Properties

Label 186.2.f.c.109.1
Level $186$
Weight $2$
Character 186.109
Analytic conductor $1.485$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(97,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.9240015625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 6x^{6} + 6x^{5} + 69x^{4} + 98x^{3} + 664x^{2} + 704x + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 109.1
Root \(-0.585709 - 1.80263i\) of defining polynomial
Character \(\chi\) \(=\) 186.109
Dual form 186.2.f.c.157.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.809017 + 0.587785i) q^{3} +(0.309017 - 0.951057i) q^{4} -2.51343 q^{5} -1.00000 q^{6} +(-1.13868 + 3.50450i) q^{7} +(0.309017 + 0.951057i) q^{8} +(0.309017 + 0.951057i) q^{9} +(2.03341 - 1.47736i) q^{10} +(-1.39473 + 4.29252i) q^{11} +(0.809017 - 0.587785i) q^{12} +(3.15144 + 2.28965i) q^{13} +(-1.13868 - 3.50450i) q^{14} +(-2.03341 - 1.47736i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(-1.17142 - 3.60525i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(2.53341 - 1.84063i) q^{19} +(-0.776692 + 2.39041i) q^{20} +(-2.98110 + 2.16590i) q^{21} +(-1.39473 - 4.29252i) q^{22} +(0.618034 + 1.90211i) q^{23} +(-0.309017 + 0.951057i) q^{24} +1.31732 q^{25} -3.89539 q^{26} +(-0.309017 + 0.951057i) q^{27} +(2.98110 + 2.16590i) q^{28} +(0.256714 - 0.186513i) q^{29} +2.51343 q^{30} +(-5.11978 - 2.18811i) q^{31} +1.00000 q^{32} +(-3.65144 + 2.65293i) q^{33} +(3.06681 + 2.22817i) q^{34} +(2.86199 - 8.80829i) q^{35} +1.00000 q^{36} +4.49007 q^{37} +(-0.967675 + 2.97820i) q^{38} +(1.20374 + 3.70474i) q^{39} +(-0.776692 - 2.39041i) q^{40} +(4.96220 - 3.60525i) q^{41} +(1.13868 - 3.50450i) q^{42} +(6.18376 - 4.49277i) q^{43} +(3.65144 + 2.65293i) q^{44} +(-0.776692 - 2.39041i) q^{45} +(-1.61803 - 1.17557i) q^{46} +(10.0290 + 7.28650i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-5.32178 - 3.86650i) q^{49} +(-1.06573 + 0.774299i) q^{50} +(1.17142 - 3.60525i) q^{51} +(3.15144 - 2.28965i) q^{52} +(-0.926639 - 2.85190i) q^{53} +(-0.309017 - 0.951057i) q^{54} +(3.50554 - 10.7889i) q^{55} -3.68484 q^{56} +3.13146 q^{57} +(-0.0980558 + 0.301785i) q^{58} +(-2.36132 - 1.71560i) q^{59} +(-2.03341 + 1.47736i) q^{60} -12.3718 q^{61} +(5.42813 - 1.23911i) q^{62} -3.68484 q^{63} +(-0.809017 + 0.587785i) q^{64} +(-7.92091 - 5.75488i) q^{65} +(1.39473 - 4.29252i) q^{66} +11.2651 q^{67} -3.79079 q^{68} +(-0.618034 + 1.90211i) q^{69} +(2.86199 + 8.80829i) q^{70} +(4.98556 + 15.3440i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(-4.73607 + 14.5761i) q^{73} +(-3.63254 + 2.63920i) q^{74} +(1.06573 + 0.774299i) q^{75} +(-0.967675 - 2.97820i) q^{76} +(-13.4550 - 9.77562i) q^{77} +(-3.15144 - 2.28965i) q^{78} +(2.17034 + 6.67961i) q^{79} +(2.03341 + 1.47736i) q^{80} +(-0.809017 + 0.587785i) q^{81} +(-1.89539 + 5.83342i) q^{82} +(11.7082 - 8.50651i) q^{83} +(1.13868 + 3.50450i) q^{84} +(2.94427 + 9.06154i) q^{85} +(-2.36199 + 7.26945i) q^{86} +0.317315 q^{87} -4.51343 q^{88} +(1.74949 - 5.38439i) q^{89} +(2.03341 + 1.47736i) q^{90} +(-11.6126 + 8.43702i) q^{91} +2.00000 q^{92} +(-2.85585 - 4.77955i) q^{93} -12.3965 q^{94} +(-6.36753 + 4.62628i) q^{95} +(0.809017 + 0.587785i) q^{96} +(1.69032 - 5.20226i) q^{97} +6.57808 q^{98} -4.51343 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} - 8 q^{6} - 7 q^{7} - 2 q^{8} - 2 q^{9} + 2 q^{10} + q^{11} + 2 q^{12} + 2 q^{13} - 7 q^{14} - 2 q^{15} - 2 q^{16} + 6 q^{17} - 2 q^{18} + 6 q^{19} - 3 q^{20}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −2.51343 −1.12404 −0.562019 0.827124i \(-0.689975\pi\)
−0.562019 + 0.827124i \(0.689975\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.13868 + 3.50450i −0.430380 + 1.32457i 0.467367 + 0.884064i \(0.345203\pi\)
−0.897747 + 0.440511i \(0.854797\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 2.03341 1.47736i 0.643019 0.467181i
\(11\) −1.39473 + 4.29252i −0.420526 + 1.29424i 0.486689 + 0.873576i \(0.338205\pi\)
−0.907214 + 0.420669i \(0.861795\pi\)
\(12\) 0.809017 0.587785i 0.233543 0.169679i
\(13\) 3.15144 + 2.28965i 0.874052 + 0.635036i 0.931671 0.363303i \(-0.118351\pi\)
−0.0576192 + 0.998339i \(0.518351\pi\)
\(14\) −1.13868 3.50450i −0.304325 0.936616i
\(15\) −2.03341 1.47736i −0.525023 0.381452i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −1.17142 3.60525i −0.284110 0.874402i −0.986664 0.162771i \(-0.947957\pi\)
0.702553 0.711631i \(-0.252043\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) 2.53341 1.84063i 0.581203 0.422269i −0.257955 0.966157i \(-0.583048\pi\)
0.839158 + 0.543888i \(0.183048\pi\)
\(20\) −0.776692 + 2.39041i −0.173674 + 0.534512i
\(21\) −2.98110 + 2.16590i −0.650530 + 0.472638i
\(22\) −1.39473 4.29252i −0.297357 0.915169i
\(23\) 0.618034 + 1.90211i 0.128869 + 0.396618i 0.994586 0.103916i \(-0.0331372\pi\)
−0.865717 + 0.500534i \(0.833137\pi\)
\(24\) −0.309017 + 0.951057i −0.0630778 + 0.194134i
\(25\) 1.31732 0.263463
\(26\) −3.89539 −0.763949
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 2.98110 + 2.16590i 0.563375 + 0.409316i
\(29\) 0.256714 0.186513i 0.0476705 0.0346346i −0.563695 0.825983i \(-0.690621\pi\)
0.611365 + 0.791348i \(0.290621\pi\)
\(30\) 2.51343 0.458887
\(31\) −5.11978 2.18811i −0.919540 0.392997i
\(32\) 1.00000 0.176777
\(33\) −3.65144 + 2.65293i −0.635634 + 0.461815i
\(34\) 3.06681 + 2.22817i 0.525954 + 0.382128i
\(35\) 2.86199 8.80829i 0.483764 1.48887i
\(36\) 1.00000 0.166667
\(37\) 4.49007 0.738163 0.369081 0.929397i \(-0.379672\pi\)
0.369081 + 0.929397i \(0.379672\pi\)
\(38\) −0.967675 + 2.97820i −0.156978 + 0.483127i
\(39\) 1.20374 + 3.70474i 0.192753 + 0.593233i
\(40\) −0.776692 2.39041i −0.122806 0.377957i
\(41\) 4.96220 3.60525i 0.774966 0.563046i −0.128498 0.991710i \(-0.541016\pi\)
0.903464 + 0.428664i \(0.141016\pi\)
\(42\) 1.13868 3.50450i 0.175702 0.540755i
\(43\) 6.18376 4.49277i 0.943015 0.685141i −0.00612934 0.999981i \(-0.501951\pi\)
0.949145 + 0.314841i \(0.101951\pi\)
\(44\) 3.65144 + 2.65293i 0.550475 + 0.399944i
\(45\) −0.776692 2.39041i −0.115782 0.356341i
\(46\) −1.61803 1.17557i −0.238566 0.173328i
\(47\) 10.0290 + 7.28650i 1.46288 + 1.06285i 0.982601 + 0.185732i \(0.0594655\pi\)
0.480281 + 0.877114i \(0.340535\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −5.32178 3.86650i −0.760254 0.552357i
\(50\) −1.06573 + 0.774299i −0.150717 + 0.109502i
\(51\) 1.17142 3.60525i 0.164031 0.504836i
\(52\) 3.15144 2.28965i 0.437026 0.317518i
\(53\) −0.926639 2.85190i −0.127284 0.391739i 0.867027 0.498262i \(-0.166028\pi\)
−0.994310 + 0.106523i \(0.966028\pi\)
\(54\) −0.309017 0.951057i −0.0420519 0.129422i
\(55\) 3.50554 10.7889i 0.472687 1.45478i
\(56\) −3.68484 −0.492408
\(57\) 3.13146 0.414772
\(58\) −0.0980558 + 0.301785i −0.0128754 + 0.0396263i
\(59\) −2.36132 1.71560i −0.307418 0.223352i 0.423370 0.905957i \(-0.360847\pi\)
−0.730788 + 0.682605i \(0.760847\pi\)
\(60\) −2.03341 + 1.47736i −0.262511 + 0.190726i
\(61\) −12.3718 −1.58405 −0.792026 0.610487i \(-0.790974\pi\)
−0.792026 + 0.610487i \(0.790974\pi\)
\(62\) 5.42813 1.23911i 0.689373 0.157367i
\(63\) −3.68484 −0.464247
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −7.92091 5.75488i −0.982468 0.713805i
\(66\) 1.39473 4.29252i 0.171679 0.528373i
\(67\) 11.2651 1.37625 0.688124 0.725593i \(-0.258434\pi\)
0.688124 + 0.725593i \(0.258434\pi\)
\(68\) −3.79079 −0.459700
\(69\) −0.618034 + 1.90211i −0.0744025 + 0.228988i
\(70\) 2.86199 + 8.80829i 0.342073 + 1.05279i
\(71\) 4.98556 + 15.3440i 0.591677 + 1.82100i 0.570615 + 0.821218i \(0.306705\pi\)
0.0210627 + 0.999778i \(0.493295\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) −4.73607 + 14.5761i −0.554315 + 1.70601i 0.143431 + 0.989660i \(0.454186\pi\)
−0.697746 + 0.716345i \(0.745814\pi\)
\(74\) −3.63254 + 2.63920i −0.422274 + 0.306800i
\(75\) 1.06573 + 0.774299i 0.123060 + 0.0894083i
\(76\) −0.967675 2.97820i −0.111000 0.341623i
\(77\) −13.4550 9.77562i −1.53334 1.11404i
\(78\) −3.15144 2.28965i −0.356830 0.259252i
\(79\) 2.17034 + 6.67961i 0.244182 + 0.751515i 0.995770 + 0.0918821i \(0.0292883\pi\)
−0.751588 + 0.659633i \(0.770712\pi\)
\(80\) 2.03341 + 1.47736i 0.227342 + 0.165173i
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −1.89539 + 5.83342i −0.209311 + 0.644193i
\(83\) 11.7082 8.50651i 1.28514 0.933711i 0.285447 0.958394i \(-0.407858\pi\)
0.999695 + 0.0246839i \(0.00785793\pi\)
\(84\) 1.13868 + 3.50450i 0.124240 + 0.382372i
\(85\) 2.94427 + 9.06154i 0.319351 + 0.982862i
\(86\) −2.36199 + 7.26945i −0.254700 + 0.783885i
\(87\) 0.317315 0.0340198
\(88\) −4.51343 −0.481133
\(89\) 1.74949 5.38439i 0.185446 0.570744i −0.814510 0.580150i \(-0.802994\pi\)
0.999956 + 0.00940558i \(0.00299393\pi\)
\(90\) 2.03341 + 1.47736i 0.214340 + 0.155727i
\(91\) −11.6126 + 8.43702i −1.21733 + 0.884440i
\(92\) 2.00000 0.208514
\(93\) −2.85585 4.77955i −0.296138 0.495617i
\(94\) −12.3965 −1.27861
\(95\) −6.36753 + 4.62628i −0.653295 + 0.474646i
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) 1.69032 5.20226i 0.171626 0.528209i −0.827838 0.560968i \(-0.810429\pi\)
0.999463 + 0.0327585i \(0.0104292\pi\)
\(98\) 6.57808 0.664486
\(99\) −4.51343 −0.453616
\(100\) 0.407073 1.25284i 0.0407073 0.125284i
\(101\) 2.36921 + 7.29167i 0.235745 + 0.725548i 0.997022 + 0.0771211i \(0.0245728\pi\)
−0.761277 + 0.648427i \(0.775427\pi\)
\(102\) 1.17142 + 3.60525i 0.115988 + 0.356973i
\(103\) −9.76400 + 7.09396i −0.962076 + 0.698989i −0.953632 0.300975i \(-0.902688\pi\)
−0.00844380 + 0.999964i \(0.502688\pi\)
\(104\) −1.20374 + 3.70474i −0.118037 + 0.363280i
\(105\) 7.49278 5.44382i 0.731221 0.531263i
\(106\) 2.42597 + 1.76257i 0.235631 + 0.171196i
\(107\) −2.26326 6.96561i −0.218798 0.673391i −0.998862 0.0476915i \(-0.984814\pi\)
0.780064 0.625700i \(-0.215186\pi\)
\(108\) 0.809017 + 0.587785i 0.0778477 + 0.0565597i
\(109\) −13.5947 9.87716i −1.30214 0.946060i −0.302166 0.953255i \(-0.597710\pi\)
−0.999974 + 0.00719492i \(0.997710\pi\)
\(110\) 3.50554 + 10.7889i 0.334240 + 1.02869i
\(111\) 3.63254 + 2.63920i 0.344786 + 0.250501i
\(112\) 2.98110 2.16590i 0.281688 0.204658i
\(113\) −1.76393 + 5.42882i −0.165937 + 0.510701i −0.999104 0.0423201i \(-0.986525\pi\)
0.833167 + 0.553021i \(0.186525\pi\)
\(114\) −2.53341 + 1.84063i −0.237275 + 0.172390i
\(115\) −1.55338 4.78082i −0.144854 0.445814i
\(116\) −0.0980558 0.301785i −0.00910426 0.0280200i
\(117\) −1.20374 + 3.70474i −0.111286 + 0.342503i
\(118\) 2.91875 0.268693
\(119\) 13.9685 1.28049
\(120\) 0.776692 2.39041i 0.0709019 0.218214i
\(121\) −7.58132 5.50815i −0.689211 0.500741i
\(122\) 10.0090 7.27199i 0.906175 0.658375i
\(123\) 6.13362 0.553050
\(124\) −3.66312 + 4.19304i −0.328958 + 0.376546i
\(125\) 9.25616 0.827896
\(126\) 2.98110 2.16590i 0.265578 0.192953i
\(127\) −11.9849 8.70754i −1.06349 0.772669i −0.0887571 0.996053i \(-0.528289\pi\)
−0.974730 + 0.223384i \(0.928289\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 7.64355 0.672977
\(130\) 9.79079 0.858709
\(131\) 5.39201 16.5949i 0.471102 1.44990i −0.380041 0.924970i \(-0.624090\pi\)
0.851143 0.524934i \(-0.175910\pi\)
\(132\) 1.39473 + 4.29252i 0.121395 + 0.373616i
\(133\) 3.56573 + 10.9742i 0.309188 + 0.951583i
\(134\) −9.11364 + 6.62145i −0.787299 + 0.572006i
\(135\) 0.776692 2.39041i 0.0668470 0.205734i
\(136\) 3.06681 2.22817i 0.262977 0.191064i
\(137\) −3.23607 2.35114i −0.276476 0.200872i 0.440903 0.897555i \(-0.354658\pi\)
−0.717379 + 0.696683i \(0.754658\pi\)
\(138\) −0.618034 1.90211i −0.0526105 0.161919i
\(139\) 6.97671 + 5.06888i 0.591757 + 0.429937i 0.842943 0.538002i \(-0.180821\pi\)
−0.251187 + 0.967939i \(0.580821\pi\)
\(140\) −7.49278 5.44382i −0.633256 0.460087i
\(141\) 3.83074 + 11.7898i 0.322607 + 0.992881i
\(142\) −13.0524 9.48310i −1.09533 0.795804i
\(143\) −14.2238 + 10.3342i −1.18945 + 0.864188i
\(144\) 0.309017 0.951057i 0.0257514 0.0792547i
\(145\) −0.645231 + 0.468788i −0.0535835 + 0.0389307i
\(146\) −4.73607 14.5761i −0.391960 1.20633i
\(147\) −2.03274 6.25612i −0.167657 0.515996i
\(148\) 1.38751 4.27031i 0.114052 0.351017i
\(149\) −12.4977 −1.02385 −0.511924 0.859031i \(-0.671067\pi\)
−0.511924 + 0.859031i \(0.671067\pi\)
\(150\) −1.31732 −0.107558
\(151\) −3.13868 + 9.65986i −0.255422 + 0.786108i 0.738324 + 0.674446i \(0.235618\pi\)
−0.993746 + 0.111662i \(0.964382\pi\)
\(152\) 2.53341 + 1.84063i 0.205486 + 0.149295i
\(153\) 3.06681 2.22817i 0.247937 0.180137i
\(154\) 16.6313 1.34019
\(155\) 12.8682 + 5.49966i 1.03360 + 0.441744i
\(156\) 3.89539 0.311881
\(157\) 18.4812 13.4274i 1.47496 1.07162i 0.495820 0.868426i \(-0.334868\pi\)
0.979138 0.203194i \(-0.0651323\pi\)
\(158\) −5.68202 4.12823i −0.452037 0.328424i
\(159\) 0.926639 2.85190i 0.0734872 0.226170i
\(160\) −2.51343 −0.198704
\(161\) −7.36969 −0.580813
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) −1.15144 3.54377i −0.0901877 0.277569i 0.895782 0.444494i \(-0.146616\pi\)
−0.985970 + 0.166925i \(0.946616\pi\)
\(164\) −1.89539 5.83342i −0.148005 0.455514i
\(165\) 9.17763 6.66794i 0.714477 0.519098i
\(166\) −4.47214 + 13.7638i −0.347105 + 1.06828i
\(167\) 12.3029 8.93856i 0.952025 0.691687i 0.000740289 1.00000i \(-0.499764\pi\)
0.951285 + 0.308313i \(0.0997644\pi\)
\(168\) −2.98110 2.16590i −0.229997 0.167103i
\(169\) 0.671830 + 2.06768i 0.0516792 + 0.159052i
\(170\) −7.70820 5.60034i −0.591192 0.429526i
\(171\) 2.53341 + 1.84063i 0.193734 + 0.140756i
\(172\) −2.36199 7.26945i −0.180100 0.554290i
\(173\) 7.94156 + 5.76988i 0.603785 + 0.438676i 0.847221 0.531241i \(-0.178274\pi\)
−0.243435 + 0.969917i \(0.578274\pi\)
\(174\) −0.256714 + 0.186513i −0.0194614 + 0.0141395i
\(175\) −1.50000 + 4.61653i −0.113389 + 0.348977i
\(176\) 3.65144 2.65293i 0.275238 0.199972i
\(177\) −0.901944 2.77590i −0.0677943 0.208649i
\(178\) 1.74949 + 5.38439i 0.131130 + 0.403577i
\(179\) −4.20482 + 12.9411i −0.314283 + 0.967264i 0.661765 + 0.749711i \(0.269808\pi\)
−0.976048 + 0.217553i \(0.930192\pi\)
\(180\) −2.51343 −0.187340
\(181\) 18.4569 1.37189 0.685944 0.727654i \(-0.259389\pi\)
0.685944 + 0.727654i \(0.259389\pi\)
\(182\) 4.43560 13.6514i 0.328789 1.01191i
\(183\) −10.0090 7.27199i −0.739889 0.537561i
\(184\) −1.61803 + 1.17557i −0.119283 + 0.0866642i
\(185\) −11.2855 −0.829723
\(186\) 5.11978 + 2.18811i 0.375401 + 0.160440i
\(187\) 17.1094 1.25117
\(188\) 10.0290 7.28650i 0.731441 0.531423i
\(189\) −2.98110 2.16590i −0.216843 0.157546i
\(190\) 2.43218 7.48548i 0.176449 0.543054i
\(191\) −0.768251 −0.0555887 −0.0277944 0.999614i \(-0.508848\pi\)
−0.0277944 + 0.999614i \(0.508848\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −2.96112 + 9.11340i −0.213146 + 0.655997i 0.786134 + 0.618057i \(0.212080\pi\)
−0.999280 + 0.0379405i \(0.987920\pi\)
\(194\) 1.69032 + 5.20226i 0.121358 + 0.373500i
\(195\) −3.02552 9.31159i −0.216662 0.666817i
\(196\) −5.32178 + 3.86650i −0.380127 + 0.276178i
\(197\) −2.86686 + 8.82329i −0.204255 + 0.628634i 0.795488 + 0.605970i \(0.207215\pi\)
−0.999743 + 0.0226639i \(0.992785\pi\)
\(198\) 3.65144 2.65293i 0.259496 0.188535i
\(199\) −10.6154 7.71253i −0.752505 0.546727i 0.144097 0.989564i \(-0.453972\pi\)
−0.896602 + 0.442837i \(0.853972\pi\)
\(200\) 0.407073 + 1.25284i 0.0287844 + 0.0885893i
\(201\) 9.11364 + 6.62145i 0.642827 + 0.467041i
\(202\) −6.20266 4.50650i −0.436418 0.317076i
\(203\) 0.361320 + 1.11203i 0.0253597 + 0.0780492i
\(204\) −3.06681 2.22817i −0.214720 0.156003i
\(205\) −12.4721 + 9.06154i −0.871092 + 0.632885i
\(206\) 3.72952 11.4783i 0.259848 0.799729i
\(207\) −1.61803 + 1.17557i −0.112461 + 0.0817078i
\(208\) −1.20374 3.70474i −0.0834645 0.256877i
\(209\) 4.36753 + 13.4419i 0.302108 + 0.929794i
\(210\) −2.86199 + 8.80829i −0.197496 + 0.607830i
\(211\) 4.49007 0.309109 0.154554 0.987984i \(-0.450606\pi\)
0.154554 + 0.987984i \(0.450606\pi\)
\(212\) −2.99867 −0.205949
\(213\) −4.98556 + 15.3440i −0.341605 + 1.05135i
\(214\) 5.92530 + 4.30499i 0.405045 + 0.294283i
\(215\) −15.5424 + 11.2922i −1.05999 + 0.770125i
\(216\) −1.00000 −0.0680414
\(217\) 13.4980 15.4507i 0.916306 1.04886i
\(218\) 16.8040 1.13811
\(219\) −12.3992 + 9.00854i −0.837859 + 0.608740i
\(220\) −9.17763 6.66794i −0.618755 0.449552i
\(221\) 4.56313 14.0439i 0.306949 0.944693i
\(222\) −4.49007 −0.301354
\(223\) 7.11904 0.476726 0.238363 0.971176i \(-0.423389\pi\)
0.238363 + 0.971176i \(0.423389\pi\)
\(224\) −1.13868 + 3.50450i −0.0760812 + 0.234154i
\(225\) 0.407073 + 1.25284i 0.0271382 + 0.0835228i
\(226\) −1.76393 5.42882i −0.117335 0.361120i
\(227\) −18.6805 + 13.5721i −1.23987 + 0.900815i −0.997589 0.0693926i \(-0.977894\pi\)
−0.242276 + 0.970207i \(0.577894\pi\)
\(228\) 0.967675 2.97820i 0.0640858 0.197236i
\(229\) 11.1101 8.07200i 0.734179 0.533412i −0.156704 0.987646i \(-0.550087\pi\)
0.890883 + 0.454233i \(0.150087\pi\)
\(230\) 4.06681 + 2.95471i 0.268158 + 0.194828i
\(231\) −5.13935 15.8173i −0.338144 1.04070i
\(232\) 0.256714 + 0.186513i 0.0168541 + 0.0122452i
\(233\) −7.00565 5.08991i −0.458956 0.333451i 0.334166 0.942514i \(-0.391545\pi\)
−0.793121 + 0.609064i \(0.791545\pi\)
\(234\) −1.20374 3.70474i −0.0786911 0.242186i
\(235\) −25.2072 18.3141i −1.64434 1.19468i
\(236\) −2.36132 + 1.71560i −0.153709 + 0.111676i
\(237\) −2.17034 + 6.67961i −0.140979 + 0.433887i
\(238\) −11.3007 + 8.21045i −0.732517 + 0.532205i
\(239\) −4.21271 12.9654i −0.272497 0.838661i −0.989871 0.141972i \(-0.954656\pi\)
0.717373 0.696689i \(-0.245344\pi\)
\(240\) 0.776692 + 2.39041i 0.0501352 + 0.154300i
\(241\) −0.899230 + 2.76755i −0.0579245 + 0.178273i −0.975832 0.218520i \(-0.929877\pi\)
0.917908 + 0.396793i \(0.129877\pi\)
\(242\) 9.37102 0.602392
\(243\) −1.00000 −0.0641500
\(244\) −3.82311 + 11.7663i −0.244750 + 0.753262i
\(245\) 13.3759 + 9.71816i 0.854555 + 0.620870i
\(246\) −4.96220 + 3.60525i −0.316379 + 0.229862i
\(247\) 12.1983 0.776157
\(248\) 0.498920 5.54537i 0.0316815 0.352131i
\(249\) 14.4721 0.917134
\(250\) −7.48839 + 5.44063i −0.473607 + 0.344096i
\(251\) 6.54899 + 4.75812i 0.413369 + 0.300330i 0.774964 0.632005i \(-0.217768\pi\)
−0.361595 + 0.932335i \(0.617768\pi\)
\(252\) −1.13868 + 3.50450i −0.0717301 + 0.220762i
\(253\) −9.02685 −0.567513
\(254\) 14.8141 0.929522
\(255\) −2.94427 + 9.06154i −0.184377 + 0.567455i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −6.06815 18.6758i −0.378520 1.16497i −0.941073 0.338204i \(-0.890180\pi\)
0.562552 0.826762i \(-0.309820\pi\)
\(258\) −6.18376 + 4.49277i −0.384984 + 0.279708i
\(259\) −5.11275 + 15.7354i −0.317691 + 0.977751i
\(260\) −7.92091 + 5.75488i −0.491234 + 0.356902i
\(261\) 0.256714 + 0.186513i 0.0158902 + 0.0115449i
\(262\) 5.39201 + 16.5949i 0.333120 + 1.02524i
\(263\) 10.6036 + 7.70396i 0.653846 + 0.475047i 0.864579 0.502497i \(-0.167585\pi\)
−0.210733 + 0.977544i \(0.567585\pi\)
\(264\) −3.65144 2.65293i −0.224731 0.163276i
\(265\) 2.32904 + 7.16804i 0.143072 + 0.440329i
\(266\) −9.33520 6.78242i −0.572378 0.415857i
\(267\) 4.58024 3.32774i 0.280306 0.203654i
\(268\) 3.48110 10.7137i 0.212642 0.654445i
\(269\) 6.47869 4.70704i 0.395013 0.286993i −0.372494 0.928035i \(-0.621497\pi\)
0.767506 + 0.641041i \(0.221497\pi\)
\(270\) 0.776692 + 2.39041i 0.0472679 + 0.145476i
\(271\) 1.09605 + 3.37331i 0.0665805 + 0.204914i 0.978812 0.204762i \(-0.0656419\pi\)
−0.912231 + 0.409675i \(0.865642\pi\)
\(272\) −1.17142 + 3.60525i −0.0710276 + 0.218600i
\(273\) −14.3539 −0.868739
\(274\) 4.00000 0.241649
\(275\) −1.83729 + 5.65461i −0.110793 + 0.340986i
\(276\) 1.61803 + 1.17557i 0.0973942 + 0.0707610i
\(277\) 24.5280 17.8206i 1.47374 1.07074i 0.494238 0.869326i \(-0.335447\pi\)
0.979507 0.201412i \(-0.0645530\pi\)
\(278\) −8.62369 −0.517214
\(279\) 0.498920 5.54537i 0.0298696 0.331992i
\(280\) 9.26159 0.553486
\(281\) −16.1227 + 11.7138i −0.961798 + 0.698787i −0.953568 0.301179i \(-0.902620\pi\)
−0.00823063 + 0.999966i \(0.502620\pi\)
\(282\) −10.0290 7.28650i −0.597219 0.433905i
\(283\) 5.19273 15.9816i 0.308676 0.950006i −0.669604 0.742718i \(-0.733536\pi\)
0.978280 0.207288i \(-0.0664638\pi\)
\(284\) 16.1336 0.957354
\(285\) −7.87070 −0.466220
\(286\) 5.43300 16.7211i 0.321260 0.988738i
\(287\) 6.98423 + 21.4952i 0.412266 + 1.26882i
\(288\) 0.309017 + 0.951057i 0.0182090 + 0.0560415i
\(289\) 2.12767 1.54584i 0.125157 0.0909318i
\(290\) 0.246456 0.758514i 0.0144724 0.0445415i
\(291\) 4.42530 3.21517i 0.259416 0.188477i
\(292\) 12.3992 + 9.00854i 0.725608 + 0.527185i
\(293\) 1.62019 + 4.98644i 0.0946527 + 0.291311i 0.987163 0.159716i \(-0.0510578\pi\)
−0.892510 + 0.451027i \(0.851058\pi\)
\(294\) 5.32178 + 3.86650i 0.310372 + 0.225499i
\(295\) 5.93501 + 4.31203i 0.345549 + 0.251056i
\(296\) 1.38751 + 4.27031i 0.0806472 + 0.248207i
\(297\) −3.65144 2.65293i −0.211878 0.153938i
\(298\) 10.1108 7.34594i 0.585704 0.425539i
\(299\) −2.40749 + 7.40948i −0.139228 + 0.428501i
\(300\) 1.06573 0.774299i 0.0615300 0.0447041i
\(301\) 8.70356 + 26.7868i 0.501665 + 1.54397i
\(302\) −3.13868 9.65986i −0.180611 0.555863i
\(303\) −2.36921 + 7.29167i −0.136107 + 0.418895i
\(304\) −3.13146 −0.179602
\(305\) 31.0957 1.78054
\(306\) −1.17142 + 3.60525i −0.0669655 + 0.206099i
\(307\) −3.31854 2.41106i −0.189399 0.137606i 0.489045 0.872259i \(-0.337345\pi\)
−0.678444 + 0.734652i \(0.737345\pi\)
\(308\) −13.4550 + 9.77562i −0.766669 + 0.557018i
\(309\) −12.0690 −0.686580
\(310\) −13.6432 + 3.11441i −0.774882 + 0.176887i
\(311\) −23.0490 −1.30699 −0.653495 0.756931i \(-0.726698\pi\)
−0.653495 + 0.756931i \(0.726698\pi\)
\(312\) −3.15144 + 2.28965i −0.178415 + 0.129626i
\(313\) −18.7874 13.6498i −1.06192 0.771533i −0.0874810 0.996166i \(-0.527882\pi\)
−0.974443 + 0.224633i \(0.927882\pi\)
\(314\) −7.05918 + 21.7259i −0.398373 + 1.22606i
\(315\) 9.26159 0.521831
\(316\) 7.02336 0.395095
\(317\) −0.301544 + 0.928056i −0.0169364 + 0.0521248i −0.959168 0.282839i \(-0.908724\pi\)
0.942231 + 0.334963i \(0.108724\pi\)
\(318\) 0.926639 + 2.85190i 0.0519633 + 0.159927i
\(319\) 0.442568 + 1.36208i 0.0247790 + 0.0762621i
\(320\) 2.03341 1.47736i 0.113671 0.0825867i
\(321\) 2.26326 6.96561i 0.126323 0.388783i
\(322\) 5.96220 4.33179i 0.332261 0.241401i
\(323\) −9.60360 6.97742i −0.534358 0.388234i
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) 4.15144 + 3.01620i 0.230280 + 0.167309i
\(326\) 3.01451 + 2.19017i 0.166958 + 0.121302i
\(327\) −5.19273 15.9816i −0.287159 0.883783i
\(328\) 4.96220 + 3.60525i 0.273992 + 0.199067i
\(329\) −36.9554 + 26.8496i −2.03741 + 1.48027i
\(330\) −3.50554 + 10.7889i −0.192974 + 0.593912i
\(331\) −9.23607 + 6.71040i −0.507660 + 0.368837i −0.811935 0.583747i \(-0.801586\pi\)
0.304275 + 0.952584i \(0.401586\pi\)
\(332\) −4.47214 13.7638i −0.245440 0.755388i
\(333\) 1.38751 + 4.27031i 0.0760349 + 0.234011i
\(334\) −4.69928 + 14.4629i −0.257133 + 0.791375i
\(335\) −28.3140 −1.54696
\(336\) 3.68484 0.201025
\(337\) −0.389597 + 1.19906i −0.0212227 + 0.0653168i −0.961107 0.276176i \(-0.910933\pi\)
0.939884 + 0.341493i \(0.110933\pi\)
\(338\) −1.75887 1.27790i −0.0956701 0.0695084i
\(339\) −4.61803 + 3.35520i −0.250817 + 0.182229i
\(340\) 9.52786 0.516721
\(341\) 16.5332 18.9250i 0.895324 1.02484i
\(342\) −3.13146 −0.169330
\(343\) −1.25779 + 0.913840i −0.0679145 + 0.0493427i
\(344\) 6.18376 + 4.49277i 0.333406 + 0.242234i
\(345\) 1.55338 4.78082i 0.0836313 0.257391i
\(346\) −9.81631 −0.527728
\(347\) 5.74949 0.308649 0.154325 0.988020i \(-0.450680\pi\)
0.154325 + 0.988020i \(0.450680\pi\)
\(348\) 0.0980558 0.301785i 0.00525634 0.0161774i
\(349\) −5.57254 17.1505i −0.298291 0.918045i −0.982096 0.188381i \(-0.939676\pi\)
0.683805 0.729665i \(-0.260324\pi\)
\(350\) −1.50000 4.61653i −0.0801784 0.246764i
\(351\) −3.15144 + 2.28965i −0.168211 + 0.122213i
\(352\) −1.39473 + 4.29252i −0.0743391 + 0.228792i
\(353\) 7.70820 5.60034i 0.410266 0.298076i −0.363443 0.931616i \(-0.618399\pi\)
0.773710 + 0.633540i \(0.218399\pi\)
\(354\) 2.36132 + 1.71560i 0.125503 + 0.0911831i
\(355\) −12.5308 38.5660i −0.665068 2.04687i
\(356\) −4.58024 3.32774i −0.242752 0.176370i
\(357\) 11.3007 + 8.21045i 0.598097 + 0.434543i
\(358\) −4.20482 12.9411i −0.222232 0.683959i
\(359\) 2.20705 + 1.60352i 0.116484 + 0.0846305i 0.644502 0.764603i \(-0.277065\pi\)
−0.528018 + 0.849233i \(0.677065\pi\)
\(360\) 2.03341 1.47736i 0.107170 0.0778635i
\(361\) −2.84109 + 8.74397i −0.149531 + 0.460209i
\(362\) −14.9319 + 10.8487i −0.784805 + 0.570194i
\(363\) −2.89581 8.91237i −0.151990 0.467778i
\(364\) 4.43560 + 13.6514i 0.232489 + 0.715527i
\(365\) 11.9038 36.6360i 0.623071 1.91762i
\(366\) 12.3718 0.646687
\(367\) 33.1903 1.73252 0.866260 0.499593i \(-0.166517\pi\)
0.866260 + 0.499593i \(0.166517\pi\)
\(368\) 0.618034 1.90211i 0.0322172 0.0991545i
\(369\) 4.96220 + 3.60525i 0.258322 + 0.187682i
\(370\) 9.13013 6.63343i 0.474653 0.344855i
\(371\) 11.0496 0.573667
\(372\) −5.42813 + 1.23911i −0.281435 + 0.0642449i
\(373\) −7.51016 −0.388861 −0.194431 0.980916i \(-0.562286\pi\)
−0.194431 + 0.980916i \(0.562286\pi\)
\(374\) −13.8418 + 10.0567i −0.715744 + 0.520018i
\(375\) 7.48839 + 5.44063i 0.386699 + 0.280953i
\(376\) −3.83074 + 11.7898i −0.197555 + 0.608013i
\(377\) 1.23607 0.0636607
\(378\) 3.68484 0.189528
\(379\) 3.52023 10.8342i 0.180822 0.556514i −0.819029 0.573752i \(-0.805487\pi\)
0.999851 + 0.0172383i \(0.00548738\pi\)
\(380\) 2.43218 + 7.48548i 0.124768 + 0.383997i
\(381\) −4.57782 14.0891i −0.234529 0.721806i
\(382\) 0.621528 0.451567i 0.0318002 0.0231042i
\(383\) 2.47214 7.60845i 0.126320 0.388774i −0.867819 0.496880i \(-0.834479\pi\)
0.994139 + 0.108107i \(0.0344788\pi\)
\(384\) 0.809017 0.587785i 0.0412850 0.0299953i
\(385\) 33.8181 + 24.5703i 1.72353 + 1.25222i
\(386\) −2.96112 9.11340i −0.150717 0.463860i
\(387\) 6.18376 + 4.49277i 0.314338 + 0.228380i
\(388\) −4.42530 3.21517i −0.224661 0.163226i
\(389\) −8.74161 26.9039i −0.443217 1.36408i −0.884427 0.466678i \(-0.845451\pi\)
0.441210 0.897404i \(-0.354549\pi\)
\(390\) 7.92091 + 5.75488i 0.401091 + 0.291410i
\(391\) 6.13362 4.45634i 0.310191 0.225367i
\(392\) 2.03274 6.25612i 0.102669 0.315982i
\(393\) 14.1165 10.2562i 0.712082 0.517358i
\(394\) −2.86686 8.82329i −0.144430 0.444511i
\(395\) −5.45498 16.7887i −0.274470 0.844732i
\(396\) −1.39473 + 4.29252i −0.0700876 + 0.215707i
\(397\) −19.1026 −0.958731 −0.479366 0.877615i \(-0.659133\pi\)
−0.479366 + 0.877615i \(0.659133\pi\)
\(398\) 13.1213 0.657714
\(399\) −3.56573 + 10.9742i −0.178510 + 0.549397i
\(400\) −1.06573 0.774299i −0.0532865 0.0387149i
\(401\) 5.92091 4.30179i 0.295676 0.214821i −0.430050 0.902805i \(-0.641504\pi\)
0.725726 + 0.687984i \(0.241504\pi\)
\(402\) −11.2651 −0.561851
\(403\) −11.1247 18.6182i −0.554159 0.927440i
\(404\) 7.66691 0.381443
\(405\) 2.03341 1.47736i 0.101041 0.0734104i
\(406\) −0.945949 0.687272i −0.0469467 0.0341088i
\(407\) −6.26241 + 19.2737i −0.310416 + 0.955363i
\(408\) 3.79079 0.187672
\(409\) 36.0010 1.78013 0.890067 0.455831i \(-0.150658\pi\)
0.890067 + 0.455831i \(0.150658\pi\)
\(410\) 4.76393 14.6619i 0.235274 0.724098i
\(411\) −1.23607 3.80423i −0.0609707 0.187649i
\(412\) 3.72952 + 11.4783i 0.183740 + 0.565494i
\(413\) 8.70110 6.32172i 0.428153 0.311071i
\(414\) 0.618034 1.90211i 0.0303747 0.0934838i
\(415\) −29.4277 + 21.3805i −1.44455 + 1.04953i
\(416\) 3.15144 + 2.28965i 0.154512 + 0.112260i
\(417\) 2.66487 + 8.20161i 0.130499 + 0.401635i
\(418\) −11.4343 8.30753i −0.559272 0.406335i
\(419\) −2.64928 1.92481i −0.129426 0.0940333i 0.521189 0.853441i \(-0.325489\pi\)
−0.650615 + 0.759408i \(0.725489\pi\)
\(420\) −2.86199 8.80829i −0.139651 0.429801i
\(421\) −15.8507 11.5162i −0.772515 0.561265i 0.130208 0.991487i \(-0.458435\pi\)
−0.902723 + 0.430222i \(0.858435\pi\)
\(422\) −3.63254 + 2.63920i −0.176829 + 0.128474i
\(423\) −3.83074 + 11.7898i −0.186257 + 0.573240i
\(424\) 2.42597 1.76257i 0.117816 0.0855980i
\(425\) −1.54313 4.74925i −0.0748526 0.230373i
\(426\) −4.98556 15.3440i −0.241551 0.743419i
\(427\) 14.0876 43.3571i 0.681745 2.09820i
\(428\) −7.32408 −0.354023
\(429\) −17.5816 −0.848846
\(430\) 5.93668 18.2712i 0.286292 0.881117i
\(431\) −11.5746 8.40943i −0.557528 0.405068i 0.273025 0.962007i \(-0.411976\pi\)
−0.830553 + 0.556939i \(0.811976\pi\)
\(432\) 0.809017 0.587785i 0.0389238 0.0282798i
\(433\) 36.7160 1.76446 0.882230 0.470819i \(-0.156042\pi\)
0.882230 + 0.470819i \(0.156042\pi\)
\(434\) −1.83844 + 20.4338i −0.0882481 + 0.980854i
\(435\) −0.797549 −0.0382395
\(436\) −13.5947 + 9.87716i −0.651070 + 0.473030i
\(437\) 5.06681 + 3.68125i 0.242378 + 0.176098i
\(438\) 4.73607 14.5761i 0.226298 0.696474i
\(439\) −31.1187 −1.48521 −0.742607 0.669728i \(-0.766411\pi\)
−0.742607 + 0.669728i \(0.766411\pi\)
\(440\) 11.3442 0.540812
\(441\) 2.03274 6.25612i 0.0967970 0.297911i
\(442\) 4.56313 + 14.0439i 0.217046 + 0.667999i
\(443\) 10.5077 + 32.3394i 0.499236 + 1.53649i 0.810250 + 0.586085i \(0.199331\pi\)
−0.311014 + 0.950405i \(0.600669\pi\)
\(444\) 3.63254 2.63920i 0.172393 0.125251i
\(445\) −4.39723 + 13.5333i −0.208449 + 0.641539i
\(446\) −5.75943 + 4.18447i −0.272717 + 0.198140i
\(447\) −10.1108 7.34594i −0.478225 0.347451i
\(448\) −1.13868 3.50450i −0.0537976 0.165572i
\(449\) 7.23607 + 5.25731i 0.341491 + 0.248108i 0.745291 0.666740i \(-0.232311\pi\)
−0.403800 + 0.914847i \(0.632311\pi\)
\(450\) −1.06573 0.774299i −0.0502390 0.0365008i
\(451\) 8.55472 + 26.3287i 0.402826 + 1.23977i
\(452\) 4.61803 + 3.35520i 0.217214 + 0.157815i
\(453\) −8.21717 + 5.97012i −0.386076 + 0.280501i
\(454\) 7.13530 21.9602i 0.334876 1.03064i
\(455\) 29.1873 21.2058i 1.36832 0.994145i
\(456\) 0.967675 + 2.97820i 0.0453155 + 0.139467i
\(457\) 1.10077 + 3.38782i 0.0514918 + 0.158476i 0.973496 0.228705i \(-0.0734491\pi\)
−0.922004 + 0.387180i \(0.873449\pi\)
\(458\) −4.24370 + 13.0608i −0.198295 + 0.610289i
\(459\) 3.79079 0.176939
\(460\) −5.02685 −0.234378
\(461\) 3.79683 11.6854i 0.176836 0.544245i −0.822877 0.568220i \(-0.807632\pi\)
0.999713 + 0.0239751i \(0.00763225\pi\)
\(462\) 13.4550 + 9.77562i 0.625983 + 0.454803i
\(463\) −15.0745 + 10.9523i −0.700572 + 0.508995i −0.880118 0.474754i \(-0.842537\pi\)
0.179546 + 0.983749i \(0.442537\pi\)
\(464\) −0.317315 −0.0147310
\(465\) 7.17797 + 12.0131i 0.332870 + 0.557092i
\(466\) 8.65946 0.401142
\(467\) 23.2769 16.9117i 1.07713 0.782580i 0.0999485 0.994993i \(-0.468132\pi\)
0.977180 + 0.212413i \(0.0681322\pi\)
\(468\) 3.15144 + 2.28965i 0.145675 + 0.105839i
\(469\) −12.8273 + 39.4784i −0.592311 + 1.82294i
\(470\) 31.1578 1.43720
\(471\) 22.8440 1.05260
\(472\) 0.901944 2.77590i 0.0415153 0.127771i
\(473\) 10.6607 + 32.8101i 0.490178 + 1.50861i
\(474\) −2.17034 6.67961i −0.0996869 0.306805i
\(475\) 3.33729 2.42469i 0.153126 0.111252i
\(476\) 4.31649 13.2848i 0.197846 0.608907i
\(477\) 2.42597 1.76257i 0.111078 0.0807026i
\(478\) 11.0290 + 8.01305i 0.504455 + 0.366508i
\(479\) −10.8307 33.3336i −0.494869 1.52305i −0.817160 0.576410i \(-0.804453\pi\)
0.322291 0.946641i \(-0.395547\pi\)
\(480\) −2.03341 1.47736i −0.0928118 0.0674317i
\(481\) 14.1502 + 10.2807i 0.645192 + 0.468760i
\(482\) −0.899230 2.76755i −0.0409588 0.126058i
\(483\) −5.96220 4.33179i −0.271290 0.197103i
\(484\) −7.58132 + 5.50815i −0.344605 + 0.250370i
\(485\) −4.24848 + 13.0755i −0.192914 + 0.593728i
\(486\) 0.809017 0.587785i 0.0366978 0.0266625i
\(487\) 5.03442 + 15.4943i 0.228131 + 0.702115i 0.997959 + 0.0638634i \(0.0203422\pi\)
−0.769828 + 0.638252i \(0.779658\pi\)
\(488\) −3.82311 11.7663i −0.173064 0.532637i
\(489\) 1.15144 3.54377i 0.0520699 0.160255i
\(490\) −16.5335 −0.746908
\(491\) −22.1916 −1.00150 −0.500748 0.865593i \(-0.666941\pi\)
−0.500748 + 0.865593i \(0.666941\pi\)
\(492\) 1.89539 5.83342i 0.0854509 0.262991i
\(493\) −0.973146 0.707032i −0.0438283 0.0318431i
\(494\) −9.86861 + 7.16996i −0.444010 + 0.322592i
\(495\) 11.3442 0.509882
\(496\) 2.85585 + 4.77955i 0.128231 + 0.214608i
\(497\) −59.4499 −2.66669
\(498\) −11.7082 + 8.50651i −0.524657 + 0.381186i
\(499\) −1.15360 0.838139i −0.0516422 0.0375202i 0.561665 0.827365i \(-0.310161\pi\)
−0.613307 + 0.789845i \(0.710161\pi\)
\(500\) 2.86031 8.80313i 0.127917 0.393688i
\(501\) 15.2072 0.679407
\(502\) −8.09500 −0.361297
\(503\) −4.60627 + 14.1766i −0.205383 + 0.632105i 0.794314 + 0.607507i \(0.207830\pi\)
−0.999697 + 0.0245975i \(0.992170\pi\)
\(504\) −1.13868 3.50450i −0.0507208 0.156103i
\(505\) −5.95483 18.3271i −0.264986 0.815544i
\(506\) 7.30288 5.30585i 0.324653 0.235874i
\(507\) −0.671830 + 2.06768i −0.0298370 + 0.0918289i
\(508\) −11.9849 + 8.70754i −0.531744 + 0.386334i
\(509\) −6.95871 5.05580i −0.308439 0.224094i 0.422787 0.906229i \(-0.361052\pi\)
−0.731227 + 0.682135i \(0.761052\pi\)
\(510\) −2.94427 9.06154i −0.130375 0.401252i
\(511\) −45.6891 33.1951i −2.02117 1.46846i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0.967675 + 2.97820i 0.0427239 + 0.131491i
\(514\) 15.8866 + 11.5423i 0.700728 + 0.509109i
\(515\) 24.5411 17.8302i 1.08141 0.785691i
\(516\) 2.36199 7.26945i 0.103981 0.320020i
\(517\) −45.2652 + 32.8871i −1.99076 + 1.44637i
\(518\) −5.11275 15.7354i −0.224641 0.691375i
\(519\) 3.03341 + 9.33586i 0.133152 + 0.409799i
\(520\) 3.02552 9.31159i 0.132678 0.408340i
\(521\) −4.93728 −0.216306 −0.108153 0.994134i \(-0.534494\pi\)
−0.108153 + 0.994134i \(0.534494\pi\)
\(522\) −0.317315 −0.0138885
\(523\) −3.30493 + 10.1715i −0.144514 + 0.444769i −0.996948 0.0780657i \(-0.975126\pi\)
0.852434 + 0.522835i \(0.175126\pi\)
\(524\) −14.1165 10.2562i −0.616681 0.448045i
\(525\) −3.92705 + 2.85317i −0.171391 + 0.124523i
\(526\) −13.1068 −0.571482
\(527\) −1.89130 + 21.0213i −0.0823863 + 0.915702i
\(528\) 4.51343 0.196422
\(529\) 15.3713 11.1679i 0.668318 0.485562i
\(530\) −6.09750 4.43009i −0.264859 0.192431i
\(531\) 0.901944 2.77590i 0.0391410 0.120464i
\(532\) 11.5389 0.500277
\(533\) 23.8929 1.03491
\(534\) −1.74949 + 5.38439i −0.0757081 + 0.233005i
\(535\) 5.68855 + 17.5076i 0.245937 + 0.756918i
\(536\) 3.48110 + 10.7137i 0.150361 + 0.462763i
\(537\) −11.0084 + 7.99805i −0.475046 + 0.345141i
\(538\) −2.47464 + 7.61615i −0.106689 + 0.328356i
\(539\) 24.0195 17.4512i 1.03459 0.751674i
\(540\) −2.03341 1.47736i −0.0875038 0.0635753i
\(541\) −3.82527 11.7730i −0.164461 0.506160i 0.834535 0.550955i \(-0.185736\pi\)
−0.998996 + 0.0447954i \(0.985736\pi\)
\(542\) −2.86951 2.08482i −0.123256 0.0895506i
\(543\) 14.9319 + 10.8487i 0.640790 + 0.465561i
\(544\) −1.17142 3.60525i −0.0502241 0.154574i
\(545\) 34.1694 + 24.8255i 1.46366 + 1.06341i
\(546\) 11.6126 8.43702i 0.496972 0.361071i
\(547\) −8.77423 + 27.0043i −0.375159 + 1.15462i 0.568212 + 0.822882i \(0.307635\pi\)
−0.943371 + 0.331739i \(0.892365\pi\)
\(548\) −3.23607 + 2.35114i −0.138238 + 0.100436i
\(549\) −3.82311 11.7663i −0.163166 0.502175i
\(550\) −1.83729 5.65461i −0.0783425 0.241113i
\(551\) 0.307058 0.945027i 0.0130811 0.0402595i
\(552\) −2.00000 −0.0851257
\(553\) −25.8800 −1.10053
\(554\) −9.36886 + 28.8344i −0.398045 + 1.22506i
\(555\) −9.13013 6.63343i −0.387552 0.281573i
\(556\) 6.97671 5.06888i 0.295878 0.214968i
\(557\) −43.1772 −1.82948 −0.914739 0.404046i \(-0.867603\pi\)
−0.914739 + 0.404046i \(0.867603\pi\)
\(558\) 2.85585 + 4.77955i 0.120898 + 0.202335i
\(559\) 29.7746 1.25933
\(560\) −7.49278 + 5.44382i −0.316628 + 0.230044i
\(561\) 13.8418 + 10.0567i 0.584402 + 0.424593i
\(562\) 6.15832 18.9533i 0.259773 0.799499i
\(563\) −15.3241 −0.645833 −0.322916 0.946427i \(-0.604663\pi\)
−0.322916 + 0.946427i \(0.604663\pi\)
\(564\) 12.3965 0.521989
\(565\) 4.43351 13.6450i 0.186519 0.574048i
\(566\) 5.19273 + 15.9816i 0.218267 + 0.671756i
\(567\) −1.13868 3.50450i −0.0478200 0.147175i
\(568\) −13.0524 + 9.48310i −0.547665 + 0.397902i
\(569\) 2.34283 7.21050i 0.0982167 0.302280i −0.889862 0.456230i \(-0.849199\pi\)
0.988079 + 0.153950i \(0.0491994\pi\)
\(570\) 6.36753 4.62628i 0.266706 0.193774i
\(571\) 3.27037 + 2.37606i 0.136861 + 0.0994351i 0.654109 0.756400i \(-0.273044\pi\)
−0.517248 + 0.855835i \(0.673044\pi\)
\(572\) 5.43300 + 16.7211i 0.227165 + 0.699143i
\(573\) −0.621528 0.451567i −0.0259647 0.0188645i
\(574\) −18.2849 13.2848i −0.763199 0.554496i
\(575\) 0.814146 + 2.50568i 0.0339522 + 0.104494i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) −30.9600 + 22.4938i −1.28888 + 0.936429i −0.999782 0.0208700i \(-0.993356\pi\)
−0.289101 + 0.957299i \(0.593356\pi\)
\(578\) −0.812697 + 2.50122i −0.0338037 + 0.104037i
\(579\) −7.75232 + 5.63239i −0.322176 + 0.234074i
\(580\) 0.246456 + 0.758514i 0.0102335 + 0.0314956i
\(581\) 16.4791 + 50.7175i 0.683669 + 2.10412i
\(582\) −1.69032 + 5.20226i −0.0700658 + 0.215640i
\(583\) 13.5343 0.560532
\(584\) −15.3262 −0.634204
\(585\) 3.02552 9.31159i 0.125090 0.384987i
\(586\) −4.24172 3.08179i −0.175224 0.127308i
\(587\) 23.4712 17.0529i 0.968762 0.703847i 0.0135927 0.999908i \(-0.495673\pi\)
0.955169 + 0.296061i \(0.0956732\pi\)
\(588\) −6.57808 −0.271275
\(589\) −16.9980 + 3.88023i −0.700390 + 0.159882i
\(590\) −7.33607 −0.302021
\(591\) −7.50554 + 5.45309i −0.308737 + 0.224310i
\(592\) −3.63254 2.63920i −0.149297 0.108470i
\(593\) −1.77368 + 5.45882i −0.0728363 + 0.224167i −0.980847 0.194780i \(-0.937601\pi\)
0.908011 + 0.418947i \(0.137601\pi\)
\(594\) 4.51343 0.185188
\(595\) −35.1087 −1.43932
\(596\) −3.86199 + 11.8860i −0.158193 + 0.486869i
\(597\) −4.05472 12.4791i −0.165949 0.510737i
\(598\) −2.40749 7.40948i −0.0984494 0.302996i
\(599\) 6.30504 4.58088i 0.257617 0.187170i −0.451479 0.892282i \(-0.649103\pi\)
0.709096 + 0.705112i \(0.249103\pi\)
\(600\) −0.407073 + 1.25284i −0.0166187 + 0.0511470i
\(601\) 8.39208 6.09720i 0.342320 0.248710i −0.403320 0.915059i \(-0.632144\pi\)
0.745640 + 0.666349i \(0.232144\pi\)
\(602\) −22.7862 16.5552i −0.928697 0.674738i
\(603\) 3.48110 + 10.7137i 0.141761 + 0.436297i
\(604\) 8.21717 + 5.97012i 0.334352 + 0.242921i
\(605\) 19.0551 + 13.8443i 0.774699 + 0.562852i
\(606\) −2.36921 7.29167i −0.0962424 0.296204i
\(607\) 4.28368 + 3.11228i 0.173869 + 0.126323i 0.671316 0.741171i \(-0.265729\pi\)
−0.497447 + 0.867494i \(0.665729\pi\)
\(608\) 2.53341 1.84063i 0.102743 0.0746473i
\(609\) −0.361320 + 1.11203i −0.0146414 + 0.0450617i
\(610\) −25.1570 + 18.2776i −1.01858 + 0.740039i
\(611\) 14.9222 + 45.9260i 0.603689 + 1.85797i
\(612\) −1.17142 3.60525i −0.0473517 0.145734i
\(613\) −0.872815 + 2.68625i −0.0352527 + 0.108497i −0.967134 0.254266i \(-0.918166\pi\)
0.931882 + 0.362762i \(0.118166\pi\)
\(614\) 4.10194 0.165541
\(615\) −15.4164 −0.621650
\(616\) 5.13935 15.8173i 0.207070 0.637297i
\(617\) −24.4256 17.7462i −0.983336 0.714435i −0.0248842 0.999690i \(-0.507922\pi\)
−0.958452 + 0.285255i \(0.907922\pi\)
\(618\) 9.76400 7.09396i 0.392766 0.285361i
\(619\) −5.45912 −0.219421 −0.109710 0.993964i \(-0.534992\pi\)
−0.109710 + 0.993964i \(0.534992\pi\)
\(620\) 9.20698 10.5389i 0.369761 0.423252i
\(621\) −2.00000 −0.0802572
\(622\) 18.6470 13.5479i 0.747678 0.543220i
\(623\) 16.8775 + 12.2622i 0.676181 + 0.491274i
\(624\) 1.20374 3.70474i 0.0481883 0.148308i
\(625\) −29.8513 −1.19405
\(626\) 23.2225 0.928156
\(627\) −4.36753 + 13.4419i −0.174422 + 0.536817i
\(628\) −7.05918 21.7259i −0.281692 0.866959i
\(629\) −5.25974 16.1878i −0.209720 0.645451i
\(630\) −7.49278 + 5.44382i −0.298520 + 0.216887i
\(631\) −7.10081 + 21.8541i −0.282679 + 0.869996i 0.704406 + 0.709797i \(0.251214\pi\)
−0.987085 + 0.160199i \(0.948786\pi\)
\(632\) −5.68202 + 4.12823i −0.226019 + 0.164212i
\(633\) 3.63254 + 2.63920i 0.144381 + 0.104899i
\(634\) −0.301544 0.928056i −0.0119758 0.0368578i
\(635\) 30.1232 + 21.8858i 1.19540 + 0.868510i
\(636\) −2.42597 1.76257i −0.0961960 0.0698905i
\(637\) −7.91831 24.3701i −0.313735 0.965577i
\(638\) −1.15866 0.841814i −0.0458717 0.0333277i
\(639\) −13.0524 + 9.48310i −0.516344 + 0.375146i
\(640\) −0.776692 + 2.39041i −0.0307014 + 0.0944893i
\(641\) 17.3930 12.6368i 0.686984 0.499123i −0.188683 0.982038i \(-0.560422\pi\)
0.875667 + 0.482915i \(0.160422\pi\)
\(642\) 2.26326 + 6.96561i 0.0893239 + 0.274911i
\(643\) 12.8763 + 39.6292i 0.507792 + 1.56282i 0.796025 + 0.605263i \(0.206932\pi\)
−0.288233 + 0.957560i \(0.593068\pi\)
\(644\) −2.27736 + 7.00899i −0.0897405 + 0.276193i
\(645\) −19.2115 −0.756453
\(646\) 11.8707 0.467046
\(647\) −1.25317 + 3.85687i −0.0492674 + 0.151629i −0.972664 0.232219i \(-0.925401\pi\)
0.923396 + 0.383848i \(0.125401\pi\)
\(648\) −0.809017 0.587785i −0.0317812 0.0230904i
\(649\) 10.6576 7.74323i 0.418349 0.303949i
\(650\) −5.13146 −0.201272
\(651\) 20.0018 4.56593i 0.783933 0.178953i
\(652\) −3.72614 −0.145927
\(653\) 15.5808 11.3201i 0.609723 0.442990i −0.239593 0.970873i \(-0.577014\pi\)
0.849317 + 0.527883i \(0.177014\pi\)
\(654\) 13.5947 + 9.87716i 0.531597 + 0.386228i
\(655\) −13.5524 + 41.7101i −0.529537 + 1.62975i
\(656\) −6.13362 −0.239478
\(657\) −15.3262 −0.597933
\(658\) 14.1157 43.4436i 0.550287 1.69361i
\(659\) −9.49929 29.2358i −0.370040 1.13887i −0.946765 0.321927i \(-0.895670\pi\)
0.576725 0.816938i \(-0.304330\pi\)
\(660\) −3.50554 10.7889i −0.136453 0.419959i
\(661\) 25.5122 18.5357i 0.992308 0.720954i 0.0318828 0.999492i \(-0.489850\pi\)
0.960425 + 0.278538i \(0.0898497\pi\)
\(662\) 3.52786 10.8576i 0.137114 0.421995i
\(663\) 11.9464 8.67959i 0.463961 0.337087i
\(664\) 11.7082 + 8.50651i 0.454366 + 0.330117i
\(665\) −8.96220 27.5828i −0.347539 1.06962i
\(666\) −3.63254 2.63920i −0.140758 0.102267i
\(667\) 0.513427 + 0.373027i 0.0198800 + 0.0144436i
\(668\) −4.69928 14.4629i −0.181821 0.559586i
\(669\) 5.75943 + 4.18447i 0.222672 + 0.161781i
\(670\) 22.9065 16.6425i 0.884954 0.642957i
\(671\) 17.2553 53.1065i 0.666135 2.05015i
\(672\) −2.98110 + 2.16590i −0.114998 + 0.0835513i
\(673\) −1.99227 6.13158i −0.0767964 0.236355i 0.905287 0.424800i \(-0.139655\pi\)
−0.982084 + 0.188444i \(0.939655\pi\)
\(674\) −0.389597 1.19906i −0.0150067 0.0461859i
\(675\) −0.407073 + 1.25284i −0.0156682 + 0.0482219i
\(676\) 2.17409 0.0836187
\(677\) −9.40399 −0.361425 −0.180712 0.983536i \(-0.557840\pi\)
−0.180712 + 0.983536i \(0.557840\pi\)
\(678\) 1.76393 5.42882i 0.0677434 0.208493i
\(679\) 16.3066 + 11.8474i 0.625788 + 0.454662i
\(680\) −7.70820 + 5.60034i −0.295596 + 0.214763i
\(681\) −23.0903 −0.884823
\(682\) −2.25184 + 25.0286i −0.0862274 + 0.958395i
\(683\) 21.1675 0.809950 0.404975 0.914328i \(-0.367280\pi\)
0.404975 + 0.914328i \(0.367280\pi\)
\(684\) 2.53341 1.84063i 0.0968672 0.0703781i
\(685\) 8.13362 + 5.90942i 0.310770 + 0.225787i
\(686\) 0.480434 1.47862i 0.0183431 0.0564542i
\(687\) 13.7329 0.523943
\(688\) −7.64355 −0.291408
\(689\) 3.60962 11.1093i 0.137516 0.423230i
\(690\) 1.55338 + 4.78082i 0.0591363 + 0.182003i
\(691\) 11.7445 + 36.1460i 0.446783 + 1.37506i 0.880516 + 0.474016i \(0.157196\pi\)
−0.433733 + 0.901041i \(0.642804\pi\)
\(692\) 7.94156 5.76988i 0.301893 0.219338i
\(693\) 5.13935 15.8173i 0.195228 0.600849i
\(694\) −4.65144 + 3.37947i −0.176566 + 0.128283i
\(695\) −17.5355 12.7403i −0.665158 0.483265i
\(696\) 0.0980558 + 0.301785i 0.00371680 + 0.0114391i
\(697\) −18.8107 13.6667i −0.712504 0.517665i
\(698\) 14.5891 + 10.5996i 0.552205 + 0.401201i
\(699\) −2.67592 8.23564i −0.101213 0.311501i
\(700\) 3.92705 + 2.85317i 0.148429 + 0.107840i
\(701\) 32.6026 23.6872i 1.23138 0.894653i 0.234391 0.972142i \(-0.424690\pi\)
0.996993 + 0.0774894i \(0.0246904\pi\)
\(702\) 1.20374 3.70474i 0.0454323 0.139826i
\(703\) 11.3752 8.26454i 0.429022 0.311703i
\(704\) −1.39473 4.29252i −0.0525657 0.161781i
\(705\) −9.62829 29.6328i −0.362622 1.11604i
\(706\) −2.94427 + 9.06154i −0.110809 + 0.341035i
\(707\) −28.2514 −1.06250
\(708\) −2.91875 −0.109693
\(709\) 2.23823 6.88856i 0.0840584 0.258705i −0.900190 0.435498i \(-0.856572\pi\)
0.984248 + 0.176793i \(0.0565723\pi\)
\(710\) 32.8062 + 23.8351i 1.23119 + 0.894515i
\(711\) −5.68202 + 4.12823i −0.213092 + 0.154821i
\(712\) 5.66148 0.212173
\(713\) 0.997840 11.0907i 0.0373694 0.415351i
\(714\) −13.9685 −0.522756
\(715\) 35.7505 25.9742i 1.33699 0.971381i
\(716\) 11.0084 + 7.99805i 0.411402 + 0.298901i
\(717\) 4.21271 12.9654i 0.157326 0.484201i
\(718\) −2.72807 −0.101811
\(719\) 12.4035 0.462574 0.231287 0.972886i \(-0.425706\pi\)
0.231287 + 0.972886i \(0.425706\pi\)
\(720\) −0.776692 + 2.39041i −0.0289456 + 0.0890854i
\(721\) −13.7427 42.2956i −0.511804 1.57517i
\(722\) −2.84109 8.74397i −0.105734 0.325417i
\(723\) −2.35421 + 1.71044i −0.0875542 + 0.0636118i
\(724\) 5.70349 17.5535i 0.211968 0.652372i
\(725\) 0.338173 0.245697i 0.0125594 0.00912495i
\(726\) 7.58132 + 5.50815i 0.281369 + 0.204427i
\(727\) −2.01060 6.18799i −0.0745690 0.229500i 0.906824 0.421509i \(-0.138500\pi\)
−0.981393 + 0.192010i \(0.938500\pi\)
\(728\) −11.6126 8.43702i −0.430390 0.312697i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 11.9038 + 36.6360i 0.440578 + 1.35596i
\(731\) −23.4413 17.0311i −0.867009 0.629919i
\(732\) −10.0090 + 7.27199i −0.369945 + 0.268780i
\(733\) 1.63679 5.03752i 0.0604562 0.186065i −0.916267 0.400568i \(-0.868813\pi\)
0.976723 + 0.214502i \(0.0688130\pi\)
\(734\) −26.8515 + 19.5088i −0.991108 + 0.720082i
\(735\) 5.10914 + 15.7243i 0.188453 + 0.580000i
\(736\) 0.618034 + 1.90211i 0.0227810 + 0.0701128i
\(737\) −15.7117 + 48.3556i −0.578748 + 1.78120i
\(738\) −6.13362 −0.225782
\(739\) 17.5927 0.647159 0.323580 0.946201i \(-0.395114\pi\)
0.323580 + 0.946201i \(0.395114\pi\)
\(740\) −3.48740 + 10.7331i −0.128199 + 0.394557i
\(741\) 9.86861 + 7.16996i 0.362532 + 0.263395i
\(742\) −8.93933 + 6.49480i −0.328173 + 0.238432i
\(743\) −18.4738 −0.677737 −0.338869 0.940834i \(-0.610044\pi\)
−0.338869 + 0.940834i \(0.610044\pi\)
\(744\) 3.66312 4.19304i 0.134296 0.153724i
\(745\) 31.4119 1.15084
\(746\) 6.07585 4.41436i 0.222453 0.161621i
\(747\) 11.7082 + 8.50651i 0.428381 + 0.311237i
\(748\) 5.28711 16.2720i 0.193316 0.594965i
\(749\) 26.9881 0.986123
\(750\) −9.25616 −0.337987
\(751\) 5.02685 15.4711i 0.183433 0.564547i −0.816485 0.577366i \(-0.804081\pi\)
0.999918 + 0.0128190i \(0.00408052\pi\)
\(752\) −3.83074 11.7898i −0.139693 0.429930i
\(753\) 2.50149 + 7.69880i 0.0911594 + 0.280560i
\(754\) −1.00000 + 0.726543i −0.0364179 + 0.0264591i
\(755\) 7.88884 24.2794i 0.287104 0.883616i
\(756\) −2.98110 + 2.16590i −0.108422 + 0.0787729i
\(757\) 30.3374 + 22.0414i 1.10263 + 0.801110i 0.981488 0.191525i \(-0.0613434\pi\)
0.121145 + 0.992635i \(0.461343\pi\)
\(758\) 3.52023 + 10.8342i 0.127861 + 0.393515i
\(759\) −7.30288 5.30585i −0.265078 0.192590i
\(760\) −6.36753 4.62628i −0.230975 0.167813i
\(761\) 3.00298 + 9.24224i 0.108858 + 0.335031i 0.990617 0.136670i \(-0.0436401\pi\)
−0.881758 + 0.471701i \(0.843640\pi\)
\(762\) 11.9849 + 8.70754i 0.434167 + 0.315441i
\(763\) 50.0945 36.3958i 1.81354 1.31762i
\(764\) −0.237403 + 0.730650i −0.00858893 + 0.0264340i
\(765\) −7.70820 + 5.60034i −0.278691 + 0.202481i
\(766\) 2.47214 + 7.60845i 0.0893219 + 0.274905i
\(767\) −3.51343 10.8132i −0.126862 0.390443i
\(768\) −0.309017 + 0.951057i −0.0111507 + 0.0343183i
\(769\) 35.5885 1.28335 0.641677 0.766975i \(-0.278239\pi\)
0.641677 + 0.766975i \(0.278239\pi\)
\(770\) −41.8015 −1.50642
\(771\) 6.06815 18.6758i 0.218539 0.672594i
\(772\) 7.75232 + 5.63239i 0.279012 + 0.202714i
\(773\) 1.54550 1.12287i 0.0555877 0.0403868i −0.559644 0.828733i \(-0.689062\pi\)
0.615232 + 0.788346i \(0.289062\pi\)
\(774\) −7.64355 −0.274742
\(775\) −6.74437 2.88244i −0.242265 0.103540i
\(776\) 5.46998 0.196361
\(777\) −13.3853 + 9.72502i −0.480197 + 0.348883i
\(778\) 22.8858 + 16.6275i 0.820497 + 0.596126i
\(779\) 5.93535 18.2671i 0.212656 0.654488i
\(780\) −9.79079 −0.350566
\(781\) −72.8179 −2.60563
\(782\) −2.34283 + 7.21050i −0.0837796 + 0.257847i
\(783\) 0.0980558 + 0.301785i 0.00350423 + 0.0107849i
\(784\) 2.03274 + 6.25612i 0.0725978 + 0.223433i
\(785\) −46.4511 + 33.7487i −1.65791 + 1.20454i
\(786\) −5.39201 + 16.5949i −0.192327 + 0.591921i
\(787\) 26.0167 18.9023i 0.927396 0.673793i −0.0179575 0.999839i \(-0.505716\pi\)
0.945354 + 0.326046i \(0.105716\pi\)
\(788\) 7.50554 + 5.45309i 0.267374 + 0.194258i
\(789\) 4.05021 + 12.4653i 0.144191 + 0.443776i
\(790\) 14.2813 + 10.3760i 0.508107 + 0.369161i
\(791\) −17.0167 12.3634i −0.605045 0.439591i
\(792\) −1.39473 4.29252i −0.0495594 0.152528i
\(793\) −38.9891 28.3273i −1.38454 1.00593i
\(794\) 15.4543 11.2282i 0.548453 0.398475i
\(795\) −2.32904 + 7.16804i −0.0826025 + 0.254224i
\(796\) −10.6154 + 7.71253i −0.376253 + 0.273363i
\(797\) 5.33145 + 16.4085i 0.188850 + 0.581220i 0.999993 0.00362709i \(-0.00115454\pi\)
−0.811144 + 0.584847i \(0.801155\pi\)
\(798\) −3.56573 10.9742i −0.126225 0.388482i
\(799\) 14.5215 44.6927i 0.513735 1.58111i
\(800\) 1.31732 0.0465741
\(801\) 5.66148 0.200039
\(802\) −2.26159 + 6.96045i −0.0798594 + 0.245782i
\(803\) −55.9628 40.6594i −1.97489 1.43484i
\(804\) 9.11364 6.62145i 0.321413 0.233520i
\(805\) 18.5232 0.652856
\(806\) 19.9436 + 8.52356i 0.702482 + 0.300230i
\(807\) 8.00810 0.281898
\(808\) −6.20266 + 4.50650i −0.218209 + 0.158538i
\(809\) −33.2419 24.1516i −1.16872 0.849126i −0.177866 0.984055i \(-0.556919\pi\)
−0.990855 + 0.134929i \(0.956919\pi\)
\(810\) −0.776692 + 2.39041i −0.0272902 + 0.0839905i
\(811\) −41.9711 −1.47381 −0.736903 0.675999i \(-0.763712\pi\)
−0.736903 + 0.675999i \(0.763712\pi\)
\(812\) 1.16926 0.0410329
\(813\) −1.09605 + 3.37331i −0.0384403 + 0.118307i
\(814\) −6.26241 19.2737i −0.219497 0.675544i
\(815\) 2.89406 + 8.90700i 0.101374 + 0.311998i
\(816\) −3.06681 + 2.22817i −0.107360 + 0.0780015i
\(817\) 7.39647 22.7640i 0.258770 0.796412i
\(818\) −29.1254 + 21.1608i −1.01835 + 0.739871i
\(819\) −11.6126 8.43702i −0.405776 0.294813i
\(820\) 4.76393 + 14.6619i 0.166364 + 0.512015i
\(821\) 21.3702 + 15.5264i 0.745827 + 0.541875i 0.894530 0.447007i \(-0.147510\pi\)
−0.148704 + 0.988882i \(0.547510\pi\)
\(822\) 3.23607 + 2.35114i 0.112871 + 0.0820055i
\(823\) 0.764942 + 2.35425i 0.0266642 + 0.0820640i 0.963503 0.267697i \(-0.0862627\pi\)
−0.936839 + 0.349761i \(0.886263\pi\)
\(824\) −9.76400 7.09396i −0.340145 0.247130i
\(825\) −4.81010 + 3.49474i −0.167466 + 0.121671i
\(826\) −3.32352 + 10.2288i −0.115640 + 0.355904i
\(827\) −38.0661 + 27.6566i −1.32369 + 0.961714i −0.323808 + 0.946123i \(0.604963\pi\)
−0.999878 + 0.0155916i \(0.995037\pi\)
\(828\) 0.618034 + 1.90211i 0.0214782 + 0.0661030i
\(829\) −12.7414 39.2139i −0.442526 1.36195i −0.885175 0.465259i \(-0.845961\pi\)
0.442649 0.896695i \(-0.354039\pi\)
\(830\) 11.2404 34.5944i 0.390160 1.20079i
\(831\) 30.3183 1.05173
\(832\) −3.89539 −0.135048
\(833\) −7.70567 + 23.7156i −0.266986 + 0.821698i
\(834\) −6.97671 5.06888i −0.241584 0.175521i
\(835\) −30.9224 + 22.4664i −1.07011 + 0.777483i
\(836\) 14.1336 0.488821
\(837\) 3.66312 4.19304i 0.126616 0.144933i
\(838\) 3.27469 0.113122
\(839\) −8.98423 + 6.52742i −0.310170 + 0.225352i −0.731969 0.681337i \(-0.761399\pi\)
0.421799 + 0.906689i \(0.361399\pi\)
\(840\) 7.49278 + 5.44382i 0.258526 + 0.187830i
\(841\) −8.93038 + 27.4849i −0.307944 + 0.947754i
\(842\) 19.5925 0.675203
\(843\) −19.9287 −0.686382
\(844\) 1.38751 4.27031i 0.0477600 0.146990i
\(845\) −1.68860 5.19696i −0.0580894 0.178781i
\(846\) −3.83074 11.7898i −0.131704 0.405342i
\(847\) 27.9360 20.2967i 0.959891 0.697402i
\(848\) −0.926639 + 2.85190i −0.0318209 + 0.0979347i
\(849\) 13.5947 9.87716i 0.466570 0.338983i
\(850\) 4.03996 + 2.93520i 0.138569 + 0.100677i
\(851\) 2.77501 + 8.54062i 0.0951263 + 0.292769i
\(852\) 13.0524 + 9.48310i 0.447167 + 0.324886i
\(853\) −3.23391 2.34957i −0.110727 0.0804478i 0.531044 0.847344i \(-0.321800\pi\)
−0.641771 + 0.766897i \(0.721800\pi\)
\(854\) 14.0876 + 43.3571i 0.482067 + 1.48365i
\(855\) −6.36753 4.62628i −0.217765 0.158215i
\(856\) 5.92530 4.30499i 0.202523 0.147141i
\(857\) −11.4466 + 35.2291i −0.391009 + 1.20340i 0.541017 + 0.841011i \(0.318039\pi\)
−0.932026 + 0.362390i \(0.881961\pi\)
\(858\) 14.2238 10.3342i 0.485592 0.352803i
\(859\) 10.8418 + 33.3676i 0.369917 + 1.13849i 0.946844 + 0.321693i \(0.104252\pi\)
−0.576927 + 0.816796i \(0.695748\pi\)
\(860\) 5.93668 + 18.2712i 0.202439 + 0.623044i
\(861\) −6.98423 + 21.4952i −0.238022 + 0.732556i
\(862\) 14.3070 0.487297
\(863\) −9.81267 −0.334027 −0.167014 0.985955i \(-0.553412\pi\)
−0.167014 + 0.985955i \(0.553412\pi\)
\(864\) −0.309017 + 0.951057i −0.0105130 + 0.0323556i
\(865\) −19.9605 14.5022i −0.678678 0.493089i
\(866\) −29.7039 + 21.5811i −1.00938 + 0.733357i
\(867\) 2.62994 0.0893175
\(868\) −10.5234 17.6119i −0.357186 0.597787i
\(869\) −31.6994 −1.07533
\(870\) 0.645231 0.468788i 0.0218754 0.0158934i
\(871\) 35.5012 + 25.7931i 1.20291 + 0.873967i
\(872\) 5.19273 15.9816i 0.175848 0.541205i
\(873\) 5.46998 0.185131
\(874\) −6.26292 −0.211846
\(875\) −10.5398 + 32.4382i −0.356310 + 1.09661i
\(876\) 4.73607 + 14.5761i 0.160017 + 0.492481i
\(877\) 9.52869 + 29.3263i 0.321761 + 0.990278i 0.972882 + 0.231304i \(0.0742992\pi\)
−0.651121 + 0.758974i \(0.725701\pi\)
\(878\) 25.1755 18.2911i 0.849633 0.617295i
\(879\) −1.62019 + 4.98644i −0.0546478 + 0.168189i
\(880\) −9.17763 + 6.66794i −0.309378 + 0.224776i
\(881\) −5.30853 3.85687i −0.178849 0.129941i 0.494759 0.869030i \(-0.335256\pi\)
−0.673608 + 0.739089i \(0.735256\pi\)
\(882\) 2.03274 + 6.25612i 0.0684458 + 0.210655i
\(883\) 34.0836 + 24.7632i 1.14701 + 0.833348i 0.988080 0.153943i \(-0.0491971\pi\)
0.158925 + 0.987291i \(0.449197\pi\)
\(884\) −11.9464 8.67959i −0.401802 0.291926i
\(885\) 2.26697 + 6.97702i 0.0762034 + 0.234530i
\(886\) −27.5095 19.9868i −0.924200 0.671471i
\(887\) 15.0089 10.9046i 0.503950 0.366141i −0.306574 0.951847i \(-0.599183\pi\)
0.810524 + 0.585706i \(0.199183\pi\)
\(888\) −1.38751 + 4.27031i −0.0465617 + 0.143302i
\(889\) 44.1625 32.0859i 1.48116 1.07613i
\(890\) −4.39723 13.5333i −0.147395 0.453636i
\(891\) −1.39473 4.29252i −0.0467251 0.143805i
\(892\) 2.19991 6.77061i 0.0736583 0.226697i
\(893\) 38.8193 1.29904
\(894\) 12.4977 0.417984
\(895\) 10.5685 32.5265i 0.353266 1.08724i
\(896\) 2.98110 + 2.16590i 0.0995916 + 0.0723575i
\(897\) −6.30288 + 4.57931i −0.210447 + 0.152899i
\(898\) −8.94427 −0.298474
\(899\) −1.72243 + 0.393189i −0.0574462 + 0.0131136i
\(900\) 1.31732 0.0439105
\(901\) −9.19634 + 6.68153i −0.306374 + 0.222594i
\(902\) −22.3965 16.2720i −0.745723 0.541800i
\(903\) −8.70356 + 26.7868i −0.289636 + 0.891409i
\(904\) −5.70820 −0.189852
\(905\) −46.3900 −1.54206
\(906\) 3.13868 9.65986i 0.104276 0.320927i
\(907\) −7.15068 22.0075i −0.237435 0.730748i −0.996789 0.0800714i \(-0.974485\pi\)
0.759355 0.650677i \(-0.225515\pi\)
\(908\) 7.13530 + 21.9602i 0.236793 + 0.728774i
\(909\) −6.20266 + 4.50650i −0.205729 + 0.149471i
\(910\) −11.1486 + 34.3118i −0.369571 + 1.13742i
\(911\) −7.70820 + 5.60034i −0.255384 + 0.185547i −0.708110 0.706102i \(-0.750452\pi\)
0.452725 + 0.891650i \(0.350452\pi\)
\(912\) −2.53341 1.84063i −0.0838894 0.0609492i
\(913\) 20.1847 + 62.1220i 0.668015 + 2.05594i
\(914\) −2.88185 2.09379i −0.0953232 0.0692564i
\(915\) 25.1570 + 18.2776i 0.831664 + 0.604239i
\(916\) −4.24370 13.0608i −0.140216 0.431540i
\(917\) 52.0170 + 37.7926i 1.71775 + 1.24802i
\(918\) −3.06681 + 2.22817i −0.101220 + 0.0735405i
\(919\) 8.70057 26.7776i 0.287005 0.883312i −0.698785 0.715332i \(-0.746276\pi\)
0.985790 0.167980i \(-0.0537244\pi\)
\(920\) 4.06681 2.95471i 0.134079 0.0974139i
\(921\) −1.26757 3.90117i −0.0417678 0.128548i
\(922\) 3.79683 + 11.6854i 0.125042 + 0.384839i
\(923\) −19.4207 + 59.7709i −0.639241 + 1.96738i
\(924\) −16.6313 −0.547129
\(925\) 5.91483 0.194479
\(926\) 5.75795 17.7212i 0.189218 0.582353i
\(927\) −9.76400 7.09396i −0.320692 0.232996i
\(928\) 0.256714 0.186513i 0.00842703 0.00612260i
\(929\) 17.8199 0.584653 0.292327 0.956319i \(-0.405571\pi\)
0.292327 + 0.956319i \(0.405571\pi\)
\(930\) −12.8682 5.49966i −0.421965 0.180341i
\(931\) −20.5990 −0.675105
\(932\) −7.00565 + 5.08991i −0.229478 + 0.166725i
\(933\) −18.6470 13.5479i −0.610477 0.443537i
\(934\) −8.89100 + 27.3637i −0.290922 + 0.895367i
\(935\) −43.0033 −1.40636
\(936\) −3.89539 −0.127325
\(937\) 3.33916 10.2769i 0.109085 0.335730i −0.881582 0.472031i \(-0.843521\pi\)
0.990668 + 0.136300i \(0.0435212\pi\)
\(938\) −12.8273 39.4784i −0.418827 1.28902i
\(939\) −7.17613 22.0859i −0.234184 0.720745i
\(940\) −25.2072 + 18.3141i −0.822168 + 0.597340i
\(941\) 8.67480 26.6983i 0.282790 0.870339i −0.704262 0.709940i \(-0.748722\pi\)
0.987052 0.160399i \(-0.0512781\pi\)
\(942\) −18.4812 + 13.4274i −0.602149 + 0.437487i
\(943\) 9.92441 + 7.21050i 0.323183 + 0.234806i
\(944\) 0.901944 + 2.77590i 0.0293558 + 0.0903478i
\(945\) 7.49278 + 5.44382i 0.243740 + 0.177088i
\(946\) −27.9100 20.2778i −0.907431 0.659287i
\(947\) 7.58977 + 23.3589i 0.246634 + 0.759063i 0.995363 + 0.0961865i \(0.0306645\pi\)
−0.748729 + 0.662876i \(0.769335\pi\)
\(948\) 5.68202 + 4.12823i 0.184543 + 0.134079i
\(949\) −48.2997 + 35.0918i −1.56787 + 1.13913i
\(950\) −1.27473 + 3.92322i −0.0413578 + 0.127286i
\(951\) −0.789451 + 0.573570i −0.0255997 + 0.0185993i
\(952\) 4.31649 + 13.2848i 0.139898 + 0.430563i
\(953\) −17.3561 53.4165i −0.562218 1.73033i −0.676075 0.736833i \(-0.736320\pi\)
0.113856 0.993497i \(-0.463680\pi\)
\(954\) −0.926639 + 2.85190i −0.0300010 + 0.0923337i
\(955\) 1.93094 0.0624839
\(956\) −13.6326 −0.440910
\(957\) −0.442568 + 1.36208i −0.0143062 + 0.0440299i
\(958\) 28.3553 + 20.6013i 0.916117 + 0.665598i
\(959\) 11.9244 8.66359i 0.385059 0.279762i
\(960\) 2.51343 0.0811205
\(961\) 21.4243 + 22.4053i 0.691107 + 0.722752i
\(962\) −17.4906 −0.563919
\(963\) 5.92530 4.30499i 0.190940 0.138726i
\(964\) 2.35421 + 1.71044i 0.0758242 + 0.0550895i
\(965\) 7.44257 22.9059i 0.239585 0.737366i
\(966\) 7.36969 0.237116
\(967\) 50.9516 1.63849 0.819247 0.573441i \(-0.194392\pi\)
0.819247 + 0.573441i \(0.194392\pi\)
\(968\) 2.89581 8.91237i 0.0930747 0.286455i
\(969\) −3.66825 11.2897i −0.117841 0.362678i
\(970\) −4.24848 13.0755i −0.136411 0.419829i
\(971\) −2.05182 + 1.49073i −0.0658460 + 0.0478399i −0.620221 0.784427i \(-0.712957\pi\)
0.554375 + 0.832267i \(0.312957\pi\)
\(972\) −0.309017 + 0.951057i −0.00991172 + 0.0305052i
\(973\) −25.7081 + 18.6780i −0.824164 + 0.598790i
\(974\) −13.1803 9.57603i −0.422323 0.306836i
\(975\) 1.58571 + 4.88031i 0.0507833 + 0.156295i
\(976\) 10.0090 + 7.27199i 0.320381 + 0.232771i
\(977\) 39.0881 + 28.3992i 1.25054 + 0.908571i 0.998253 0.0590813i \(-0.0188171\pi\)
0.252288 + 0.967652i \(0.418817\pi\)
\(978\) 1.15144 + 3.54377i 0.0368190 + 0.113317i
\(979\) 20.6726 + 15.0195i 0.660698 + 0.480025i
\(980\) 13.3759 9.71816i 0.427277 0.310435i
\(981\) 5.19273 15.9816i 0.165791 0.510253i
\(982\) 17.9534 13.0439i 0.572917 0.416248i
\(983\) −1.85075 5.69601i −0.0590297 0.181675i 0.917194 0.398442i \(-0.130449\pi\)
−0.976223 + 0.216767i \(0.930449\pi\)
\(984\) 1.89539 + 5.83342i 0.0604229 + 0.185963i
\(985\) 7.20565 22.1767i 0.229591 0.706608i
\(986\) 1.20287 0.0383073
\(987\) −45.6793 −1.45399
\(988\) 3.76947 11.6012i 0.119923 0.369085i
\(989\) 12.3675 + 8.98554i 0.393265 + 0.285723i
\(990\) −9.17763 + 6.66794i −0.291684 + 0.211921i
\(991\) −28.7607 −0.913614 −0.456807 0.889566i \(-0.651007\pi\)
−0.456807 + 0.889566i \(0.651007\pi\)
\(992\) −5.11978 2.18811i −0.162553 0.0694727i
\(993\) −11.4164 −0.362289
\(994\) 48.0960 34.9438i 1.52551 1.10835i
\(995\) 26.6810 + 19.3849i 0.845845 + 0.614542i
\(996\) 4.47214 13.7638i 0.141705 0.436123i
\(997\) 9.38330 0.297172 0.148586 0.988899i \(-0.452528\pi\)
0.148586 + 0.988899i \(0.452528\pi\)
\(998\) 1.42593 0.0451369
\(999\) −1.38751 + 4.27031i −0.0438988 + 0.135107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 186.2.f.c.109.1 8
3.2 odd 2 558.2.i.h.109.2 8
31.2 even 5 inner 186.2.f.c.157.1 yes 8
31.8 even 5 5766.2.a.be.1.1 4
31.23 odd 10 5766.2.a.bi.1.1 4
93.2 odd 10 558.2.i.h.343.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.f.c.109.1 8 1.1 even 1 trivial
186.2.f.c.157.1 yes 8 31.2 even 5 inner
558.2.i.h.109.2 8 3.2 odd 2
558.2.i.h.343.2 8 93.2 odd 10
5766.2.a.be.1.1 4 31.8 even 5
5766.2.a.bi.1.1 4 31.23 odd 10