Defining parameters
| Level: | \( N \) | \(=\) | \( 187 = 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 187.g (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(187, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 224 | 192 | 32 |
| Cusp forms | 208 | 192 | 16 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(187, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 187.4.g.a | $88$ | $11.033$ | None | \(2\) | \(14\) | \(42\) | \(16\) | ||
| 187.4.g.b | $104$ | $11.033$ | None | \(2\) | \(-10\) | \(-50\) | \(36\) | ||
Decomposition of \(S_{4}^{\mathrm{old}}(187, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(187, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)