Properties

Label 186.2.e.d.25.2
Level $186$
Weight $2$
Character 186.25
Analytic conductor $1.485$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(25,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 186.25
Dual form 186.2.e.d.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(1.41421 - 2.44949i) q^{5} +(0.500000 + 0.866025i) q^{6} +(-1.20711 - 2.09077i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.41421 - 2.44949i) q^{10} +(-1.20711 + 2.09077i) q^{11} +(0.500000 + 0.866025i) q^{12} +(-2.82843 + 4.89898i) q^{13} +(-1.20711 - 2.09077i) q^{14} +2.82843 q^{15} +1.00000 q^{16} +(3.12132 + 5.40629i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-2.70711 - 4.68885i) q^{19} +(1.41421 - 2.44949i) q^{20} +(1.20711 - 2.09077i) q^{21} +(-1.20711 + 2.09077i) q^{22} -6.24264 q^{23} +(0.500000 + 0.866025i) q^{24} +(-1.50000 - 2.59808i) q^{25} +(-2.82843 + 4.89898i) q^{26} -1.00000 q^{27} +(-1.20711 - 2.09077i) q^{28} +5.82843 q^{29} +2.82843 q^{30} +(-0.378680 - 5.55487i) q^{31} +1.00000 q^{32} -2.41421 q^{33} +(3.12132 + 5.40629i) q^{34} -6.82843 q^{35} +(-0.500000 + 0.866025i) q^{36} +(-3.53553 - 6.12372i) q^{37} +(-2.70711 - 4.68885i) q^{38} -5.65685 q^{39} +(1.41421 - 2.44949i) q^{40} +(-3.29289 + 5.70346i) q^{41} +(1.20711 - 2.09077i) q^{42} +(0.828427 + 1.43488i) q^{43} +(-1.20711 + 2.09077i) q^{44} +(1.41421 + 2.44949i) q^{45} -6.24264 q^{46} +8.24264 q^{47} +(0.500000 + 0.866025i) q^{48} +(0.585786 - 1.01461i) q^{49} +(-1.50000 - 2.59808i) q^{50} +(-3.12132 + 5.40629i) q^{51} +(-2.82843 + 4.89898i) q^{52} +(3.74264 - 6.48244i) q^{53} -1.00000 q^{54} +(3.41421 + 5.91359i) q^{55} +(-1.20711 - 2.09077i) q^{56} +(2.70711 - 4.68885i) q^{57} +5.82843 q^{58} +(3.44975 + 5.97514i) q^{59} +2.82843 q^{60} -7.07107 q^{61} +(-0.378680 - 5.55487i) q^{62} +2.41421 q^{63} +1.00000 q^{64} +(8.00000 + 13.8564i) q^{65} -2.41421 q^{66} +(-3.12132 + 5.40629i) q^{67} +(3.12132 + 5.40629i) q^{68} +(-3.12132 - 5.40629i) q^{69} -6.82843 q^{70} +(0.828427 - 1.43488i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(2.24264 - 3.88437i) q^{73} +(-3.53553 - 6.12372i) q^{74} +(1.50000 - 2.59808i) q^{75} +(-2.70711 - 4.68885i) q^{76} +5.82843 q^{77} -5.65685 q^{78} +(-6.24264 - 10.8126i) q^{79} +(1.41421 - 2.44949i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.29289 + 5.70346i) q^{82} +(1.79289 - 3.10538i) q^{83} +(1.20711 - 2.09077i) q^{84} +17.6569 q^{85} +(0.828427 + 1.43488i) q^{86} +(2.91421 + 5.04757i) q^{87} +(-1.20711 + 2.09077i) q^{88} -9.31371 q^{89} +(1.41421 + 2.44949i) q^{90} +13.6569 q^{91} -6.24264 q^{92} +(4.62132 - 3.10538i) q^{93} +8.24264 q^{94} -15.3137 q^{95} +(0.500000 + 0.866025i) q^{96} +8.31371 q^{97} +(0.585786 - 1.01461i) q^{98} +(-1.20711 - 2.09077i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 2 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} - 2 q^{11} + 2 q^{12} - 2 q^{14} + 4 q^{16} + 4 q^{17} - 2 q^{18} - 8 q^{19} + 2 q^{21} - 2 q^{22} - 8 q^{23} + 2 q^{24} - 6 q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) 1.41421 2.44949i 0.632456 1.09545i −0.354593 0.935021i \(-0.615380\pi\)
0.987048 0.160424i \(-0.0512862\pi\)
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) −1.20711 2.09077i −0.456243 0.790237i 0.542515 0.840046i \(-0.317472\pi\)
−0.998759 + 0.0498090i \(0.984139\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.41421 2.44949i 0.447214 0.774597i
\(11\) −1.20711 + 2.09077i −0.363956 + 0.630391i −0.988608 0.150513i \(-0.951908\pi\)
0.624652 + 0.780903i \(0.285241\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −2.82843 + 4.89898i −0.784465 + 1.35873i 0.144854 + 0.989453i \(0.453729\pi\)
−0.929318 + 0.369279i \(0.879605\pi\)
\(14\) −1.20711 2.09077i −0.322613 0.558782i
\(15\) 2.82843 0.730297
\(16\) 1.00000 0.250000
\(17\) 3.12132 + 5.40629i 0.757031 + 1.31122i 0.944358 + 0.328919i \(0.106684\pi\)
−0.187327 + 0.982298i \(0.559982\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −2.70711 4.68885i −0.621053 1.07570i −0.989290 0.145963i \(-0.953372\pi\)
0.368237 0.929732i \(-0.379961\pi\)
\(20\) 1.41421 2.44949i 0.316228 0.547723i
\(21\) 1.20711 2.09077i 0.263412 0.456243i
\(22\) −1.20711 + 2.09077i −0.257356 + 0.445754i
\(23\) −6.24264 −1.30168 −0.650840 0.759215i \(-0.725583\pi\)
−0.650840 + 0.759215i \(0.725583\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) −2.82843 + 4.89898i −0.554700 + 0.960769i
\(27\) −1.00000 −0.192450
\(28\) −1.20711 2.09077i −0.228122 0.395118i
\(29\) 5.82843 1.08231 0.541156 0.840922i \(-0.317987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(30\) 2.82843 0.516398
\(31\) −0.378680 5.55487i −0.0680129 0.997684i
\(32\) 1.00000 0.176777
\(33\) −2.41421 −0.420261
\(34\) 3.12132 + 5.40629i 0.535302 + 0.927170i
\(35\) −6.82843 −1.15421
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −3.53553 6.12372i −0.581238 1.00673i −0.995333 0.0965003i \(-0.969235\pi\)
0.414095 0.910234i \(-0.364098\pi\)
\(38\) −2.70711 4.68885i −0.439151 0.760631i
\(39\) −5.65685 −0.905822
\(40\) 1.41421 2.44949i 0.223607 0.387298i
\(41\) −3.29289 + 5.70346i −0.514264 + 0.890731i 0.485600 + 0.874181i \(0.338601\pi\)
−0.999863 + 0.0165492i \(0.994732\pi\)
\(42\) 1.20711 2.09077i 0.186261 0.322613i
\(43\) 0.828427 + 1.43488i 0.126334 + 0.218817i 0.922254 0.386585i \(-0.126346\pi\)
−0.795920 + 0.605402i \(0.793012\pi\)
\(44\) −1.20711 + 2.09077i −0.181978 + 0.315195i
\(45\) 1.41421 + 2.44949i 0.210819 + 0.365148i
\(46\) −6.24264 −0.920427
\(47\) 8.24264 1.20231 0.601156 0.799131i \(-0.294707\pi\)
0.601156 + 0.799131i \(0.294707\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 0.585786 1.01461i 0.0836838 0.144945i
\(50\) −1.50000 2.59808i −0.212132 0.367423i
\(51\) −3.12132 + 5.40629i −0.437072 + 0.757031i
\(52\) −2.82843 + 4.89898i −0.392232 + 0.679366i
\(53\) 3.74264 6.48244i 0.514091 0.890432i −0.485775 0.874084i \(-0.661463\pi\)
0.999866 0.0163483i \(-0.00520406\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.41421 + 5.91359i 0.460372 + 0.797388i
\(56\) −1.20711 2.09077i −0.161306 0.279391i
\(57\) 2.70711 4.68885i 0.358565 0.621053i
\(58\) 5.82843 0.765310
\(59\) 3.44975 + 5.97514i 0.449119 + 0.777897i 0.998329 0.0577877i \(-0.0184046\pi\)
−0.549210 + 0.835684i \(0.685071\pi\)
\(60\) 2.82843 0.365148
\(61\) −7.07107 −0.905357 −0.452679 0.891674i \(-0.649532\pi\)
−0.452679 + 0.891674i \(0.649532\pi\)
\(62\) −0.378680 5.55487i −0.0480924 0.705469i
\(63\) 2.41421 0.304162
\(64\) 1.00000 0.125000
\(65\) 8.00000 + 13.8564i 0.992278 + 1.71868i
\(66\) −2.41421 −0.297169
\(67\) −3.12132 + 5.40629i −0.381330 + 0.660483i −0.991253 0.131978i \(-0.957867\pi\)
0.609923 + 0.792461i \(0.291200\pi\)
\(68\) 3.12132 + 5.40629i 0.378516 + 0.655608i
\(69\) −3.12132 5.40629i −0.375763 0.650840i
\(70\) −6.82843 −0.816153
\(71\) 0.828427 1.43488i 0.0983162 0.170289i −0.812672 0.582722i \(-0.801988\pi\)
0.910988 + 0.412433i \(0.135321\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 2.24264 3.88437i 0.262481 0.454631i −0.704419 0.709784i \(-0.748793\pi\)
0.966901 + 0.255153i \(0.0821259\pi\)
\(74\) −3.53553 6.12372i −0.410997 0.711868i
\(75\) 1.50000 2.59808i 0.173205 0.300000i
\(76\) −2.70711 4.68885i −0.310526 0.537848i
\(77\) 5.82843 0.664211
\(78\) −5.65685 −0.640513
\(79\) −6.24264 10.8126i −0.702352 1.21651i −0.967639 0.252340i \(-0.918800\pi\)
0.265287 0.964170i \(-0.414533\pi\)
\(80\) 1.41421 2.44949i 0.158114 0.273861i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.29289 + 5.70346i −0.363639 + 0.629842i
\(83\) 1.79289 3.10538i 0.196796 0.340860i −0.750692 0.660652i \(-0.770280\pi\)
0.947488 + 0.319792i \(0.103613\pi\)
\(84\) 1.20711 2.09077i 0.131706 0.228122i
\(85\) 17.6569 1.91515
\(86\) 0.828427 + 1.43488i 0.0893316 + 0.154727i
\(87\) 2.91421 + 5.04757i 0.312436 + 0.541156i
\(88\) −1.20711 + 2.09077i −0.128678 + 0.222877i
\(89\) −9.31371 −0.987251 −0.493626 0.869675i \(-0.664329\pi\)
−0.493626 + 0.869675i \(0.664329\pi\)
\(90\) 1.41421 + 2.44949i 0.149071 + 0.258199i
\(91\) 13.6569 1.43163
\(92\) −6.24264 −0.650840
\(93\) 4.62132 3.10538i 0.479209 0.322013i
\(94\) 8.24264 0.850163
\(95\) −15.3137 −1.57115
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) 8.31371 0.844129 0.422065 0.906566i \(-0.361306\pi\)
0.422065 + 0.906566i \(0.361306\pi\)
\(98\) 0.585786 1.01461i 0.0591734 0.102491i
\(99\) −1.20711 2.09077i −0.121319 0.210130i
\(100\) −1.50000 2.59808i −0.150000 0.259808i
\(101\) 7.82843 0.778958 0.389479 0.921035i \(-0.372655\pi\)
0.389479 + 0.921035i \(0.372655\pi\)
\(102\) −3.12132 + 5.40629i −0.309057 + 0.535302i
\(103\) −4.79289 + 8.30153i −0.472258 + 0.817975i −0.999496 0.0317430i \(-0.989894\pi\)
0.527238 + 0.849717i \(0.323228\pi\)
\(104\) −2.82843 + 4.89898i −0.277350 + 0.480384i
\(105\) −3.41421 5.91359i −0.333193 0.577107i
\(106\) 3.74264 6.48244i 0.363517 0.629631i
\(107\) −1.62132 2.80821i −0.156739 0.271480i 0.776952 0.629560i \(-0.216765\pi\)
−0.933691 + 0.358080i \(0.883431\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 9.75736 0.934586 0.467293 0.884103i \(-0.345229\pi\)
0.467293 + 0.884103i \(0.345229\pi\)
\(110\) 3.41421 + 5.91359i 0.325532 + 0.563839i
\(111\) 3.53553 6.12372i 0.335578 0.581238i
\(112\) −1.20711 2.09077i −0.114061 0.197559i
\(113\) 4.00000 6.92820i 0.376288 0.651751i −0.614231 0.789127i \(-0.710534\pi\)
0.990519 + 0.137376i \(0.0438669\pi\)
\(114\) 2.70711 4.68885i 0.253544 0.439151i
\(115\) −8.82843 + 15.2913i −0.823255 + 1.42592i
\(116\) 5.82843 0.541156
\(117\) −2.82843 4.89898i −0.261488 0.452911i
\(118\) 3.44975 + 5.97514i 0.317575 + 0.550056i
\(119\) 7.53553 13.0519i 0.690781 1.19647i
\(120\) 2.82843 0.258199
\(121\) 2.58579 + 4.47871i 0.235071 + 0.407156i
\(122\) −7.07107 −0.640184
\(123\) −6.58579 −0.593820
\(124\) −0.378680 5.55487i −0.0340064 0.498842i
\(125\) 5.65685 0.505964
\(126\) 2.41421 0.215075
\(127\) 10.2071 + 17.6792i 0.905734 + 1.56878i 0.819929 + 0.572466i \(0.194013\pi\)
0.0858057 + 0.996312i \(0.472654\pi\)
\(128\) 1.00000 0.0883883
\(129\) −0.828427 + 1.43488i −0.0729389 + 0.126334i
\(130\) 8.00000 + 13.8564i 0.701646 + 1.21529i
\(131\) 0.656854 + 1.13770i 0.0573896 + 0.0994017i 0.893293 0.449475i \(-0.148389\pi\)
−0.835903 + 0.548877i \(0.815056\pi\)
\(132\) −2.41421 −0.210130
\(133\) −6.53553 + 11.3199i −0.566703 + 0.981558i
\(134\) −3.12132 + 5.40629i −0.269641 + 0.467032i
\(135\) −1.41421 + 2.44949i −0.121716 + 0.210819i
\(136\) 3.12132 + 5.40629i 0.267651 + 0.463585i
\(137\) −0.878680 + 1.52192i −0.0750707 + 0.130026i −0.901117 0.433576i \(-0.857252\pi\)
0.826046 + 0.563602i \(0.190585\pi\)
\(138\) −3.12132 5.40629i −0.265704 0.460214i
\(139\) −16.2426 −1.37768 −0.688841 0.724912i \(-0.741880\pi\)
−0.688841 + 0.724912i \(0.741880\pi\)
\(140\) −6.82843 −0.577107
\(141\) 4.12132 + 7.13834i 0.347078 + 0.601156i
\(142\) 0.828427 1.43488i 0.0695201 0.120412i
\(143\) −6.82843 11.8272i −0.571022 0.989039i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 8.24264 14.2767i 0.684514 1.18561i
\(146\) 2.24264 3.88437i 0.185602 0.321473i
\(147\) 1.17157 0.0966297
\(148\) −3.53553 6.12372i −0.290619 0.503367i
\(149\) −9.74264 16.8747i −0.798148 1.38243i −0.920821 0.389986i \(-0.872480\pi\)
0.122673 0.992447i \(-0.460854\pi\)
\(150\) 1.50000 2.59808i 0.122474 0.212132i
\(151\) 18.0711 1.47060 0.735301 0.677740i \(-0.237041\pi\)
0.735301 + 0.677740i \(0.237041\pi\)
\(152\) −2.70711 4.68885i −0.219575 0.380316i
\(153\) −6.24264 −0.504688
\(154\) 5.82843 0.469668
\(155\) −14.1421 6.92820i −1.13592 0.556487i
\(156\) −5.65685 −0.452911
\(157\) −7.75736 −0.619105 −0.309552 0.950882i \(-0.600179\pi\)
−0.309552 + 0.950882i \(0.600179\pi\)
\(158\) −6.24264 10.8126i −0.496638 0.860202i
\(159\) 7.48528 0.593621
\(160\) 1.41421 2.44949i 0.111803 0.193649i
\(161\) 7.53553 + 13.0519i 0.593883 + 1.02864i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) −1.75736 −0.137647 −0.0688235 0.997629i \(-0.521925\pi\)
−0.0688235 + 0.997629i \(0.521925\pi\)
\(164\) −3.29289 + 5.70346i −0.257132 + 0.445365i
\(165\) −3.41421 + 5.91359i −0.265796 + 0.460372i
\(166\) 1.79289 3.10538i 0.139156 0.241024i
\(167\) 3.94975 + 6.84116i 0.305641 + 0.529385i 0.977404 0.211381i \(-0.0677961\pi\)
−0.671763 + 0.740766i \(0.734463\pi\)
\(168\) 1.20711 2.09077i 0.0931303 0.161306i
\(169\) −9.50000 16.4545i −0.730769 1.26573i
\(170\) 17.6569 1.35422
\(171\) 5.41421 0.414035
\(172\) 0.828427 + 1.43488i 0.0631670 + 0.109408i
\(173\) −10.3995 + 18.0125i −0.790659 + 1.36946i 0.134900 + 0.990859i \(0.456929\pi\)
−0.925559 + 0.378602i \(0.876405\pi\)
\(174\) 2.91421 + 5.04757i 0.220926 + 0.382655i
\(175\) −3.62132 + 6.27231i −0.273746 + 0.474142i
\(176\) −1.20711 + 2.09077i −0.0909891 + 0.157598i
\(177\) −3.44975 + 5.97514i −0.259299 + 0.449119i
\(178\) −9.31371 −0.698092
\(179\) −8.37868 14.5123i −0.626252 1.08470i −0.988297 0.152540i \(-0.951255\pi\)
0.362045 0.932160i \(-0.382079\pi\)
\(180\) 1.41421 + 2.44949i 0.105409 + 0.182574i
\(181\) −9.82843 + 17.0233i −0.730541 + 1.26533i 0.226111 + 0.974102i \(0.427399\pi\)
−0.956652 + 0.291233i \(0.905935\pi\)
\(182\) 13.6569 1.01231
\(183\) −3.53553 6.12372i −0.261354 0.452679i
\(184\) −6.24264 −0.460214
\(185\) −20.0000 −1.47043
\(186\) 4.62132 3.10538i 0.338852 0.227698i
\(187\) −15.0711 −1.10211
\(188\) 8.24264 0.601156
\(189\) 1.20711 + 2.09077i 0.0878041 + 0.152081i
\(190\) −15.3137 −1.11097
\(191\) 3.12132 5.40629i 0.225851 0.391185i −0.730724 0.682673i \(-0.760817\pi\)
0.956574 + 0.291488i \(0.0941505\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 1.32843 + 2.30090i 0.0956223 + 0.165623i 0.909868 0.414898i \(-0.136183\pi\)
−0.814246 + 0.580520i \(0.802849\pi\)
\(194\) 8.31371 0.596889
\(195\) −8.00000 + 13.8564i −0.572892 + 0.992278i
\(196\) 0.585786 1.01461i 0.0418419 0.0724723i
\(197\) −1.41421 + 2.44949i −0.100759 + 0.174519i −0.911997 0.410196i \(-0.865460\pi\)
0.811239 + 0.584715i \(0.198794\pi\)
\(198\) −1.20711 2.09077i −0.0857853 0.148585i
\(199\) 2.37868 4.11999i 0.168620 0.292059i −0.769315 0.638870i \(-0.779402\pi\)
0.937935 + 0.346811i \(0.112736\pi\)
\(200\) −1.50000 2.59808i −0.106066 0.183712i
\(201\) −6.24264 −0.440322
\(202\) 7.82843 0.550806
\(203\) −7.03553 12.1859i −0.493798 0.855283i
\(204\) −3.12132 + 5.40629i −0.218536 + 0.378516i
\(205\) 9.31371 + 16.1318i 0.650498 + 1.12669i
\(206\) −4.79289 + 8.30153i −0.333937 + 0.578395i
\(207\) 3.12132 5.40629i 0.216947 0.375763i
\(208\) −2.82843 + 4.89898i −0.196116 + 0.339683i
\(209\) 13.0711 0.904145
\(210\) −3.41421 5.91359i −0.235603 0.408077i
\(211\) −11.7782 20.4004i −0.810843 1.40442i −0.912275 0.409579i \(-0.865676\pi\)
0.101432 0.994842i \(-0.467658\pi\)
\(212\) 3.74264 6.48244i 0.257046 0.445216i
\(213\) 1.65685 0.113526
\(214\) −1.62132 2.80821i −0.110831 0.191965i
\(215\) 4.68629 0.319602
\(216\) −1.00000 −0.0680414
\(217\) −11.1569 + 7.49706i −0.757377 + 0.508933i
\(218\) 9.75736 0.660852
\(219\) 4.48528 0.303087
\(220\) 3.41421 + 5.91359i 0.230186 + 0.398694i
\(221\) −35.3137 −2.37546
\(222\) 3.53553 6.12372i 0.237289 0.410997i
\(223\) 3.62132 + 6.27231i 0.242502 + 0.420025i 0.961426 0.275063i \(-0.0886987\pi\)
−0.718925 + 0.695088i \(0.755365\pi\)
\(224\) −1.20711 2.09077i −0.0806532 0.139695i
\(225\) 3.00000 0.200000
\(226\) 4.00000 6.92820i 0.266076 0.460857i
\(227\) −9.37868 + 16.2443i −0.622485 + 1.07818i 0.366537 + 0.930404i \(0.380543\pi\)
−0.989021 + 0.147772i \(0.952790\pi\)
\(228\) 2.70711 4.68885i 0.179283 0.310526i
\(229\) −12.6066 21.8353i −0.833068 1.44292i −0.895594 0.444872i \(-0.853249\pi\)
0.0625263 0.998043i \(-0.480084\pi\)
\(230\) −8.82843 + 15.2913i −0.582129 + 1.00828i
\(231\) 2.91421 + 5.04757i 0.191741 + 0.332105i
\(232\) 5.82843 0.382655
\(233\) 27.5563 1.80528 0.902638 0.430400i \(-0.141628\pi\)
0.902638 + 0.430400i \(0.141628\pi\)
\(234\) −2.82843 4.89898i −0.184900 0.320256i
\(235\) 11.6569 20.1903i 0.760409 1.31707i
\(236\) 3.44975 + 5.97514i 0.224559 + 0.388948i
\(237\) 6.24264 10.8126i 0.405503 0.702352i
\(238\) 7.53553 13.0519i 0.488456 0.846031i
\(239\) −3.65685 + 6.33386i −0.236542 + 0.409703i −0.959720 0.280959i \(-0.909347\pi\)
0.723178 + 0.690662i \(0.242681\pi\)
\(240\) 2.82843 0.182574
\(241\) −7.57107 13.1135i −0.487695 0.844713i 0.512205 0.858864i \(-0.328829\pi\)
−0.999900 + 0.0141504i \(0.995496\pi\)
\(242\) 2.58579 + 4.47871i 0.166221 + 0.287903i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −7.07107 −0.452679
\(245\) −1.65685 2.86976i −0.105853 0.183342i
\(246\) −6.58579 −0.419894
\(247\) 30.6274 1.94878
\(248\) −0.378680 5.55487i −0.0240462 0.352735i
\(249\) 3.58579 0.227240
\(250\) 5.65685 0.357771
\(251\) 3.75736 + 6.50794i 0.237162 + 0.410777i 0.959899 0.280346i \(-0.0904493\pi\)
−0.722737 + 0.691124i \(0.757116\pi\)
\(252\) 2.41421 0.152081
\(253\) 7.53553 13.0519i 0.473755 0.820568i
\(254\) 10.2071 + 17.6792i 0.640451 + 1.10929i
\(255\) 8.82843 + 15.2913i 0.552858 + 0.957577i
\(256\) 1.00000 0.0625000
\(257\) −6.70711 + 11.6170i −0.418378 + 0.724652i −0.995776 0.0918107i \(-0.970735\pi\)
0.577399 + 0.816462i \(0.304068\pi\)
\(258\) −0.828427 + 1.43488i −0.0515756 + 0.0893316i
\(259\) −8.53553 + 14.7840i −0.530372 + 0.918632i
\(260\) 8.00000 + 13.8564i 0.496139 + 0.859338i
\(261\) −2.91421 + 5.04757i −0.180385 + 0.312436i
\(262\) 0.656854 + 1.13770i 0.0405806 + 0.0702876i
\(263\) 15.1716 0.935519 0.467760 0.883856i \(-0.345061\pi\)
0.467760 + 0.883856i \(0.345061\pi\)
\(264\) −2.41421 −0.148585
\(265\) −10.5858 18.3351i −0.650280 1.12632i
\(266\) −6.53553 + 11.3199i −0.400719 + 0.694066i
\(267\) −4.65685 8.06591i −0.284995 0.493626i
\(268\) −3.12132 + 5.40629i −0.190665 + 0.330241i
\(269\) −0.656854 + 1.13770i −0.0400491 + 0.0693671i −0.885355 0.464915i \(-0.846085\pi\)
0.845306 + 0.534282i \(0.179418\pi\)
\(270\) −1.41421 + 2.44949i −0.0860663 + 0.149071i
\(271\) 29.2426 1.77636 0.888182 0.459492i \(-0.151968\pi\)
0.888182 + 0.459492i \(0.151968\pi\)
\(272\) 3.12132 + 5.40629i 0.189258 + 0.327804i
\(273\) 6.82843 + 11.8272i 0.413275 + 0.715814i
\(274\) −0.878680 + 1.52192i −0.0530830 + 0.0919424i
\(275\) 7.24264 0.436748
\(276\) −3.12132 5.40629i −0.187881 0.325420i
\(277\) 3.41421 0.205140 0.102570 0.994726i \(-0.467293\pi\)
0.102570 + 0.994726i \(0.467293\pi\)
\(278\) −16.2426 −0.974169
\(279\) 5.00000 + 2.44949i 0.299342 + 0.146647i
\(280\) −6.82843 −0.408077
\(281\) 32.6274 1.94639 0.973194 0.229985i \(-0.0738676\pi\)
0.973194 + 0.229985i \(0.0738676\pi\)
\(282\) 4.12132 + 7.13834i 0.245421 + 0.425082i
\(283\) −11.3137 −0.672530 −0.336265 0.941767i \(-0.609164\pi\)
−0.336265 + 0.941767i \(0.609164\pi\)
\(284\) 0.828427 1.43488i 0.0491581 0.0851443i
\(285\) −7.65685 13.2621i −0.453553 0.785577i
\(286\) −6.82843 11.8272i −0.403773 0.699356i
\(287\) 15.8995 0.938518
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −10.9853 + 19.0271i −0.646193 + 1.11924i
\(290\) 8.24264 14.2767i 0.484025 0.838355i
\(291\) 4.15685 + 7.19988i 0.243679 + 0.422065i
\(292\) 2.24264 3.88437i 0.131241 0.227315i
\(293\) 11.7426 + 20.3389i 0.686012 + 1.18821i 0.973117 + 0.230309i \(0.0739738\pi\)
−0.287105 + 0.957899i \(0.592693\pi\)
\(294\) 1.17157 0.0683275
\(295\) 19.5147 1.13619
\(296\) −3.53553 6.12372i −0.205499 0.355934i
\(297\) 1.20711 2.09077i 0.0700434 0.121319i
\(298\) −9.74264 16.8747i −0.564376 0.977528i
\(299\) 17.6569 30.5826i 1.02112 1.76864i
\(300\) 1.50000 2.59808i 0.0866025 0.150000i
\(301\) 2.00000 3.46410i 0.115278 0.199667i
\(302\) 18.0711 1.03987
\(303\) 3.91421 + 6.77962i 0.224866 + 0.389479i
\(304\) −2.70711 4.68885i −0.155263 0.268924i
\(305\) −10.0000 + 17.3205i −0.572598 + 0.991769i
\(306\) −6.24264 −0.356868
\(307\) 8.70711 + 15.0812i 0.496941 + 0.860727i 0.999994 0.00352883i \(-0.00112326\pi\)
−0.503053 + 0.864256i \(0.667790\pi\)
\(308\) 5.82843 0.332105
\(309\) −9.58579 −0.545316
\(310\) −14.1421 6.92820i −0.803219 0.393496i
\(311\) −17.6569 −1.00123 −0.500614 0.865671i \(-0.666892\pi\)
−0.500614 + 0.865671i \(0.666892\pi\)
\(312\) −5.65685 −0.320256
\(313\) −11.8137 20.4619i −0.667750 1.15658i −0.978532 0.206096i \(-0.933924\pi\)
0.310781 0.950481i \(-0.399409\pi\)
\(314\) −7.75736 −0.437773
\(315\) 3.41421 5.91359i 0.192369 0.333193i
\(316\) −6.24264 10.8126i −0.351176 0.608255i
\(317\) −14.2279 24.6435i −0.799120 1.38412i −0.920190 0.391472i \(-0.871966\pi\)
0.121070 0.992644i \(-0.461367\pi\)
\(318\) 7.48528 0.419754
\(319\) −7.03553 + 12.1859i −0.393914 + 0.682280i
\(320\) 1.41421 2.44949i 0.0790569 0.136931i
\(321\) 1.62132 2.80821i 0.0904933 0.156739i
\(322\) 7.53553 + 13.0519i 0.419939 + 0.727355i
\(323\) 16.8995 29.2708i 0.940313 1.62867i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 16.9706 0.941357
\(326\) −1.75736 −0.0973311
\(327\) 4.87868 + 8.45012i 0.269792 + 0.467293i
\(328\) −3.29289 + 5.70346i −0.181820 + 0.314921i
\(329\) −9.94975 17.2335i −0.548547 0.950112i
\(330\) −3.41421 + 5.91359i −0.187946 + 0.325532i
\(331\) 0.878680 1.52192i 0.0482966 0.0836522i −0.840866 0.541243i \(-0.817954\pi\)
0.889163 + 0.457590i \(0.151287\pi\)
\(332\) 1.79289 3.10538i 0.0983978 0.170430i
\(333\) 7.07107 0.387492
\(334\) 3.94975 + 6.84116i 0.216121 + 0.374332i
\(335\) 8.82843 + 15.2913i 0.482349 + 0.835452i
\(336\) 1.20711 2.09077i 0.0658531 0.114061i
\(337\) 1.34315 0.0731658 0.0365829 0.999331i \(-0.488353\pi\)
0.0365829 + 0.999331i \(0.488353\pi\)
\(338\) −9.50000 16.4545i −0.516732 0.895006i
\(339\) 8.00000 0.434500
\(340\) 17.6569 0.957577
\(341\) 12.0711 + 5.91359i 0.653685 + 0.320239i
\(342\) 5.41421 0.292767
\(343\) −19.7279 −1.06521
\(344\) 0.828427 + 1.43488i 0.0446658 + 0.0773634i
\(345\) −17.6569 −0.950613
\(346\) −10.3995 + 18.0125i −0.559080 + 0.968356i
\(347\) 6.27817 + 10.8741i 0.337030 + 0.583753i 0.983873 0.178870i \(-0.0572443\pi\)
−0.646843 + 0.762624i \(0.723911\pi\)
\(348\) 2.91421 + 5.04757i 0.156218 + 0.270578i
\(349\) −23.8995 −1.27931 −0.639655 0.768662i \(-0.720923\pi\)
−0.639655 + 0.768662i \(0.720923\pi\)
\(350\) −3.62132 + 6.27231i −0.193568 + 0.335269i
\(351\) 2.82843 4.89898i 0.150970 0.261488i
\(352\) −1.20711 + 2.09077i −0.0643390 + 0.111438i
\(353\) −1.82843 3.16693i −0.0973174 0.168559i 0.813256 0.581906i \(-0.197693\pi\)
−0.910573 + 0.413347i \(0.864360\pi\)
\(354\) −3.44975 + 5.97514i −0.183352 + 0.317575i
\(355\) −2.34315 4.05845i −0.124361 0.215400i
\(356\) −9.31371 −0.493626
\(357\) 15.0711 0.797645
\(358\) −8.37868 14.5123i −0.442827 0.766999i
\(359\) −0.0502525 + 0.0870399i −0.00265223 + 0.00459379i −0.867348 0.497701i \(-0.834178\pi\)
0.864696 + 0.502295i \(0.167511\pi\)
\(360\) 1.41421 + 2.44949i 0.0745356 + 0.129099i
\(361\) −5.15685 + 8.93193i −0.271413 + 0.470102i
\(362\) −9.82843 + 17.0233i −0.516571 + 0.894727i
\(363\) −2.58579 + 4.47871i −0.135719 + 0.235071i
\(364\) 13.6569 0.715814
\(365\) −6.34315 10.9867i −0.332015 0.575068i
\(366\) −3.53553 6.12372i −0.184805 0.320092i
\(367\) −6.34315 + 10.9867i −0.331110 + 0.573498i −0.982730 0.185047i \(-0.940756\pi\)
0.651620 + 0.758545i \(0.274090\pi\)
\(368\) −6.24264 −0.325420
\(369\) −3.29289 5.70346i −0.171421 0.296910i
\(370\) −20.0000 −1.03975
\(371\) −18.0711 −0.938203
\(372\) 4.62132 3.10538i 0.239604 0.161007i
\(373\) −17.0711 −0.883906 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(374\) −15.0711 −0.779306
\(375\) 2.82843 + 4.89898i 0.146059 + 0.252982i
\(376\) 8.24264 0.425082
\(377\) −16.4853 + 28.5533i −0.849035 + 1.47057i
\(378\) 1.20711 + 2.09077i 0.0620869 + 0.107538i
\(379\) 2.41421 + 4.18154i 0.124010 + 0.214791i 0.921345 0.388745i \(-0.127091\pi\)
−0.797336 + 0.603536i \(0.793758\pi\)
\(380\) −15.3137 −0.785577
\(381\) −10.2071 + 17.6792i −0.522926 + 0.905734i
\(382\) 3.12132 5.40629i 0.159701 0.276610i
\(383\) −1.94975 + 3.37706i −0.0996274 + 0.172560i −0.911530 0.411233i \(-0.865098\pi\)
0.811903 + 0.583792i \(0.198432\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 8.24264 14.2767i 0.420084 0.727607i
\(386\) 1.32843 + 2.30090i 0.0676152 + 0.117113i
\(387\) −1.65685 −0.0842226
\(388\) 8.31371 0.422065
\(389\) 1.65685 + 2.86976i 0.0840058 + 0.145502i 0.904967 0.425481i \(-0.139895\pi\)
−0.820961 + 0.570984i \(0.806562\pi\)
\(390\) −8.00000 + 13.8564i −0.405096 + 0.701646i
\(391\) −19.4853 33.7495i −0.985413 1.70679i
\(392\) 0.585786 1.01461i 0.0295867 0.0512456i
\(393\) −0.656854 + 1.13770i −0.0331339 + 0.0573896i
\(394\) −1.41421 + 2.44949i −0.0712470 + 0.123404i
\(395\) −35.3137 −1.77683
\(396\) −1.20711 2.09077i −0.0606594 0.105065i
\(397\) 11.4853 + 19.8931i 0.576430 + 0.998406i 0.995885 + 0.0906295i \(0.0288879\pi\)
−0.419455 + 0.907776i \(0.637779\pi\)
\(398\) 2.37868 4.11999i 0.119232 0.206517i
\(399\) −13.0711 −0.654372
\(400\) −1.50000 2.59808i −0.0750000 0.129904i
\(401\) 17.6569 0.881741 0.440871 0.897571i \(-0.354670\pi\)
0.440871 + 0.897571i \(0.354670\pi\)
\(402\) −6.24264 −0.311355
\(403\) 28.2843 + 13.8564i 1.40894 + 0.690237i
\(404\) 7.82843 0.389479
\(405\) −2.82843 −0.140546
\(406\) −7.03553 12.1859i −0.349168 0.604776i
\(407\) 17.0711 0.846181
\(408\) −3.12132 + 5.40629i −0.154528 + 0.267651i
\(409\) 16.0563 + 27.8104i 0.793935 + 1.37514i 0.923513 + 0.383567i \(0.125305\pi\)
−0.129578 + 0.991569i \(0.541362\pi\)
\(410\) 9.31371 + 16.1318i 0.459971 + 0.796694i
\(411\) −1.75736 −0.0866841
\(412\) −4.79289 + 8.30153i −0.236129 + 0.408987i
\(413\) 8.32843 14.4253i 0.409815 0.709821i
\(414\) 3.12132 5.40629i 0.153405 0.265704i
\(415\) −5.07107 8.78335i −0.248929 0.431158i
\(416\) −2.82843 + 4.89898i −0.138675 + 0.240192i
\(417\) −8.12132 14.0665i −0.397703 0.688841i
\(418\) 13.0711 0.639327
\(419\) −33.5269 −1.63790 −0.818948 0.573867i \(-0.805443\pi\)
−0.818948 + 0.573867i \(0.805443\pi\)
\(420\) −3.41421 5.91359i −0.166597 0.288554i
\(421\) 9.87868 17.1104i 0.481457 0.833909i −0.518316 0.855189i \(-0.673441\pi\)
0.999774 + 0.0212804i \(0.00677428\pi\)
\(422\) −11.7782 20.4004i −0.573353 0.993076i
\(423\) −4.12132 + 7.13834i −0.200385 + 0.347078i
\(424\) 3.74264 6.48244i 0.181759 0.314815i
\(425\) 9.36396 16.2189i 0.454219 0.786730i
\(426\) 1.65685 0.0802749
\(427\) 8.53553 + 14.7840i 0.413063 + 0.715447i
\(428\) −1.62132 2.80821i −0.0783695 0.135740i
\(429\) 6.82843 11.8272i 0.329680 0.571022i
\(430\) 4.68629 0.225993
\(431\) −3.29289 5.70346i −0.158613 0.274726i 0.775756 0.631033i \(-0.217369\pi\)
−0.934369 + 0.356307i \(0.884036\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −26.1421 −1.25631 −0.628155 0.778088i \(-0.716190\pi\)
−0.628155 + 0.778088i \(0.716190\pi\)
\(434\) −11.1569 + 7.49706i −0.535546 + 0.359870i
\(435\) 16.4853 0.790409
\(436\) 9.75736 0.467293
\(437\) 16.8995 + 29.2708i 0.808412 + 1.40021i
\(438\) 4.48528 0.214315
\(439\) 19.1066 33.0936i 0.911908 1.57947i 0.100543 0.994933i \(-0.467942\pi\)
0.811366 0.584539i \(-0.198725\pi\)
\(440\) 3.41421 + 5.91359i 0.162766 + 0.281919i
\(441\) 0.585786 + 1.01461i 0.0278946 + 0.0483149i
\(442\) −35.3137 −1.67970
\(443\) −5.00000 + 8.66025i −0.237557 + 0.411461i −0.960013 0.279956i \(-0.909680\pi\)
0.722456 + 0.691417i \(0.243013\pi\)
\(444\) 3.53553 6.12372i 0.167789 0.290619i
\(445\) −13.1716 + 22.8138i −0.624392 + 1.08148i
\(446\) 3.62132 + 6.27231i 0.171474 + 0.297003i
\(447\) 9.74264 16.8747i 0.460811 0.798148i
\(448\) −1.20711 2.09077i −0.0570304 0.0987796i
\(449\) −22.2843 −1.05166 −0.525830 0.850590i \(-0.676245\pi\)
−0.525830 + 0.850590i \(0.676245\pi\)
\(450\) 3.00000 0.141421
\(451\) −7.94975 13.7694i −0.374339 0.648374i
\(452\) 4.00000 6.92820i 0.188144 0.325875i
\(453\) 9.03553 + 15.6500i 0.424526 + 0.735301i
\(454\) −9.37868 + 16.2443i −0.440163 + 0.762385i
\(455\) 19.3137 33.4523i 0.905441 1.56827i
\(456\) 2.70711 4.68885i 0.126772 0.219575i
\(457\) −23.7990 −1.11327 −0.556635 0.830757i \(-0.687908\pi\)
−0.556635 + 0.830757i \(0.687908\pi\)
\(458\) −12.6066 21.8353i −0.589068 1.02030i
\(459\) −3.12132 5.40629i −0.145691 0.252344i
\(460\) −8.82843 + 15.2913i −0.411628 + 0.712960i
\(461\) −24.1716 −1.12578 −0.562891 0.826531i \(-0.690311\pi\)
−0.562891 + 0.826531i \(0.690311\pi\)
\(462\) 2.91421 + 5.04757i 0.135581 + 0.234834i
\(463\) 0.414214 0.0192501 0.00962507 0.999954i \(-0.496936\pi\)
0.00962507 + 0.999954i \(0.496936\pi\)
\(464\) 5.82843 0.270578
\(465\) −1.07107 15.7116i −0.0496696 0.728606i
\(466\) 27.5563 1.27652
\(467\) −0.0710678 −0.00328863 −0.00164431 0.999999i \(-0.500523\pi\)
−0.00164431 + 0.999999i \(0.500523\pi\)
\(468\) −2.82843 4.89898i −0.130744 0.226455i
\(469\) 15.0711 0.695917
\(470\) 11.6569 20.1903i 0.537691 0.931307i
\(471\) −3.87868 6.71807i −0.178720 0.309552i
\(472\) 3.44975 + 5.97514i 0.158787 + 0.275028i
\(473\) −4.00000 −0.183920
\(474\) 6.24264 10.8126i 0.286734 0.496638i
\(475\) −8.12132 + 14.0665i −0.372632 + 0.645417i
\(476\) 7.53553 13.0519i 0.345391 0.598234i
\(477\) 3.74264 + 6.48244i 0.171364 + 0.296811i
\(478\) −3.65685 + 6.33386i −0.167261 + 0.289704i
\(479\) 0.221825 + 0.384213i 0.0101355 + 0.0175551i 0.871049 0.491197i \(-0.163440\pi\)
−0.860913 + 0.508752i \(0.830107\pi\)
\(480\) 2.82843 0.129099
\(481\) 40.0000 1.82384
\(482\) −7.57107 13.1135i −0.344853 0.597302i
\(483\) −7.53553 + 13.0519i −0.342879 + 0.593883i
\(484\) 2.58579 + 4.47871i 0.117536 + 0.203578i
\(485\) 11.7574 20.3643i 0.533874 0.924697i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 9.34924 16.1934i 0.423655 0.733791i −0.572639 0.819808i \(-0.694080\pi\)
0.996294 + 0.0860162i \(0.0274137\pi\)
\(488\) −7.07107 −0.320092
\(489\) −0.878680 1.52192i −0.0397353 0.0688235i
\(490\) −1.65685 2.86976i −0.0748490 0.129642i
\(491\) −19.1066 + 33.0936i −0.862269 + 1.49349i 0.00746482 + 0.999972i \(0.497624\pi\)
−0.869734 + 0.493521i \(0.835709\pi\)
\(492\) −6.58579 −0.296910
\(493\) 18.1924 + 31.5101i 0.819344 + 1.41915i
\(494\) 30.6274 1.37799
\(495\) −6.82843 −0.306915
\(496\) −0.378680 5.55487i −0.0170032 0.249421i
\(497\) −4.00000 −0.179425
\(498\) 3.58579 0.160683
\(499\) 7.02082 + 12.1604i 0.314295 + 0.544375i 0.979287 0.202475i \(-0.0648986\pi\)
−0.664992 + 0.746850i \(0.731565\pi\)
\(500\) 5.65685 0.252982
\(501\) −3.94975 + 6.84116i −0.176462 + 0.305641i
\(502\) 3.75736 + 6.50794i 0.167699 + 0.290463i
\(503\) 17.9497 + 31.0899i 0.800340 + 1.38623i 0.919393 + 0.393341i \(0.128681\pi\)
−0.119053 + 0.992888i \(0.537986\pi\)
\(504\) 2.41421 0.107538
\(505\) 11.0711 19.1757i 0.492656 0.853305i
\(506\) 7.53553 13.0519i 0.334995 0.580229i
\(507\) 9.50000 16.4545i 0.421910 0.730769i
\(508\) 10.2071 + 17.6792i 0.452867 + 0.784389i
\(509\) −1.15685 + 2.00373i −0.0512767 + 0.0888138i −0.890524 0.454935i \(-0.849662\pi\)
0.839248 + 0.543749i \(0.182996\pi\)
\(510\) 8.82843 + 15.2913i 0.390929 + 0.677109i
\(511\) −10.8284 −0.479021
\(512\) 1.00000 0.0441942
\(513\) 2.70711 + 4.68885i 0.119522 + 0.207018i
\(514\) −6.70711 + 11.6170i −0.295838 + 0.512406i
\(515\) 13.5563 + 23.4803i 0.597364 + 1.03467i
\(516\) −0.828427 + 1.43488i −0.0364695 + 0.0631670i
\(517\) −9.94975 + 17.2335i −0.437589 + 0.757927i
\(518\) −8.53553 + 14.7840i −0.375030 + 0.649571i
\(519\) −20.7990 −0.912974
\(520\) 8.00000 + 13.8564i 0.350823 + 0.607644i
\(521\) 14.1421 + 24.4949i 0.619578 + 1.07314i 0.989563 + 0.144103i \(0.0460297\pi\)
−0.369984 + 0.929038i \(0.620637\pi\)
\(522\) −2.91421 + 5.04757i −0.127552 + 0.220926i
\(523\) 35.3137 1.54416 0.772080 0.635525i \(-0.219216\pi\)
0.772080 + 0.635525i \(0.219216\pi\)
\(524\) 0.656854 + 1.13770i 0.0286948 + 0.0497009i
\(525\) −7.24264 −0.316095
\(526\) 15.1716 0.661512
\(527\) 28.8492 19.3858i 1.25669 0.844458i
\(528\) −2.41421 −0.105065
\(529\) 15.9706 0.694372
\(530\) −10.5858 18.3351i −0.459817 0.796427i
\(531\) −6.89949 −0.299413
\(532\) −6.53553 + 11.3199i −0.283351 + 0.490779i
\(533\) −18.6274 32.2636i −0.806843 1.39749i
\(534\) −4.65685 8.06591i −0.201522 0.349046i
\(535\) −9.17157 −0.396522
\(536\) −3.12132 + 5.40629i −0.134821 + 0.233516i
\(537\) 8.37868 14.5123i 0.361567 0.626252i
\(538\) −0.656854 + 1.13770i −0.0283190 + 0.0490499i
\(539\) 1.41421 + 2.44949i 0.0609145 + 0.105507i
\(540\) −1.41421 + 2.44949i −0.0608581 + 0.105409i
\(541\) −21.0919 36.5322i −0.906811 1.57064i −0.818468 0.574552i \(-0.805176\pi\)
−0.0883431 0.996090i \(-0.528157\pi\)
\(542\) 29.2426 1.25608
\(543\) −19.6569 −0.843556
\(544\) 3.12132 + 5.40629i 0.133826 + 0.231793i
\(545\) 13.7990 23.9006i 0.591084 1.02379i
\(546\) 6.82843 + 11.8272i 0.292230 + 0.506157i
\(547\) −0.757359 + 1.31178i −0.0323823 + 0.0560879i −0.881762 0.471694i \(-0.843643\pi\)
0.849380 + 0.527782i \(0.176976\pi\)
\(548\) −0.878680 + 1.52192i −0.0375353 + 0.0650131i
\(549\) 3.53553 6.12372i 0.150893 0.261354i
\(550\) 7.24264 0.308827
\(551\) −15.7782 27.3286i −0.672173 1.16424i
\(552\) −3.12132 5.40629i −0.132852 0.230107i
\(553\) −15.0711 + 26.1039i −0.640887 + 1.11005i
\(554\) 3.41421 0.145056
\(555\) −10.0000 17.3205i −0.424476 0.735215i
\(556\) −16.2426 −0.688841
\(557\) −23.0000 −0.974541 −0.487271 0.873251i \(-0.662007\pi\)
−0.487271 + 0.873251i \(0.662007\pi\)
\(558\) 5.00000 + 2.44949i 0.211667 + 0.103695i
\(559\) −9.37258 −0.396418
\(560\) −6.82843 −0.288554
\(561\) −7.53553 13.0519i −0.318150 0.551053i
\(562\) 32.6274 1.37630
\(563\) 2.37868 4.11999i 0.100249 0.173637i −0.811538 0.584300i \(-0.801369\pi\)
0.911787 + 0.410663i \(0.134703\pi\)
\(564\) 4.12132 + 7.13834i 0.173539 + 0.300578i
\(565\) −11.3137 19.5959i −0.475971 0.824406i
\(566\) −11.3137 −0.475551
\(567\) −1.20711 + 2.09077i −0.0506937 + 0.0878041i
\(568\) 0.828427 1.43488i 0.0347600 0.0602061i
\(569\) −1.17157 + 2.02922i −0.0491149 + 0.0850695i −0.889538 0.456862i \(-0.848973\pi\)
0.840423 + 0.541931i \(0.182307\pi\)
\(570\) −7.65685 13.2621i −0.320710 0.555487i
\(571\) −4.89949 + 8.48617i −0.205037 + 0.355135i −0.950145 0.311809i \(-0.899065\pi\)
0.745107 + 0.666945i \(0.232398\pi\)
\(572\) −6.82843 11.8272i −0.285511 0.494519i
\(573\) 6.24264 0.260790
\(574\) 15.8995 0.663632
\(575\) 9.36396 + 16.2189i 0.390504 + 0.676373i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −3.41421 5.91359i −0.142136 0.246186i 0.786165 0.618017i \(-0.212064\pi\)
−0.928301 + 0.371831i \(0.878730\pi\)
\(578\) −10.9853 + 19.0271i −0.456927 + 0.791422i
\(579\) −1.32843 + 2.30090i −0.0552075 + 0.0956223i
\(580\) 8.24264 14.2767i 0.342257 0.592807i
\(581\) −8.65685 −0.359147
\(582\) 4.15685 + 7.19988i 0.172307 + 0.298445i
\(583\) 9.03553 + 15.6500i 0.374214 + 0.648157i
\(584\) 2.24264 3.88437i 0.0928011 0.160736i
\(585\) −16.0000 −0.661519
\(586\) 11.7426 + 20.3389i 0.485084 + 0.840190i
\(587\) 1.58579 0.0654524 0.0327262 0.999464i \(-0.489581\pi\)
0.0327262 + 0.999464i \(0.489581\pi\)
\(588\) 1.17157 0.0483149
\(589\) −25.0208 + 16.8132i −1.03096 + 0.692776i
\(590\) 19.5147 0.803408
\(591\) −2.82843 −0.116346
\(592\) −3.53553 6.12372i −0.145310 0.251684i
\(593\) 9.55635 0.392432 0.196216 0.980561i \(-0.437135\pi\)
0.196216 + 0.980561i \(0.437135\pi\)
\(594\) 1.20711 2.09077i 0.0495282 0.0857853i
\(595\) −21.3137 36.9164i −0.873777 1.51343i
\(596\) −9.74264 16.8747i −0.399074 0.691217i
\(597\) 4.75736 0.194706
\(598\) 17.6569 30.5826i 0.722042 1.25061i
\(599\) −16.0000 + 27.7128i −0.653742 + 1.13231i 0.328465 + 0.944516i \(0.393469\pi\)
−0.982208 + 0.187799i \(0.939865\pi\)
\(600\) 1.50000 2.59808i 0.0612372 0.106066i
\(601\) 21.3137 + 36.9164i 0.869404 + 1.50585i 0.862606 + 0.505876i \(0.168830\pi\)
0.00679782 + 0.999977i \(0.497836\pi\)
\(602\) 2.00000 3.46410i 0.0815139 0.141186i
\(603\) −3.12132 5.40629i −0.127110 0.220161i
\(604\) 18.0711 0.735301
\(605\) 14.6274 0.594689
\(606\) 3.91421 + 6.77962i 0.159004 + 0.275403i
\(607\) −12.9706 + 22.4657i −0.526459 + 0.911854i 0.473066 + 0.881027i \(0.343147\pi\)
−0.999525 + 0.0308265i \(0.990186\pi\)
\(608\) −2.70711 4.68885i −0.109788 0.190158i
\(609\) 7.03553 12.1859i 0.285094 0.493798i
\(610\) −10.0000 + 17.3205i −0.404888 + 0.701287i
\(611\) −23.3137 + 40.3805i −0.943172 + 1.63362i
\(612\) −6.24264 −0.252344
\(613\) 18.8284 + 32.6118i 0.760473 + 1.31718i 0.942607 + 0.333904i \(0.108366\pi\)
−0.182134 + 0.983274i \(0.558300\pi\)
\(614\) 8.70711 + 15.0812i 0.351390 + 0.608626i
\(615\) −9.31371 + 16.1318i −0.375565 + 0.650498i
\(616\) 5.82843 0.234834
\(617\) −8.60660 14.9071i −0.346489 0.600136i 0.639134 0.769095i \(-0.279293\pi\)
−0.985623 + 0.168959i \(0.945959\pi\)
\(618\) −9.58579 −0.385597
\(619\) −1.79899 −0.0723075 −0.0361538 0.999346i \(-0.511511\pi\)
−0.0361538 + 0.999346i \(0.511511\pi\)
\(620\) −14.1421 6.92820i −0.567962 0.278243i
\(621\) 6.24264 0.250509
\(622\) −17.6569 −0.707975
\(623\) 11.2426 + 19.4728i 0.450427 + 0.780162i
\(624\) −5.65685 −0.226455
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) −11.8137 20.4619i −0.472171 0.817824i
\(627\) 6.53553 + 11.3199i 0.261004 + 0.452072i
\(628\) −7.75736 −0.309552
\(629\) 22.0711 38.2282i 0.880031 1.52426i
\(630\) 3.41421 5.91359i 0.136026 0.235603i
\(631\) −2.86396 + 4.96053i −0.114012 + 0.197475i −0.917385 0.398002i \(-0.869704\pi\)
0.803372 + 0.595477i \(0.203037\pi\)
\(632\) −6.24264 10.8126i −0.248319 0.430101i
\(633\) 11.7782 20.4004i 0.468140 0.810843i
\(634\) −14.2279 24.6435i −0.565063 0.978718i
\(635\) 57.7401 2.29135
\(636\) 7.48528 0.296811
\(637\) 3.31371 + 5.73951i 0.131294 + 0.227408i
\(638\) −7.03553 + 12.1859i −0.278539 + 0.482444i
\(639\) 0.828427 + 1.43488i 0.0327721 + 0.0567629i
\(640\) 1.41421 2.44949i 0.0559017 0.0968246i
\(641\) 3.87868 6.71807i 0.153199 0.265348i −0.779203 0.626772i \(-0.784376\pi\)
0.932402 + 0.361424i \(0.117709\pi\)
\(642\) 1.62132 2.80821i 0.0639884 0.110831i
\(643\) 15.6985 0.619088 0.309544 0.950885i \(-0.399824\pi\)
0.309544 + 0.950885i \(0.399824\pi\)
\(644\) 7.53553 + 13.0519i 0.296942 + 0.514318i
\(645\) 2.34315 + 4.05845i 0.0922613 + 0.159801i
\(646\) 16.8995 29.2708i 0.664902 1.15164i
\(647\) 3.07107 0.120736 0.0603681 0.998176i \(-0.480773\pi\)
0.0603681 + 0.998176i \(0.480773\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −16.6569 −0.653839
\(650\) 16.9706 0.665640
\(651\) −12.0711 5.91359i −0.473102 0.231772i
\(652\) −1.75736 −0.0688235
\(653\) −13.6274 −0.533282 −0.266641 0.963796i \(-0.585914\pi\)
−0.266641 + 0.963796i \(0.585914\pi\)
\(654\) 4.87868 + 8.45012i 0.190771 + 0.330426i
\(655\) 3.71573 0.145186
\(656\) −3.29289 + 5.70346i −0.128566 + 0.222683i
\(657\) 2.24264 + 3.88437i 0.0874937 + 0.151544i
\(658\) −9.94975 17.2335i −0.387882 0.671831i
\(659\) −16.2132 −0.631577 −0.315788 0.948830i \(-0.602269\pi\)
−0.315788 + 0.948830i \(0.602269\pi\)
\(660\) −3.41421 + 5.91359i −0.132898 + 0.230186i
\(661\) 17.0919 29.6040i 0.664797 1.15146i −0.314543 0.949243i \(-0.601851\pi\)
0.979340 0.202219i \(-0.0648154\pi\)
\(662\) 0.878680 1.52192i 0.0341509 0.0591510i
\(663\) −17.6569 30.5826i −0.685735 1.18773i
\(664\) 1.79289 3.10538i 0.0695778 0.120512i
\(665\) 18.4853 + 32.0174i 0.716828 + 1.24158i
\(666\) 7.07107 0.273998
\(667\) −36.3848 −1.40882
\(668\) 3.94975 + 6.84116i 0.152820 + 0.264693i
\(669\) −3.62132 + 6.27231i −0.140008 + 0.242502i
\(670\) 8.82843 + 15.2913i 0.341072 + 0.590754i
\(671\) 8.53553 14.7840i 0.329511 0.570729i
\(672\) 1.20711 2.09077i 0.0465652 0.0806532i
\(673\) 8.15685 14.1281i 0.314424 0.544598i −0.664891 0.746940i \(-0.731522\pi\)
0.979315 + 0.202343i \(0.0648554\pi\)
\(674\) 1.34315 0.0517360
\(675\) 1.50000 + 2.59808i 0.0577350 + 0.100000i
\(676\) −9.50000 16.4545i −0.365385 0.632865i
\(677\) −3.39949 + 5.88810i −0.130653 + 0.226298i −0.923929 0.382565i \(-0.875041\pi\)
0.793275 + 0.608863i \(0.208374\pi\)
\(678\) 8.00000 0.307238
\(679\) −10.0355 17.3821i −0.385128 0.667062i
\(680\) 17.6569 0.677109
\(681\) −18.7574 −0.718784
\(682\) 12.0711 + 5.91359i 0.462225 + 0.226443i
\(683\) −6.75736 −0.258563 −0.129282 0.991608i \(-0.541267\pi\)
−0.129282 + 0.991608i \(0.541267\pi\)
\(684\) 5.41421 0.207018
\(685\) 2.48528 + 4.30463i 0.0949577 + 0.164472i
\(686\) −19.7279 −0.753216
\(687\) 12.6066 21.8353i 0.480972 0.833068i
\(688\) 0.828427 + 1.43488i 0.0315835 + 0.0547042i
\(689\) 21.1716 + 36.6702i 0.806573 + 1.39702i
\(690\) −17.6569 −0.672185
\(691\) 10.4645 18.1250i 0.398087 0.689507i −0.595403 0.803427i \(-0.703008\pi\)
0.993490 + 0.113920i \(0.0363409\pi\)
\(692\) −10.3995 + 18.0125i −0.395329 + 0.684731i
\(693\) −2.91421 + 5.04757i −0.110702 + 0.191741i
\(694\) 6.27817 + 10.8741i 0.238316 + 0.412776i
\(695\) −22.9706 + 39.7862i −0.871323 + 1.50918i
\(696\) 2.91421 + 5.04757i 0.110463 + 0.191327i
\(697\) −41.1127 −1.55725
\(698\) −23.8995 −0.904609
\(699\) 13.7782 + 23.8645i 0.521138 + 0.902638i
\(700\) −3.62132 + 6.27231i −0.136873 + 0.237071i
\(701\) 11.3284 + 19.6214i 0.427869 + 0.741090i 0.996684 0.0813752i \(-0.0259312\pi\)
−0.568815 + 0.822466i \(0.692598\pi\)
\(702\) 2.82843 4.89898i 0.106752 0.184900i
\(703\) −19.1421 + 33.1552i −0.721959 + 1.25047i
\(704\) −1.20711 + 2.09077i −0.0454945 + 0.0787989i
\(705\) 23.3137 0.878045
\(706\) −1.82843 3.16693i −0.0688138 0.119189i
\(707\) −9.44975 16.3674i −0.355394 0.615561i
\(708\) −3.44975 + 5.97514i −0.129649 + 0.224559i
\(709\) 21.2132 0.796679 0.398339 0.917238i \(-0.369587\pi\)
0.398339 + 0.917238i \(0.369587\pi\)
\(710\) −2.34315 4.05845i −0.0879367 0.152311i
\(711\) 12.4853 0.468235
\(712\) −9.31371 −0.349046
\(713\) 2.36396 + 34.6771i 0.0885310 + 1.29867i
\(714\) 15.0711 0.564021
\(715\) −38.6274 −1.44458
\(716\) −8.37868 14.5123i −0.313126 0.542350i
\(717\) −7.31371 −0.273135
\(718\) −0.0502525 + 0.0870399i −0.00187541 + 0.00324830i
\(719\) −21.1924 36.7063i −0.790343 1.36891i −0.925755 0.378124i \(-0.876569\pi\)
0.135412 0.990789i \(-0.456764\pi\)
\(720\) 1.41421 + 2.44949i 0.0527046 + 0.0912871i
\(721\) 23.1421 0.861858
\(722\) −5.15685 + 8.93193i −0.191918 + 0.332412i
\(723\) 7.57107 13.1135i 0.281571 0.487695i
\(724\) −9.82843 + 17.0233i −0.365271 + 0.632667i
\(725\) −8.74264 15.1427i −0.324694 0.562386i
\(726\) −2.58579 + 4.47871i −0.0959675 + 0.166221i
\(727\) −6.55025 11.3454i −0.242935 0.420776i 0.718614 0.695409i \(-0.244777\pi\)
−0.961549 + 0.274633i \(0.911444\pi\)
\(728\) 13.6569 0.506157
\(729\) 1.00000 0.0370370
\(730\) −6.34315 10.9867i −0.234770 0.406634i
\(731\) −5.17157 + 8.95743i −0.191278 + 0.331302i
\(732\) −3.53553 6.12372i −0.130677 0.226339i
\(733\) 22.7990 39.4890i 0.842100 1.45856i −0.0460162 0.998941i \(-0.514653\pi\)
0.888116 0.459619i \(-0.152014\pi\)
\(734\) −6.34315 + 10.9867i −0.234130 + 0.405525i
\(735\) 1.65685 2.86976i 0.0611140 0.105853i
\(736\) −6.24264 −0.230107
\(737\) −7.53553 13.0519i −0.277575 0.480774i
\(738\) −3.29289 5.70346i −0.121213 0.209947i
\(739\) 10.6066 18.3712i 0.390170 0.675795i −0.602302 0.798269i \(-0.705750\pi\)
0.992472 + 0.122474i \(0.0390828\pi\)
\(740\) −20.0000 −0.735215
\(741\) 15.3137 + 26.5241i 0.562563 + 0.974388i
\(742\) −18.0711 −0.663410
\(743\) 6.48528 0.237922 0.118961 0.992899i \(-0.462044\pi\)
0.118961 + 0.992899i \(0.462044\pi\)
\(744\) 4.62132 3.10538i 0.169426 0.113849i
\(745\) −55.1127 −2.01917
\(746\) −17.0711 −0.625016
\(747\) 1.79289 + 3.10538i 0.0655985 + 0.113620i
\(748\) −15.0711 −0.551053
\(749\) −3.91421 + 6.77962i −0.143022 + 0.247722i
\(750\) 2.82843 + 4.89898i 0.103280 + 0.178885i
\(751\) 1.27817 + 2.21386i 0.0466413 + 0.0807850i 0.888404 0.459063i \(-0.151815\pi\)
−0.841762 + 0.539848i \(0.818482\pi\)
\(752\) 8.24264 0.300578
\(753\) −3.75736 + 6.50794i −0.136926 + 0.237162i
\(754\) −16.4853 + 28.5533i −0.600359 + 1.03985i
\(755\) 25.5563 44.2649i 0.930091 1.61096i
\(756\) 1.20711 + 2.09077i 0.0439020 + 0.0760406i
\(757\) −3.65685 + 6.33386i −0.132911 + 0.230208i −0.924797 0.380460i \(-0.875766\pi\)
0.791887 + 0.610668i \(0.209099\pi\)
\(758\) 2.41421 + 4.18154i 0.0876882 + 0.151880i
\(759\) 15.0711 0.547045
\(760\) −15.3137 −0.555487
\(761\) −7.84924 13.5953i −0.284535 0.492829i 0.687961 0.725747i \(-0.258506\pi\)
−0.972496 + 0.232918i \(0.925172\pi\)
\(762\) −10.2071 + 17.6792i −0.369764 + 0.640451i
\(763\) −11.7782 20.4004i −0.426399 0.738544i
\(764\) 3.12132 5.40629i 0.112925 0.195593i
\(765\) −8.82843 + 15.2913i −0.319192 + 0.552858i
\(766\) −1.94975 + 3.37706i −0.0704472 + 0.122018i
\(767\) −39.0294 −1.40927
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 5.67157 + 9.82345i 0.204522 + 0.354243i 0.949980 0.312310i \(-0.101103\pi\)
−0.745458 + 0.666552i \(0.767769\pi\)
\(770\) 8.24264 14.2767i 0.297044 0.514496i
\(771\) −13.4142 −0.483101
\(772\) 1.32843 + 2.30090i 0.0478111 + 0.0828113i
\(773\) −13.1716 −0.473749 −0.236874 0.971540i \(-0.576123\pi\)
−0.236874 + 0.971540i \(0.576123\pi\)
\(774\) −1.65685 −0.0595544
\(775\) −13.8640 + 9.31615i −0.498008 + 0.334646i
\(776\) 8.31371 0.298445
\(777\) −17.0711 −0.612421
\(778\) 1.65685 + 2.86976i 0.0594011 + 0.102886i
\(779\) 35.6569 1.27754
\(780\) −8.00000 + 13.8564i −0.286446 + 0.496139i
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) −19.4853 33.7495i −0.696792 1.20688i
\(783\) −5.82843 −0.208291
\(784\) 0.585786 1.01461i 0.0209209 0.0362361i
\(785\) −10.9706 + 19.0016i −0.391556 + 0.678195i
\(786\) −0.656854 + 1.13770i −0.0234292 + 0.0405806i
\(787\) −9.94975 17.2335i −0.354670 0.614307i 0.632391 0.774649i \(-0.282074\pi\)
−0.987061 + 0.160342i \(0.948740\pi\)
\(788\) −1.41421 + 2.44949i −0.0503793 + 0.0872595i
\(789\) 7.58579 + 13.1390i 0.270061 + 0.467760i
\(790\) −35.3137 −1.25641
\(791\) −19.3137 −0.686716
\(792\) −1.20711 2.09077i −0.0428927 0.0742923i
\(793\) 20.0000 34.6410i 0.710221 1.23014i
\(794\) 11.4853 + 19.8931i 0.407597 + 0.705979i
\(795\) 10.5858 18.3351i 0.375439 0.650280i
\(796\) 2.37868 4.11999i 0.0843101 0.146029i
\(797\) 10.8431 18.7809i 0.384084 0.665253i −0.607558 0.794276i \(-0.707851\pi\)
0.991642 + 0.129023i \(0.0411840\pi\)
\(798\) −13.0711 −0.462711
\(799\) 25.7279 + 44.5621i 0.910188 + 1.57649i
\(800\) −1.50000 2.59808i −0.0530330 0.0918559i
\(801\) 4.65685 8.06591i 0.164542 0.284995i
\(802\) 17.6569 0.623485
\(803\) 5.41421 + 9.37769i 0.191063 + 0.330932i
\(804\) −6.24264 −0.220161
\(805\) 42.6274 1.50242
\(806\) 28.2843 + 13.8564i 0.996271 + 0.488071i
\(807\) −1.31371 −0.0462447
\(808\) 7.82843 0.275403
\(809\) −9.36396 16.2189i −0.329219 0.570225i 0.653138 0.757239i \(-0.273452\pi\)
−0.982357 + 0.187014i \(0.940119\pi\)
\(810\) −2.82843 −0.0993808
\(811\) 1.92893 3.34101i 0.0677340 0.117319i −0.830170 0.557511i \(-0.811756\pi\)
0.897903 + 0.440192i \(0.145090\pi\)
\(812\) −7.03553 12.1859i −0.246899 0.427641i
\(813\) 14.6213 + 25.3249i 0.512792 + 0.888182i
\(814\) 17.0711 0.598341
\(815\) −2.48528 + 4.30463i −0.0870556 + 0.150785i
\(816\) −3.12132 + 5.40629i −0.109268 + 0.189258i
\(817\) 4.48528 7.76874i 0.156920 0.271794i
\(818\) 16.0563 + 27.8104i 0.561397 + 0.972368i
\(819\) −6.82843 + 11.8272i −0.238605 + 0.413275i
\(820\) 9.31371 + 16.1318i 0.325249 + 0.563347i
\(821\) −11.0000 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(822\) −1.75736 −0.0612949
\(823\) −12.8640 22.2810i −0.448409 0.776668i 0.549873 0.835248i \(-0.314676\pi\)
−0.998283 + 0.0585801i \(0.981343\pi\)
\(824\) −4.79289 + 8.30153i −0.166968 + 0.289198i
\(825\) 3.62132 + 6.27231i 0.126078 + 0.218374i
\(826\) 8.32843 14.4253i 0.289783 0.501919i
\(827\) 1.48528 2.57258i 0.0516483 0.0894575i −0.839045 0.544061i \(-0.816886\pi\)
0.890694 + 0.454604i \(0.150219\pi\)
\(828\) 3.12132 5.40629i 0.108473 0.187881i
\(829\) −9.07107 −0.315051 −0.157526 0.987515i \(-0.550352\pi\)
−0.157526 + 0.987515i \(0.550352\pi\)
\(830\) −5.07107 8.78335i −0.176019 0.304874i
\(831\) 1.70711 + 2.95680i 0.0592189 + 0.102570i
\(832\) −2.82843 + 4.89898i −0.0980581 + 0.169842i
\(833\) 7.31371 0.253405
\(834\) −8.12132 14.0665i −0.281218 0.487084i
\(835\) 22.3431 0.773216
\(836\) 13.0711 0.452072
\(837\) 0.378680 + 5.55487i 0.0130891 + 0.192004i
\(838\) −33.5269 −1.15817
\(839\) 40.5269 1.39914 0.699572 0.714562i \(-0.253374\pi\)
0.699572 + 0.714562i \(0.253374\pi\)
\(840\) −3.41421 5.91359i −0.117802 0.204038i
\(841\) 4.97056 0.171399
\(842\) 9.87868 17.1104i 0.340442 0.589662i
\(843\) 16.3137 + 28.2562i 0.561874 + 0.973194i
\(844\) −11.7782 20.4004i −0.405421 0.702211i
\(845\) −53.7401 −1.84872
\(846\) −4.12132 + 7.13834i −0.141694 + 0.245421i
\(847\) 6.24264 10.8126i 0.214500 0.371524i
\(848\) 3.74264 6.48244i 0.128523 0.222608i
\(849\) −5.65685 9.79796i −0.194143 0.336265i
\(850\) 9.36396 16.2189i 0.321181 0.556302i
\(851\) 22.0711 + 38.2282i 0.756586 + 1.31045i
\(852\) 1.65685 0.0567629
\(853\) −12.6863 −0.434370 −0.217185 0.976130i \(-0.569688\pi\)
−0.217185 + 0.976130i \(0.569688\pi\)
\(854\) 8.53553 + 14.7840i 0.292080 + 0.505897i
\(855\) 7.65685 13.2621i 0.261859 0.453553i
\(856\) −1.62132 2.80821i −0.0554156 0.0959826i
\(857\) 9.51472 16.4800i 0.325017 0.562945i −0.656499 0.754327i \(-0.727963\pi\)
0.981516 + 0.191382i \(0.0612968\pi\)
\(858\) 6.82843 11.8272i 0.233119 0.403773i
\(859\) −28.0919 + 48.6566i −0.958483 + 1.66014i −0.232294 + 0.972646i \(0.574623\pi\)
−0.726189 + 0.687495i \(0.758710\pi\)
\(860\) 4.68629 0.159801
\(861\) 7.94975 + 13.7694i 0.270927 + 0.469259i
\(862\) −3.29289 5.70346i −0.112156 0.194261i
\(863\) 17.3137 29.9882i 0.589365 1.02081i −0.404950 0.914339i \(-0.632711\pi\)
0.994316 0.106472i \(-0.0339555\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 29.4142 + 50.9469i 1.00011 + 1.73225i
\(866\) −26.1421 −0.888346
\(867\) −21.9706 −0.746159
\(868\) −11.1569 + 7.49706i −0.378688 + 0.254467i
\(869\) 30.1421 1.02250
\(870\) 16.4853 0.558903
\(871\) −17.6569 30.5826i −0.598280 1.03625i
\(872\) 9.75736 0.330426
\(873\) −4.15685 + 7.19988i −0.140688 + 0.243679i
\(874\) 16.8995 + 29.2708i 0.571634 + 0.990099i
\(875\) −6.82843 11.8272i −0.230843 0.399832i
\(876\) 4.48528 0.151544
\(877\) 23.1924 40.1704i 0.783151 1.35646i −0.146946 0.989145i \(-0.546944\pi\)
0.930097 0.367313i \(-0.119722\pi\)
\(878\) 19.1066 33.0936i 0.644817 1.11686i
\(879\) −11.7426 + 20.3389i −0.396069 + 0.686012i
\(880\) 3.41421 + 5.91359i 0.115093 + 0.199347i
\(881\) 3.43503 5.94964i 0.115729 0.200449i −0.802342 0.596865i \(-0.796413\pi\)
0.918071 + 0.396416i \(0.129746\pi\)
\(882\) 0.585786 + 1.01461i 0.0197245 + 0.0341638i
\(883\) −3.41421 −0.114897 −0.0574487 0.998348i \(-0.518297\pi\)
−0.0574487 + 0.998348i \(0.518297\pi\)
\(884\) −35.3137 −1.18773
\(885\) 9.75736 + 16.9002i 0.327990 + 0.568095i
\(886\) −5.00000 + 8.66025i −0.167978 + 0.290947i
\(887\) 7.92893 + 13.7333i 0.266227 + 0.461120i 0.967884 0.251395i \(-0.0808894\pi\)
−0.701657 + 0.712515i \(0.747556\pi\)
\(888\) 3.53553 6.12372i 0.118645 0.205499i
\(889\) 24.6421 42.6814i 0.826471 1.43149i
\(890\) −13.1716 + 22.8138i −0.441512 + 0.764721i
\(891\) 2.41421 0.0808792
\(892\) 3.62132 + 6.27231i 0.121251 + 0.210012i
\(893\) −22.3137 38.6485i −0.746700 1.29332i
\(894\) 9.74264 16.8747i 0.325843 0.564376i
\(895\) −47.3970 −1.58431
\(896\) −1.20711 2.09077i −0.0403266 0.0698477i
\(897\) 35.3137 1.17909
\(898\) −22.2843 −0.743636
\(899\) −2.20711 32.3762i −0.0736111 1.07981i
\(900\) 3.00000 0.100000
\(901\) 46.7279 1.55673
\(902\) −7.94975 13.7694i −0.264698 0.458470i
\(903\) 4.00000 0.133112
\(904\) 4.00000 6.92820i 0.133038 0.230429i
\(905\) 27.7990 + 48.1493i 0.924070 + 1.60054i
\(906\) 9.03553 + 15.6500i 0.300186 + 0.519937i
\(907\) 51.5980 1.71328 0.856641 0.515912i \(-0.172547\pi\)
0.856641 + 0.515912i \(0.172547\pi\)
\(908\) −9.37868 + 16.2443i −0.311242 + 0.539088i
\(909\) −3.91421 + 6.77962i −0.129826 + 0.224866i
\(910\) 19.3137 33.4523i 0.640243 1.10893i
\(911\) −18.1213 31.3870i −0.600386 1.03990i −0.992762 0.120095i \(-0.961680\pi\)
0.392376 0.919805i \(-0.371653\pi\)
\(912\) 2.70711 4.68885i 0.0896413 0.155263i
\(913\) 4.32843 + 7.49706i 0.143250 + 0.248116i
\(914\) −23.7990 −0.787201
\(915\) −20.0000 −0.661180
\(916\) −12.6066 21.8353i −0.416534 0.721458i
\(917\) 1.58579 2.74666i 0.0523673 0.0907028i
\(918\) −3.12132 5.40629i −0.103019 0.178434i
\(919\) −25.2071 + 43.6600i −0.831506 + 1.44021i 0.0653383 + 0.997863i \(0.479187\pi\)
−0.896844 + 0.442347i \(0.854146\pi\)
\(920\) −8.82843 + 15.2913i −0.291065 + 0.504139i
\(921\) −8.70711 + 15.0812i −0.286909 + 0.496941i
\(922\) −24.1716 −0.796048
\(923\) 4.68629 + 8.11689i 0.154251 + 0.267171i
\(924\) 2.91421 + 5.04757i 0.0958706 + 0.166053i
\(925\) −10.6066 + 18.3712i −0.348743 + 0.604040i
\(926\) 0.414214 0.0136119
\(927\) −4.79289 8.30153i −0.157419 0.272658i
\(928\) 5.82843 0.191327
\(929\) 52.8701 1.73461 0.867305 0.497777i \(-0.165850\pi\)
0.867305 + 0.497777i \(0.165850\pi\)
\(930\) −1.07107 15.7116i −0.0351217 0.515202i
\(931\) −6.34315 −0.207888
\(932\) 27.5563 0.902638
\(933\) −8.82843 15.2913i −0.289030 0.500614i
\(934\) −0.0710678 −0.00232541
\(935\) −21.3137 + 36.9164i −0.697033 + 1.20730i
\(936\) −2.82843 4.89898i −0.0924500 0.160128i
\(937\) −1.27208 2.20330i −0.0415570 0.0719788i 0.844499 0.535557i \(-0.179898\pi\)
−0.886056 + 0.463579i \(0.846565\pi\)
\(938\) 15.0711 0.492088
\(939\) 11.8137 20.4619i 0.385526 0.667750i
\(940\) 11.6569 20.1903i 0.380205 0.658534i
\(941\) 10.5000 18.1865i 0.342290 0.592864i −0.642567 0.766229i \(-0.722131\pi\)
0.984858 + 0.173365i \(0.0554641\pi\)
\(942\) −3.87868 6.71807i −0.126374 0.218887i
\(943\) 20.5563 35.6046i 0.669407 1.15945i
\(944\) 3.44975 + 5.97514i 0.112280 + 0.194474i
\(945\) 6.82843 0.222129
\(946\) −4.00000 −0.130051
\(947\) 23.0711 + 39.9603i 0.749709 + 1.29853i 0.947962 + 0.318383i \(0.103140\pi\)
−0.198253 + 0.980151i \(0.563527\pi\)
\(948\) 6.24264 10.8126i 0.202752 0.351176i
\(949\) 12.6863 + 21.9733i 0.411814 + 0.713284i
\(950\) −8.12132 + 14.0665i −0.263490 + 0.456379i
\(951\) 14.2279 24.6435i 0.461372 0.799120i
\(952\) 7.53553 13.0519i 0.244228 0.423015i
\(953\) 24.0416 0.778785 0.389392 0.921072i \(-0.372685\pi\)
0.389392 + 0.921072i \(0.372685\pi\)
\(954\) 3.74264 + 6.48244i 0.121172 + 0.209877i
\(955\) −8.82843 15.2913i −0.285681 0.494814i
\(956\) −3.65685 + 6.33386i −0.118271 + 0.204852i
\(957\) −14.0711 −0.454853
\(958\) 0.221825 + 0.384213i 0.00716685 + 0.0124134i
\(959\) 4.24264 0.137002
\(960\) 2.82843 0.0912871
\(961\) −30.7132 + 4.20703i −0.990748 + 0.135711i
\(962\) 40.0000 1.28965
\(963\) 3.24264 0.104493
\(964\) −7.57107 13.1135i −0.243848 0.422357i
\(965\) 7.51472 0.241907
\(966\) −7.53553 + 13.0519i −0.242452 + 0.419939i
\(967\) −20.1716 34.9382i −0.648674 1.12354i −0.983440 0.181235i \(-0.941991\pi\)
0.334766 0.942301i \(-0.391343\pi\)
\(968\) 2.58579 + 4.47871i 0.0831103 + 0.143951i
\(969\) 33.7990 1.08578
\(970\) 11.7574 20.3643i 0.377506 0.653860i
\(971\) 2.20711 3.82282i 0.0708294 0.122680i −0.828436 0.560084i \(-0.810769\pi\)
0.899265 + 0.437404i \(0.144102\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) 19.6066 + 33.9596i 0.628559 + 1.08870i
\(974\) 9.34924 16.1934i 0.299569 0.518869i
\(975\) 8.48528 + 14.6969i 0.271746 + 0.470679i
\(976\) −7.07107 −0.226339
\(977\) −46.6274 −1.49174 −0.745872 0.666090i \(-0.767967\pi\)
−0.745872 + 0.666090i \(0.767967\pi\)
\(978\) −0.878680 1.52192i −0.0280971 0.0486656i
\(979\) 11.2426 19.4728i 0.359316 0.622354i
\(980\) −1.65685 2.86976i −0.0529263 0.0916710i
\(981\) −4.87868 + 8.45012i −0.155764 + 0.269792i
\(982\) −19.1066 + 33.0936i −0.609716 + 1.05606i
\(983\) −10.5563 + 18.2841i −0.336695 + 0.583173i −0.983809 0.179220i \(-0.942643\pi\)
0.647114 + 0.762393i \(0.275976\pi\)
\(984\) −6.58579 −0.209947
\(985\) 4.00000 + 6.92820i 0.127451 + 0.220751i
\(986\) 18.1924 + 31.5101i 0.579364 + 1.00349i
\(987\) 9.94975 17.2335i 0.316704 0.548547i
\(988\) 30.6274 0.974388
\(989\) −5.17157 8.95743i −0.164446 0.284830i
\(990\) −6.82843 −0.217022
\(991\) 7.51472 0.238713 0.119356 0.992851i \(-0.461917\pi\)
0.119356 + 0.992851i \(0.461917\pi\)
\(992\) −0.378680 5.55487i −0.0120231 0.176367i
\(993\) 1.75736 0.0557681
\(994\) −4.00000 −0.126872
\(995\) −6.72792 11.6531i −0.213289 0.369428i
\(996\) 3.58579 0.113620
\(997\) −5.87868 + 10.1822i −0.186180 + 0.322473i −0.943973 0.330022i \(-0.892944\pi\)
0.757794 + 0.652494i \(0.226277\pi\)
\(998\) 7.02082 + 12.1604i 0.222240 + 0.384931i
\(999\) 3.53553 + 6.12372i 0.111859 + 0.193746i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 186.2.e.d.25.2 4
3.2 odd 2 558.2.e.e.397.1 4
4.3 odd 2 1488.2.q.f.769.2 4
31.5 even 3 inner 186.2.e.d.67.2 yes 4
31.6 odd 6 5766.2.a.t.1.1 2
31.25 even 3 5766.2.a.r.1.1 2
93.5 odd 6 558.2.e.e.253.1 4
124.67 odd 6 1488.2.q.f.625.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.e.d.25.2 4 1.1 even 1 trivial
186.2.e.d.67.2 yes 4 31.5 even 3 inner
558.2.e.e.253.1 4 93.5 odd 6
558.2.e.e.397.1 4 3.2 odd 2
1488.2.q.f.625.2 4 124.67 odd 6
1488.2.q.f.769.2 4 4.3 odd 2
5766.2.a.r.1.1 2 31.25 even 3
5766.2.a.t.1.1 2 31.6 odd 6