Properties

Label 1863.2.c.a.1862.5
Level $1863$
Weight $2$
Character 1863.1862
Analytic conductor $14.876$
Analytic rank $0$
Dimension $12$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1863,2,Mod(1862,1863)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1863, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1863.1862");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1863 = 3^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1863.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8761298966\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.57352136505929721.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{9} + x^{6} - 24x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1862.5
Root \(0.229129 - 1.39553i\) of defining polynomial
Character \(\chi\) \(=\) 1863.1862
Dual form 1863.2.c.a.1862.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.998666i q^{2} +1.00267 q^{4} -2.99866i q^{8} +O(q^{10})\) \(q-0.998666i q^{2} +1.00267 q^{4} -2.99866i q^{8} -7.15143 q^{13} -0.989326 q^{16} -4.79583i q^{23} -5.00000 q^{25} +7.14189i q^{26} -5.62946i q^{29} -10.3540 q^{31} -5.00931i q^{32} -6.02711i q^{41} -4.78943 q^{46} +10.7192i q^{47} +7.00000 q^{49} +4.99333i q^{50} -7.17050 q^{52} -5.62195 q^{58} -5.59647i q^{59} +10.3402i q^{62} -6.98128 q^{64} -16.3838i q^{71} +12.3860 q^{73} -6.01907 q^{82} -4.80862i q^{92} +10.7049 q^{94} -6.99066i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 24 q^{4} + 48 q^{16} - 60 q^{25} + 84 q^{49} + 6 q^{52} - 30 q^{58} - 54 q^{64} - 66 q^{82} + 78 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1863\mathbb{Z}\right)^\times\).

\(n\) \(649\) \(1703\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.998666i − 0.706163i −0.935593 0.353082i \(-0.885134\pi\)
0.935593 0.353082i \(-0.114866\pi\)
\(3\) 0 0
\(4\) 1.00267 0.501333
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 2.99866i − 1.06019i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −7.15143 −1.98345 −0.991725 0.128379i \(-0.959023\pi\)
−0.991725 + 0.128379i \(0.959023\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.989326 −0.247332
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.79583i − 1.00000i
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 7.14189i 1.40064i
\(27\) 0 0
\(28\) 0 0
\(29\) − 5.62946i − 1.04536i −0.852527 0.522682i \(-0.824931\pi\)
0.852527 0.522682i \(-0.175069\pi\)
\(30\) 0 0
\(31\) −10.3540 −1.85963 −0.929816 0.368025i \(-0.880034\pi\)
−0.929816 + 0.368025i \(0.880034\pi\)
\(32\) − 5.00931i − 0.885530i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 6.02711i − 0.941277i −0.882326 0.470638i \(-0.844024\pi\)
0.882326 0.470638i \(-0.155976\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.78943 −0.706163
\(47\) 10.7192i 1.56356i 0.623554 + 0.781780i \(0.285688\pi\)
−0.623554 + 0.781780i \(0.714312\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 4.99333i 0.706163i
\(51\) 0 0
\(52\) −7.17050 −0.994370
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −5.62195 −0.738198
\(59\) − 5.59647i − 0.728599i −0.931282 0.364299i \(-0.881308\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 10.3402i 1.31320i
\(63\) 0 0
\(64\) −6.98128 −0.872660
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 16.3838i − 1.94440i −0.234151 0.972200i \(-0.575231\pi\)
0.234151 0.972200i \(-0.424769\pi\)
\(72\) 0 0
\(73\) 12.3860 1.44967 0.724836 0.688921i \(-0.241915\pi\)
0.724836 + 0.688921i \(0.241915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −6.01907 −0.664695
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 4.80862i − 0.501333i
\(93\) 0 0
\(94\) 10.7049 1.10413
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) − 6.99066i − 0.706163i
\(99\) 0 0
\(100\) −5.01333 −0.501333
\(101\) − 4.39551i − 0.437370i −0.975796 0.218685i \(-0.929823\pi\)
0.975796 0.218685i \(-0.0701767\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 21.4447i 2.10283i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 5.64447i − 0.524076i
\(117\) 0 0
\(118\) −5.58901 −0.514510
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −10.3816 −0.932295
\(125\) 0 0
\(126\) 0 0
\(127\) −19.1377 −1.69819 −0.849096 0.528239i \(-0.822853\pi\)
−0.849096 + 0.528239i \(0.822853\pi\)
\(128\) − 3.04666i − 0.269289i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.12489i 0.447763i 0.974616 + 0.223882i \(0.0718729\pi\)
−0.974616 + 0.223882i \(0.928127\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 7.12699 0.604503 0.302252 0.953228i \(-0.402262\pi\)
0.302252 + 0.953228i \(0.402262\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −16.3619 −1.37306
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) − 12.3695i − 1.02371i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −2.42743 −0.197542 −0.0987709 0.995110i \(-0.531491\pi\)
−0.0987709 + 0.995110i \(0.531491\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.8754 −0.930156 −0.465078 0.885270i \(-0.653974\pi\)
−0.465078 + 0.885270i \(0.653974\pi\)
\(164\) − 6.04318i − 0.471893i
\(165\) 0 0
\(166\) 0 0
\(167\) 25.5804i 1.97947i 0.142901 + 0.989737i \(0.454357\pi\)
−0.142901 + 0.989737i \(0.545643\pi\)
\(168\) 0 0
\(169\) 38.1430 2.93408
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.1833i 1.45848i 0.684257 + 0.729241i \(0.260127\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 22.7735i − 1.70217i −0.525030 0.851084i \(-0.675946\pi\)
0.525030 0.851084i \(-0.324054\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −14.3811 −1.06019
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 10.7478i 0.783865i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1.12165 −0.0807383 −0.0403692 0.999185i \(-0.512853\pi\)
−0.0403692 + 0.999185i \(0.512853\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 7.01867 0.501333
\(197\) 27.4656i 1.95684i 0.206623 + 0.978421i \(0.433752\pi\)
−0.206623 + 0.978421i \(0.566248\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 14.9933i 1.06019i
\(201\) 0 0
\(202\) −4.38965 −0.308854
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 7.07510 0.490570
\(209\) 0 0
\(210\) 0 0
\(211\) 26.9199 1.85324 0.926620 0.375999i \(-0.122700\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.9199 1.40090 0.700449 0.713702i \(-0.252983\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −16.8808 −1.10828
\(233\) 28.3051i 1.85433i 0.374657 + 0.927163i \(0.377760\pi\)
−0.374657 + 0.927163i \(0.622240\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 5.61140i − 0.365271i
\(237\) 0 0
\(238\) 0 0
\(239\) − 30.3024i − 1.96010i −0.198752 0.980050i \(-0.563689\pi\)
0.198752 0.980050i \(-0.436311\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 10.9853i 0.706163i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 31.0481i 1.97156i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 19.1121i 1.19920i
\(255\) 0 0
\(256\) −17.0052 −1.06282
\(257\) − 27.1382i − 1.69283i −0.532522 0.846416i \(-0.678756\pi\)
0.532522 0.846416i \(-0.321244\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 5.11805 0.316194
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 24.3104i − 1.48223i −0.671377 0.741116i \(-0.734297\pi\)
0.671377 0.741116i \(-0.265703\pi\)
\(270\) 0 0
\(271\) 32.9199 1.99974 0.999870 0.0161307i \(-0.00513477\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −33.0940 −1.98843 −0.994213 0.107430i \(-0.965738\pi\)
−0.994213 + 0.107430i \(0.965738\pi\)
\(278\) − 7.11748i − 0.426878i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) − 16.4275i − 0.974793i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 12.4190 0.726769
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 34.2971i 1.98345i
\(300\) 0 0
\(301\) 0 0
\(302\) 2.42419i 0.139497i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 14.9199 0.851522 0.425761 0.904836i \(-0.360006\pi\)
0.425761 + 0.904836i \(0.360006\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.3131i 1.26526i 0.774455 + 0.632629i \(0.218024\pi\)
−0.774455 + 0.632629i \(0.781976\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 35.5724i − 1.99795i −0.0453045 0.998973i \(-0.514426\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 35.7572 1.98345
\(326\) 11.8596i 0.656842i
\(327\) 0 0
\(328\) −18.0733 −0.997929
\(329\) 0 0
\(330\) 0 0
\(331\) 6.28996 0.345728 0.172864 0.984946i \(-0.444698\pi\)
0.172864 + 0.984946i \(0.444698\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 25.5463 1.39783
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) − 38.0921i − 2.07194i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 19.1577 1.02993
\(347\) − 9.59166i − 0.514907i −0.966291 0.257454i \(-0.917117\pi\)
0.966291 0.257454i \(-0.0828835\pi\)
\(348\) 0 0
\(349\) −37.1537 −1.98879 −0.994395 0.105732i \(-0.966282\pi\)
−0.994395 + 0.105732i \(0.966282\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 36.2944i − 1.93176i −0.258998 0.965878i \(-0.583392\pi\)
0.258998 0.965878i \(-0.416608\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −22.7431 −1.20201
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 4.74464i 0.247332i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 32.1433 1.65767
\(377\) 40.2587i 2.07343i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.12016i 0.0570144i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 20.9906i − 1.06019i
\(393\) 0 0
\(394\) 27.4289 1.38185
\(395\) 0 0
\(396\) 0 0
\(397\) −10.8890 −0.546504 −0.273252 0.961942i \(-0.588099\pi\)
−0.273252 + 0.961942i \(0.588099\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.94663 0.247332
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 74.0459 3.68849
\(404\) − 4.40723i − 0.219268i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 29.0300 1.43544 0.717720 0.696332i \(-0.245186\pi\)
0.717720 + 0.696332i \(0.245186\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 35.8238i 1.75641i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) − 26.8840i − 1.30869i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 31.0332 1.48113 0.740566 0.671984i \(-0.234557\pi\)
0.740566 + 0.671984i \(0.234557\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 18.3184i − 0.870334i −0.900350 0.435167i \(-0.856689\pi\)
0.900350 0.435167i \(-0.143311\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 20.8920i − 0.989263i
\(447\) 0 0
\(448\) 0 0
\(449\) − 38.3667i − 1.81063i −0.424736 0.905317i \(-0.639633\pi\)
0.424736 0.905317i \(-0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 39.5198i − 1.84062i −0.391189 0.920310i \(-0.627936\pi\)
0.391189 0.920310i \(-0.372064\pi\)
\(462\) 0 0
\(463\) 8.91987 0.414542 0.207271 0.978284i \(-0.433542\pi\)
0.207271 + 0.978284i \(0.433542\pi\)
\(464\) 5.56937i 0.258552i
\(465\) 0 0
\(466\) 28.2673 1.30946
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −16.7819 −0.772451
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −30.2620 −1.38415
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0293 −0.501333
\(485\) 0 0
\(486\) 0 0
\(487\) 43.1590 1.95572 0.977860 0.209259i \(-0.0671053\pi\)
0.977860 + 0.209259i \(0.0671053\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 44.2119i 1.99526i 0.0688370 + 0.997628i \(0.478071\pi\)
−0.0688370 + 0.997628i \(0.521929\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 10.2435 0.459946
\(497\) 0 0
\(498\) 0 0
\(499\) 40.4812 1.81219 0.906093 0.423079i \(-0.139051\pi\)
0.906093 + 0.423079i \(0.139051\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −19.1887 −0.851360
\(509\) 40.2891i 1.78578i 0.450274 + 0.892891i \(0.351326\pi\)
−0.450274 + 0.892891i \(0.648674\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 10.8892i 0.481237i
\(513\) 0 0
\(514\) −27.1019 −1.19542
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 5.13855i 0.224479i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 43.1025i 1.86698i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −24.2780 −1.04670
\(539\) 0 0
\(540\) 0 0
\(541\) −16.4500 −0.707242 −0.353621 0.935389i \(-0.615050\pi\)
−0.353621 + 0.935389i \(0.615050\pi\)
\(542\) − 32.8759i − 1.41214i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16.8943 0.722350 0.361175 0.932498i \(-0.382376\pi\)
0.361175 + 0.932498i \(0.382376\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 33.0498i 1.40415i
\(555\) 0 0
\(556\) 7.14599 0.303058
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −49.1295 −2.06143
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 23.9792i 1.00000i
\(576\) 0 0
\(577\) 2.29657 0.0956073 0.0478037 0.998857i \(-0.484778\pi\)
0.0478037 + 0.998857i \(0.484778\pi\)
\(578\) 16.9773i 0.706163i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) − 37.1414i − 1.53692i
\(585\) 0 0
\(586\) 0 0
\(587\) − 37.8925i − 1.56399i −0.623284 0.781996i \(-0.714202\pi\)
0.623284 0.781996i \(-0.285798\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 6.79744i − 0.279137i −0.990212 0.139569i \(-0.955428\pi\)
0.990212 0.139569i \(-0.0445716\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 34.2513 1.40064
\(599\) − 36.7734i − 1.50252i −0.660006 0.751260i \(-0.729446\pi\)
0.660006 0.751260i \(-0.270554\pi\)
\(600\) 0 0
\(601\) −16.5994 −0.677105 −0.338552 0.940948i \(-0.609937\pi\)
−0.338552 + 0.940948i \(0.609937\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.43391 −0.0990342
\(605\) 0 0
\(606\) 0 0
\(607\) 44.9199 1.82324 0.911621 0.411033i \(-0.134832\pi\)
0.911621 + 0.411033i \(0.134832\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 76.6579i − 3.10124i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) − 14.9000i − 0.601314i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22.2833 0.893479
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −35.5250 −1.41088
\(635\) 0 0
\(636\) 0 0
\(637\) −50.0600 −1.98345
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.9017i 1.52938i 0.644397 + 0.764691i \(0.277108\pi\)
−0.644397 + 0.764691i \(0.722892\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) − 35.7095i − 1.40064i
\(651\) 0 0
\(652\) −11.9071 −0.466318
\(653\) − 3.35712i − 0.131374i −0.997840 0.0656872i \(-0.979076\pi\)
0.997840 0.0656872i \(-0.0209240\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.96278i 0.232807i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) − 6.28157i − 0.244140i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −26.9979 −1.04536
\(668\) 25.6487i 0.992376i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −4.25795 −0.164132 −0.0820659 0.996627i \(-0.526152\pi\)
−0.0820659 + 0.996627i \(0.526152\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 38.2447 1.47095
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 20.1035i − 0.769238i −0.923075 0.384619i \(-0.874333\pi\)
0.923075 0.384619i \(-0.125667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.91987 0.111077 0.0555386 0.998457i \(-0.482312\pi\)
0.0555386 + 0.998457i \(0.482312\pi\)
\(692\) 19.2345i 0.731185i
\(693\) 0 0
\(694\) −9.57887 −0.363609
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 37.1041i 1.40441i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −36.2460 −1.36414
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 49.6560i 1.85963i
\(714\) 0 0
\(715\) 0 0
\(716\) − 22.8342i − 0.853354i
\(717\) 0 0
\(718\) 0 0
\(719\) − 3.19455i − 0.119137i −0.998224 0.0595683i \(-0.981028\pi\)
0.998224 0.0595683i \(-0.0189724\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 18.9746i − 0.706163i
\(723\) 0 0
\(724\) 0 0
\(725\) 28.1473i 1.04536i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −24.0238 −0.885530
\(737\) 0 0
\(738\) 0 0
\(739\) −45.3360 −1.66771 −0.833856 0.551981i \(-0.813872\pi\)
−0.833856 + 0.551981i \(0.813872\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) − 10.6048i − 0.386718i
\(753\) 0 0
\(754\) 40.2050 1.46418
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 12.3264i − 0.446832i −0.974723 0.223416i \(-0.928279\pi\)
0.974723 0.223416i \(-0.0717209\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.0228i 1.44514i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.12464 −0.0404768
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 51.7700 1.85963
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −6.92528 −0.247332
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 27.5388i 0.981030i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 10.8745i 0.385921i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 25.0466i 0.885530i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) − 73.9471i − 2.60467i
\(807\) 0 0
\(808\) −13.1806 −0.463693
\(809\) 55.5564i 1.95326i 0.214930 + 0.976629i \(0.431048\pi\)
−0.214930 + 0.976629i \(0.568952\pi\)
\(810\) 0 0
\(811\) −55.8340 −1.96060 −0.980298 0.197523i \(-0.936710\pi\)
−0.980298 + 0.197523i \(0.936710\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) − 28.9912i − 1.01365i
\(819\) 0 0
\(820\) 0 0
\(821\) 19.1833i 0.669503i 0.942306 + 0.334751i \(0.108652\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) −54.7840 −1.90965 −0.954826 0.297167i \(-0.903958\pi\)
−0.954826 + 0.297167i \(0.903958\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −50.8397 −1.76574 −0.882869 0.469620i \(-0.844391\pi\)
−0.882869 + 0.469620i \(0.844391\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 49.9262 1.73088
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −2.69084 −0.0927875
\(842\) 0 0
\(843\) 0 0
\(844\) 26.9917 0.929091
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −44.8397 −1.53528 −0.767642 0.640879i \(-0.778570\pi\)
−0.767642 + 0.640879i \(0.778570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 36.8498i − 1.25877i −0.777095 0.629383i \(-0.783308\pi\)
0.777095 0.629383i \(-0.216692\pi\)
\(858\) 0 0
\(859\) −55.1697 −1.88236 −0.941182 0.337900i \(-0.890284\pi\)
−0.941182 + 0.337900i \(0.890284\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.2811i 1.57543i 0.616043 + 0.787713i \(0.288735\pi\)
−0.616043 + 0.787713i \(0.711265\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −56.8397 −1.91934 −0.959671 0.281126i \(-0.909292\pi\)
−0.959671 + 0.281126i \(0.909292\pi\)
\(878\) − 30.9918i − 1.04592i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 50.9199 1.71359 0.856795 0.515657i \(-0.172452\pi\)
0.856795 + 0.515657i \(0.172452\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −18.2940 −0.614598
\(887\) − 56.2661i − 1.88923i −0.328178 0.944616i \(-0.606434\pi\)
0.328178 0.944616i \(-0.393566\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 20.9757 0.702317
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −38.3155 −1.27860
\(899\) 58.2874i 1.94399i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −39.4671 −1.29978
\(923\) 117.168i 3.85662i
\(924\) 0 0
\(925\) 0 0
\(926\) − 8.90797i − 0.292734i
\(927\) 0 0
\(928\) −28.1997 −0.925702
\(929\) 60.9583i 1.99998i 0.00493945 + 0.999988i \(0.498428\pi\)
−0.00493945 + 0.999988i \(0.501572\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 28.3806i 0.929636i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −28.9050 −0.941277
\(944\) 5.53674i 0.180205i
\(945\) 0 0
\(946\) 0 0
\(947\) 17.3930i 0.565195i 0.959239 + 0.282598i \(0.0911961\pi\)
−0.959239 + 0.282598i \(0.908804\pi\)
\(948\) 0 0
\(949\) −88.5777 −2.87535
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 30.3832i − 0.982663i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 76.2052 2.45823
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18.4820 0.594343 0.297171 0.954824i \(-0.403957\pi\)
0.297171 + 0.954824i \(0.403957\pi\)
\(968\) 32.9853i 1.06019i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 43.1014i − 1.38106i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 44.1529 1.40898
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −3.08013 −0.0978435 −0.0489218 0.998803i \(-0.515578\pi\)
−0.0489218 + 0.998803i \(0.515578\pi\)
\(992\) 51.8664i 1.64676i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −62.8397 −1.99015 −0.995077 0.0991016i \(-0.968403\pi\)
−0.995077 + 0.0991016i \(0.968403\pi\)
\(998\) − 40.4272i − 1.27970i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1863.2.c.a.1862.5 12
3.2 odd 2 inner 1863.2.c.a.1862.8 12
9.2 odd 6 207.2.g.a.68.4 12
9.4 even 3 207.2.g.a.137.4 yes 12
9.5 odd 6 621.2.g.a.413.3 12
9.7 even 3 621.2.g.a.206.3 12
23.22 odd 2 CM 1863.2.c.a.1862.5 12
69.68 even 2 inner 1863.2.c.a.1862.8 12
207.22 odd 6 207.2.g.a.137.4 yes 12
207.68 even 6 621.2.g.a.413.3 12
207.137 even 6 207.2.g.a.68.4 12
207.160 odd 6 621.2.g.a.206.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.g.a.68.4 12 9.2 odd 6
207.2.g.a.68.4 12 207.137 even 6
207.2.g.a.137.4 yes 12 9.4 even 3
207.2.g.a.137.4 yes 12 207.22 odd 6
621.2.g.a.206.3 12 9.7 even 3
621.2.g.a.206.3 12 207.160 odd 6
621.2.g.a.413.3 12 9.5 odd 6
621.2.g.a.413.3 12 207.68 even 6
1863.2.c.a.1862.5 12 1.1 even 1 trivial
1863.2.c.a.1862.5 12 23.22 odd 2 CM
1863.2.c.a.1862.8 12 3.2 odd 2 inner
1863.2.c.a.1862.8 12 69.68 even 2 inner