Properties

Label 187.4.g
Level $187$
Weight $4$
Character orbit 187.g
Rep. character $\chi_{187}(69,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $192$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 187 = 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 187.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(187, [\chi])\).

Total New Old
Modular forms 224 192 32
Cusp forms 208 192 16
Eisenstein series 16 0 16

Trace form

\( 192 q + 4 q^{2} + 4 q^{3} - 212 q^{4} - 8 q^{5} + 24 q^{6} + 52 q^{7} - 116 q^{8} - 464 q^{9} - 64 q^{10} + 8 q^{11} - 208 q^{12} + 48 q^{13} + 234 q^{14} + 200 q^{15} - 12 q^{16} + 68 q^{17} - 158 q^{18}+ \cdots + 7440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(187, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
187.4.g.a 187.g 11.c $88$ $11.033$ None 187.4.g.a \(2\) \(14\) \(42\) \(16\) $\mathrm{SU}(2)[C_{5}]$
187.4.g.b 187.g 11.c $104$ $11.033$ None 187.4.g.b \(2\) \(-10\) \(-50\) \(36\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{4}^{\mathrm{old}}(187, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(187, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)