214159
\(732\) −15.0510 −0.556302
\(733\) −19.2629 −0.711492 −0.355746 0.934583i \(-0.615773\pi\)
−0.355746 + 0.934583i \(0.615773\pi\)
\(734\) −7.06696 −0.260846
\(735\) 13.8682 0.511535
\(736\) 0.513465 0.0189266
\(737\) 12.2498 0.451228
\(738\) −8.00000 −0.294484
\(739\) 8.69915 0.320003 0.160002 0.987117i \(-0.448850\pi\)
0.160002 + 0.987117i \(0.448850\pi\)
\(740\) −3.79021 −0.139331
\(741\) 62.9752 2.31345
\(742\) 4.30368 0.157993
\(743\) −27.5404 −1.01036 −0.505180 0.863014i \(-0.668574\pi\)
−0.505180 + 0.863014i \(0.668574\pi\)
\(744\) −4.07796 −0.149505
\(745\) −6.97307 −0.255474
\(746\) −18.3437 −0.671611
\(747\) 51.0531 1.86794
\(748\) 1.00000 0.0365636
\(749\) 11.5004 0.420214
\(750\) −2.89511 −0.105714
\(751\) 34.1719 1.24695 0.623474 0.781844i \(-0.285721\pi\)
0.623474 + 0.781844i \(0.285721\pi\)
\(752\) 3.61836 0.131948
\(753\) −50.7413 −1.84911
\(754\) 25.2526 0.919647
\(755\) −0.155928 −0.00567480
\(756\) −10.2498 −0.372782
\(757\) −11.5783 −0.420821 −0.210411 0.977613i \(-0.567480\pi\)
−0.210411 + 0.977613i \(0.567480\pi\)
\(758\) −12.9192 −0.469247
\(759\) −1.48654 −0.0539578
\(760\) −6.38164 −0.231486
\(761\) −32.8171 −1.18962 −0.594810 0.803866i \(-0.702773\pi\)
−0.594810 + 0.803866i \(0.702773\pi\)
\(762\) 37.1768 1.34677
\(763\) 12.5397 0.453967
\(764\) −4.45961 −0.161343
\(765\) 5.38164 0.194574
\(766\) 10.9351 0.395103
\(767\) 0.265746 0.00959552
\(768\) 2.89511 0.104468
\(769\) 42.4217 1.52976 0.764882 0.644170i \(-0.222797\pi\)
0.764882 + 0.644170i \(0.222797\pi\)
\(770\) −1.48654 −0.0535710
\(771\) 53.9862 1.94426
\(772\) 10.3437 0.372278
\(773\) −34.2899 −1.23332 −0.616660 0.787230i \(-0.711515\pi\)
−0.616660 + 0.787230i \(0.711515\pi\)
\(774\) −31.1609 −1.12005
\(775\) −1.40857 −0.0505974
\(776\) −10.5914 −0.380210
\(777\) −16.3119 −0.585185
\(778\) 10.0400 0.359953
\(779\) −9.48654 −0.339890
\(780\) −9.86818 −0.353337
\(781\) −8.38164 −0.299919
\(782\) −0.513465 −0.0183615
\(783\) 51.0829 1.82555
\(784\) −4.79021 −0.171079
\(785\) 19.4245 0.693290
\(786\) −54.5935 −1.94729
\(787\) −17.3327 −0.617844 −0.308922 0.951087i \(-0.599968\pi\)
−0.308922 + 0.951087i \(0.599968\pi\)
\(788\) −21.3168 −0.759379
\(789\) −34.0641 −1.21272
\(790\) 1.23672 0.0440004
\(791\) 13.5943 0.483356
\(792\) −5.38164 −0.191228
\(793\) −17.7204 −0.629271
\(794\) −35.2547 −1.25114
\(795\) 8.38164 0.297266
\(796\) 1.40857 0.0499255
\(797\) 24.7633 0.877161 0.438580 0.898692i \(-0.355481\pi\)
0.438580 + 0.898692i \(0.355481\pi\)
\(798\) −27.4645 −0.972234
\(799\) −3.61836 −0.128008
\(800\) 1.00000 0.0353553
\(801\) −12.8171 −0.452871
\(802\) 19.2229 0.678784
\(803\) 15.4486 0.545169
\(804\) −35.4645 −1.25074
\(805\) 0.763283 0.0269022
\(806\) −4.80122 −0.169116
\(807\) −73.8323 −2.59902
\(808\) 9.33061 0.328250
\(809\) 8.57550 0.301499 0.150749 0.988572i \(-0.451831\pi\)
0.150749 + 0.988572i \(0.451831\pi\)
\(810\) −3.81714 −0.134121
\(811\) 33.8703 1.18935 0.594673 0.803968i \(-0.297281\pi\)
0.594673 + 0.803968i \(0.297281\pi\)
\(812\) −11.0131 −0.386484
\(813\) −3.54039 −0.124167
\(814\) −3.79021 −0.132847
\(815\) 18.5535 0.649901
\(816\) −2.89511 −0.101349
\(817\) −36.9511 −1.29275
\(818\) 8.31960 0.290888
\(819\) −27.2686 −0.952841
\(820\) 1.48654 0.0519121
\(821\) −20.8869 −0.728959 −0.364479 0.931211i \(-0.618753\pi\)
−0.364479 + 0.931211i \(0.618753\pi\)
\(822\) 5.79021 0.201957
\(823\) 37.9323 1.32224 0.661119 0.750281i \(-0.270082\pi\)
0.661119 + 0.750281i \(0.270082\pi\)
\(824\) 1.18286 0.0412068
\(825\) −2.89511 −0.100795
\(826\) −0.115896 −0.00403254
\(827\) 44.8433 1.55936 0.779678 0.626181i \(-0.215383\pi\)
0.779678 + 0.626181i \(0.215383\pi\)
\(828\) 2.76328 0.0960307
\(829\) −21.7282 −0.754651 −0.377325 0.926081i \(-0.623156\pi\)
−0.377325 + 0.926081i \(0.623156\pi\)
\(830\) −9.48654 −0.329282
\(831\) 69.4425 2.40893
\(832\) 3.40857 0.118171
\(833\) 4.79021 0.165971
\(834\) 4.30368 0.149024
\(835\) −19.3168 −0.668485
\(836\) −6.38164 −0.220714
\(837\) −9.71225 −0.335704
\(838\) 24.3437 0.840939
\(839\) 0.801216 0.0276610 0.0138305 0.999904i \(-0.495597\pi\)
0.0138305 + 0.999904i \(0.495597\pi\)
\(840\) 4.30368 0.148491
\(841\) 25.8869 0.892653
\(842\) 1.12900 0.0389079
\(843\) 45.9401 1.58226
\(844\) −18.3976 −0.633270
\(845\) 1.38164 0.0475299
\(846\) 19.4727 0.669485
\(847\) −1.48654 −0.0510780
\(848\) −2.89511 −0.0994184
\(849\) 90.5556 3.10786
\(850\) −1.00000 −0.0342997
\(851\) 1.94614 0.0667129
\(852\) 24.2657 0.831331
\(853\) −48.6336 −1.66518 −0.832591 0.553889i \(-0.813143\pi\)
−0.832591 + 0.553889i \(0.813143\pi\)
\(854\) 7.72818 0.264453
\(855\) −34.3437 −1.17453
\(856\) −7.73635 −0.264423
\(857\) 53.6584 1.83294 0.916468 0.400108i \(-0.131028\pi\)
0.916468 + 0.400108i \(0.131028\pi\)
\(858\) −9.86818 −0.336894
\(859\) 40.8731 1.39457 0.697286 0.716793i \(-0.254391\pi\)
0.697286 + 0.716793i \(0.254391\pi\)
\(860\) 5.79021 0.197445
\(861\) 6.39757 0.218029
\(862\) −2.34371 −0.0798271
\(863\) −11.7364 −0.399510 −0.199755 0.979846i \(-0.564015\pi\)
−0.199755 + 0.979846i \(0.564015\pi\)
\(864\) 6.89511 0.234576
\(865\) −2.45961 −0.0836291
\(866\) −21.0131 −0.714054
\(867\) 2.89511 0.0983230
\(868\) 2.09389 0.0710713
\(869\) 1.23672 0.0419527
\(870\) −21.4486 −0.727176
\(871\) −41.7544 −1.41479
\(872\) −8.43550 −0.285662
\(873\) −56.9993 −1.92913
\(874\) 3.27675 0.110838
\(875\) 1.48654 0.0502541
\(876\) −44.7254 −1.51113
\(877\) 4.98125 0.168205 0.0841024 0.996457i \(-0.473198\pi\)
0.0841024 + 0.996457i \(0.473198\pi\)
\(878\) −26.0801 −0.880160
\(879\) −15.0510 −0.507659
\(880\) 1.00000 0.0337100
\(881\) 7.67432 0.258554 0.129277 0.991609i \(-0.458734\pi\)
0.129277 + 0.991609i \(0.458734\pi\)
\(882\) −25.7792 −0.868031
\(883\) −7.10699 −0.239169 −0.119585 0.992824i \(-0.538156\pi\)
−0.119585 + 0.992824i \(0.538156\pi\)
\(884\) −3.40857 −0.114643
\(885\) −0.225714 −0.00758729
\(886\) −0.0938908 −0.00315432
\(887\) 36.2278 1.21641 0.608205 0.793780i \(-0.291890\pi\)
0.608205 + 0.793780i \(0.291890\pi\)
\(888\) 10.9731 0.368232
\(889\) −19.0890 −0.640223
\(890\) 2.38164 0.0798328
\(891\) −3.81714 −0.127879
\(892\) −0.537570 −0.0179992
\(893\) 23.0911 0.772713
\(894\) 20.1878 0.675180
\(895\) 4.15593 0.138917
\(896\) −1.48654 −0.0496617
\(897\) 5.06696 0.169181
\(898\) −27.5184 −0.918301
\(899\) −10.4355 −0.348043
\(900\) 5.38164 0.179388
\(901\) 2.89511 0.0964500
\(902\) 1.48654 0.0494962
\(903\) 24.9192 0.829259
\(904\) −9.14493 −0.304156
\(905\) −3.02693 −0.100619
\(906\) 0.451428 0.0149977
\(907\) 8.10982 0.269282 0.134641 0.990894i \(-0.457012\pi\)
0.134641 + 0.990894i \(0.457012\pi\)
\(908\) 2.32778 0.0772502
\(909\) 50.2140 1.66549
\(910\) 5.06696 0.167968
\(911\) 3.73635 0.123791 0.0618955 0.998083i \(-0.480285\pi\)
0.0618955 + 0.998083i \(0.480285\pi\)
\(912\) 18.4755 0.611786
\(913\) −9.48654 −0.313958
\(914\) −29.1690 −0.964826
\(915\) 15.0510 0.497572
\(916\) 5.58043 0.184382
\(917\) 28.0319 0.925693
\(918\) −6.89511 −0.227572
\(919\) 47.2009 1.55701 0.778507 0.627636i \(-0.215977\pi\)
0.778507 + 0.627636i \(0.215977\pi\)
\(920\) −0.513465 −0.0169284
\(921\) 72.5715 2.39131
\(922\) 19.1290 0.629980
\(923\) 28.5694 0.940374
\(924\) 4.30368 0.141581
\(925\) 3.79021 0.124621
\(926\) 9.67222 0.317849
\(927\) 6.36571 0.209078
\(928\) 7.40857 0.243198
\(929\) 39.7820 1.30521 0.652603 0.757700i \(-0.273677\pi\)
0.652603 + 0.757700i \(0.273677\pi\)
\(930\) 4.07796 0.133722
\(931\) −30.5694 −1.00187
\(932\) 24.8192 0.812981
\(933\) −88.9993 −2.91371
\(934\) −1.12082 −0.0366744
\(935\) −1.00000 −0.0327035
\(936\) 18.3437 0.599583
\(937\) 51.1388 1.67063 0.835317 0.549769i \(-0.185284\pi\)
0.835317 + 0.549769i \(0.185284\pi\)
\(938\) 18.2098 0.594571
\(939\) −94.4018 −3.08069
\(940\) −3.61836 −0.118018
\(941\) 54.3058 1.77032 0.885159 0.465289i \(-0.154050\pi\)
0.885159 + 0.465289i \(0.154050\pi\)
\(942\) −56.2360 −1.83227
\(943\) −0.763283 −0.0248559
\(944\) 0.0779639 0.00253751
\(945\) 10.2498 0.333427
\(946\) 5.79021 0.188256
\(947\) −30.1637 −0.980188 −0.490094 0.871670i \(-0.663038\pi\)
−0.490094 + 0.871670i \(0.663038\pi\)
\(948\) −3.58043 −0.116287
\(949\) −52.6577 −1.70934
\(950\) 6.38164 0.207048
\(951\) 82.7813 2.68437
\(952\) 1.48654 0.0481789
\(953\) −39.8621 −1.29126 −0.645630 0.763650i \(-0.723405\pi\)
−0.645630 + 0.763650i \(0.723405\pi\)
\(954\) −15.5804 −0.504435
\(955\) 4.45961 0.144309
\(956\) 6.09389 0.197091
\(957\) −21.4486 −0.693335
\(958\) −6.42167 −0.207475
\(959\) −2.97307 −0.0960055
\(960\) −2.89511 −0.0934392
\(961\) −29.0159 −0.935998
\(962\) 12.9192 0.416532
\(963\) −41.6343 −1.34165
\(964\) 19.7364 0.635665
\(965\) −10.3437 −0.332976
\(966\) −2.20979 −0.0710987
\(967\) 29.1070 0.936018 0.468009 0.883724i \(-0.344972\pi\)
0.468009 + 0.883724i \(0.344972\pi\)
\(968\) 1.00000 0.0321412
\(969\) −18.4755 −0.593520
\(970\) 10.5914 0.340070
\(971\) −3.31468 −0.106373 −0.0531866 0.998585i \(-0.516938\pi\)
−0.0531866 + 0.998585i \(0.516938\pi\)
\(972\) −9.63429 −0.309020
\(973\) −2.20979 −0.0708425
\(974\) −5.39264 −0.172791
\(975\) 9.86818 0.316035
\(976\) −5.19878 −0.166409
\(977\) 27.4107 0.876945 0.438473 0.898745i \(-0.355520\pi\)
0.438473 + 0.898745i \(0.355520\pi\)
\(978\) −53.7143 −1.71760
\(979\) 2.38164 0.0761176
\(980\) 4.79021 0.153018
\(981\) −45.3968 −1.44941
\(982\) 18.3816 0.586582
\(983\) −35.5666 −1.13440 −0.567199 0.823581i \(-0.691973\pi\)
−0.567199 + 0.823581i \(0.691973\pi\)
\(984\) −4.30368 −0.137196
\(985\) 21.3168 0.679209
\(986\) −7.40857 −0.235937
\(987\) −15.5722 −0.495670
\(988\) 21.7523 0.692032
\(989\) −2.97307 −0.0945381
\(990\) 5.38164 0.171040
\(991\) 18.5156 0.588166 0.294083 0.955780i \(-0.404986\pi\)
0.294083 + 0.955780i \(0.404986\pi\)
\(992\) −1.40857 −0.0447222
\(993\) 84.8054 2.69122
\(994\) −12.4596 −0.395195
\(995\) −1.40857 −0.0446547
\(996\) 27.4645 0.870247
\(997\) −8.97307 −0.284180 −0.142090 0.989854i \(-0.545382\pi\)
−0.142090 + 0.989854i \(0.545382\pi\)
\(998\) −30.8171 −0.975500
\(999\) 26.1339 0.826841
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.2.a.r.1.3 3
5.4 even 2 9350.2.a.by.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.2.a.r.1.3 3 1.1 even 1 trivial
9350.2.a.by.1.1 3 5.4 even 2