Properties

Label 1859.4.a.g.1.5
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,0,-6,50,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.12700\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.12700 q^{2} -0.537604 q^{3} +1.77811 q^{4} -0.516265 q^{5} +1.68109 q^{6} -34.6419 q^{7} +19.4558 q^{8} -26.7110 q^{9} +1.61436 q^{10} +11.0000 q^{11} -0.955919 q^{12} +108.325 q^{14} +0.277546 q^{15} -75.0632 q^{16} +114.143 q^{17} +83.5252 q^{18} -122.906 q^{19} -0.917976 q^{20} +18.6236 q^{21} -34.3970 q^{22} -66.8837 q^{23} -10.4595 q^{24} -124.733 q^{25} +28.8752 q^{27} -61.5971 q^{28} +64.6641 q^{29} -0.867886 q^{30} +238.455 q^{31} +79.0758 q^{32} -5.91364 q^{33} -356.926 q^{34} +17.8844 q^{35} -47.4951 q^{36} +28.3793 q^{37} +384.328 q^{38} -10.0444 q^{40} -308.251 q^{41} -58.2360 q^{42} +246.199 q^{43} +19.5592 q^{44} +13.7899 q^{45} +209.145 q^{46} -165.153 q^{47} +40.3543 q^{48} +857.062 q^{49} +390.041 q^{50} -61.3639 q^{51} +79.9222 q^{53} -90.2927 q^{54} -5.67892 q^{55} -673.987 q^{56} +66.0749 q^{57} -202.205 q^{58} +267.584 q^{59} +0.493508 q^{60} +351.586 q^{61} -745.650 q^{62} +925.319 q^{63} +353.236 q^{64} +18.4919 q^{66} +615.576 q^{67} +202.960 q^{68} +35.9569 q^{69} -55.9245 q^{70} +470.973 q^{71} -519.684 q^{72} -65.0008 q^{73} -88.7419 q^{74} +67.0572 q^{75} -218.541 q^{76} -381.061 q^{77} +982.163 q^{79} +38.7525 q^{80} +705.673 q^{81} +963.899 q^{82} -1032.15 q^{83} +33.1149 q^{84} -58.9283 q^{85} -769.864 q^{86} -34.7637 q^{87} +214.014 q^{88} -1315.55 q^{89} -43.1211 q^{90} -118.927 q^{92} -128.195 q^{93} +516.434 q^{94} +63.4522 q^{95} -42.5114 q^{96} +448.542 q^{97} -2680.03 q^{98} -293.821 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{3} + 50 q^{4} - 24 q^{5} + 16 q^{6} - 62 q^{7} - 21 q^{8} + 135 q^{9} + 2 q^{10} + 187 q^{11} - 127 q^{12} - 148 q^{15} + 126 q^{16} - 74 q^{17} + 90 q^{18} - 159 q^{19} - 222 q^{20} - 184 q^{21}+ \cdots + 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.12700 −1.10556 −0.552780 0.833327i \(-0.686433\pi\)
−0.552780 + 0.833327i \(0.686433\pi\)
\(3\) −0.537604 −0.103462 −0.0517309 0.998661i \(-0.516474\pi\)
−0.0517309 + 0.998661i \(0.516474\pi\)
\(4\) 1.77811 0.222264
\(5\) −0.516265 −0.0461761 −0.0230881 0.999733i \(-0.507350\pi\)
−0.0230881 + 0.999733i \(0.507350\pi\)
\(6\) 1.68109 0.114383
\(7\) −34.6419 −1.87049 −0.935244 0.354005i \(-0.884820\pi\)
−0.935244 + 0.354005i \(0.884820\pi\)
\(8\) 19.4558 0.859834
\(9\) −26.7110 −0.989296
\(10\) 1.61436 0.0510505
\(11\) 11.0000 0.301511
\(12\) −0.955919 −0.0229958
\(13\) 0 0
\(14\) 108.325 2.06794
\(15\) 0.277546 0.00477747
\(16\) −75.0632 −1.17286
\(17\) 114.143 1.62846 0.814231 0.580541i \(-0.197159\pi\)
0.814231 + 0.580541i \(0.197159\pi\)
\(18\) 83.5252 1.09373
\(19\) −122.906 −1.48403 −0.742017 0.670382i \(-0.766130\pi\)
−0.742017 + 0.670382i \(0.766130\pi\)
\(20\) −0.917976 −0.0102633
\(21\) 18.6236 0.193524
\(22\) −34.3970 −0.333339
\(23\) −66.8837 −0.606357 −0.303179 0.952934i \(-0.598048\pi\)
−0.303179 + 0.952934i \(0.598048\pi\)
\(24\) −10.4595 −0.0889601
\(25\) −124.733 −0.997868
\(26\) 0 0
\(27\) 28.8752 0.205816
\(28\) −61.5971 −0.415742
\(29\) 64.6641 0.414063 0.207031 0.978334i \(-0.433620\pi\)
0.207031 + 0.978334i \(0.433620\pi\)
\(30\) −0.867886 −0.00528178
\(31\) 238.455 1.38154 0.690772 0.723073i \(-0.257271\pi\)
0.690772 + 0.723073i \(0.257271\pi\)
\(32\) 79.0758 0.436836
\(33\) −5.91364 −0.0311949
\(34\) −356.926 −1.80036
\(35\) 17.8844 0.0863719
\(36\) −47.4951 −0.219885
\(37\) 28.3793 0.126095 0.0630476 0.998011i \(-0.479918\pi\)
0.0630476 + 0.998011i \(0.479918\pi\)
\(38\) 384.328 1.64069
\(39\) 0 0
\(40\) −10.0444 −0.0397038
\(41\) −308.251 −1.17416 −0.587082 0.809528i \(-0.699723\pi\)
−0.587082 + 0.809528i \(0.699723\pi\)
\(42\) −58.2360 −0.213953
\(43\) 246.199 0.873140 0.436570 0.899670i \(-0.356193\pi\)
0.436570 + 0.899670i \(0.356193\pi\)
\(44\) 19.5592 0.0670151
\(45\) 13.7899 0.0456819
\(46\) 209.145 0.670365
\(47\) −165.153 −0.512555 −0.256277 0.966603i \(-0.582496\pi\)
−0.256277 + 0.966603i \(0.582496\pi\)
\(48\) 40.3543 0.121347
\(49\) 857.062 2.49872
\(50\) 390.041 1.10320
\(51\) −61.3639 −0.168484
\(52\) 0 0
\(53\) 79.9222 0.207135 0.103568 0.994622i \(-0.466974\pi\)
0.103568 + 0.994622i \(0.466974\pi\)
\(54\) −90.2927 −0.227542
\(55\) −5.67892 −0.0139226
\(56\) −673.987 −1.60831
\(57\) 66.0749 0.153541
\(58\) −202.205 −0.457772
\(59\) 267.584 0.590448 0.295224 0.955428i \(-0.404606\pi\)
0.295224 + 0.955428i \(0.404606\pi\)
\(60\) 0.493508 0.00106186
\(61\) 351.586 0.737966 0.368983 0.929436i \(-0.379706\pi\)
0.368983 + 0.929436i \(0.379706\pi\)
\(62\) −745.650 −1.52738
\(63\) 925.319 1.85046
\(64\) 353.236 0.689914
\(65\) 0 0
\(66\) 18.4919 0.0344879
\(67\) 615.576 1.12246 0.561228 0.827661i \(-0.310329\pi\)
0.561228 + 0.827661i \(0.310329\pi\)
\(68\) 202.960 0.361948
\(69\) 35.9569 0.0627349
\(70\) −55.9245 −0.0954893
\(71\) 470.973 0.787243 0.393621 0.919273i \(-0.371222\pi\)
0.393621 + 0.919273i \(0.371222\pi\)
\(72\) −519.684 −0.850630
\(73\) −65.0008 −0.104216 −0.0521080 0.998641i \(-0.516594\pi\)
−0.0521080 + 0.998641i \(0.516594\pi\)
\(74\) −88.7419 −0.139406
\(75\) 67.0572 0.103241
\(76\) −218.541 −0.329847
\(77\) −381.061 −0.563973
\(78\) 0 0
\(79\) 982.163 1.39876 0.699380 0.714750i \(-0.253460\pi\)
0.699380 + 0.714750i \(0.253460\pi\)
\(80\) 38.7525 0.0541583
\(81\) 705.673 0.968002
\(82\) 963.899 1.29811
\(83\) −1032.15 −1.36498 −0.682489 0.730896i \(-0.739103\pi\)
−0.682489 + 0.730896i \(0.739103\pi\)
\(84\) 33.1149 0.0430134
\(85\) −58.9283 −0.0751961
\(86\) −769.864 −0.965309
\(87\) −34.7637 −0.0428397
\(88\) 214.014 0.259250
\(89\) −1315.55 −1.56683 −0.783417 0.621497i \(-0.786525\pi\)
−0.783417 + 0.621497i \(0.786525\pi\)
\(90\) −43.1211 −0.0505041
\(91\) 0 0
\(92\) −118.927 −0.134771
\(93\) −128.195 −0.142937
\(94\) 516.434 0.566660
\(95\) 63.4522 0.0685269
\(96\) −42.5114 −0.0451959
\(97\) 448.542 0.469510 0.234755 0.972055i \(-0.424571\pi\)
0.234755 + 0.972055i \(0.424571\pi\)
\(98\) −2680.03 −2.76249
\(99\) −293.821 −0.298284
\(100\) −221.790 −0.221790
\(101\) 135.044 0.133043 0.0665215 0.997785i \(-0.478810\pi\)
0.0665215 + 0.997785i \(0.478810\pi\)
\(102\) 191.885 0.186269
\(103\) −1497.31 −1.43238 −0.716188 0.697907i \(-0.754115\pi\)
−0.716188 + 0.697907i \(0.754115\pi\)
\(104\) 0 0
\(105\) −9.61472 −0.00893620
\(106\) −249.917 −0.229000
\(107\) 553.293 0.499895 0.249948 0.968259i \(-0.419587\pi\)
0.249948 + 0.968259i \(0.419587\pi\)
\(108\) 51.3433 0.0457455
\(109\) −110.399 −0.0970116 −0.0485058 0.998823i \(-0.515446\pi\)
−0.0485058 + 0.998823i \(0.515446\pi\)
\(110\) 17.7580 0.0153923
\(111\) −15.2568 −0.0130461
\(112\) 2600.33 2.19382
\(113\) 1318.93 1.09801 0.549003 0.835820i \(-0.315007\pi\)
0.549003 + 0.835820i \(0.315007\pi\)
\(114\) −206.616 −0.169749
\(115\) 34.5297 0.0279992
\(116\) 114.980 0.0920312
\(117\) 0 0
\(118\) −836.734 −0.652776
\(119\) −3954.15 −3.04602
\(120\) 5.39989 0.00410783
\(121\) 121.000 0.0909091
\(122\) −1099.41 −0.815866
\(123\) 165.717 0.121481
\(124\) 424.000 0.307067
\(125\) 128.929 0.0922538
\(126\) −2893.47 −2.04580
\(127\) −431.583 −0.301550 −0.150775 0.988568i \(-0.548177\pi\)
−0.150775 + 0.988568i \(0.548177\pi\)
\(128\) −1737.17 −1.19958
\(129\) −132.358 −0.0903367
\(130\) 0 0
\(131\) 2721.05 1.81480 0.907400 0.420268i \(-0.138064\pi\)
0.907400 + 0.420268i \(0.138064\pi\)
\(132\) −10.5151 −0.00693351
\(133\) 4257.71 2.77586
\(134\) −1924.90 −1.24094
\(135\) −14.9073 −0.00950380
\(136\) 2220.76 1.40021
\(137\) −164.939 −0.102859 −0.0514294 0.998677i \(-0.516378\pi\)
−0.0514294 + 0.998677i \(0.516378\pi\)
\(138\) −112.437 −0.0693572
\(139\) −374.908 −0.228772 −0.114386 0.993436i \(-0.536490\pi\)
−0.114386 + 0.993436i \(0.536490\pi\)
\(140\) 31.8005 0.0191973
\(141\) 88.7870 0.0530299
\(142\) −1472.73 −0.870345
\(143\) 0 0
\(144\) 2005.01 1.16031
\(145\) −33.3838 −0.0191198
\(146\) 203.257 0.115217
\(147\) −460.759 −0.258522
\(148\) 50.4615 0.0280264
\(149\) −774.264 −0.425706 −0.212853 0.977084i \(-0.568276\pi\)
−0.212853 + 0.977084i \(0.568276\pi\)
\(150\) −209.688 −0.114139
\(151\) −1331.32 −0.717491 −0.358746 0.933435i \(-0.616795\pi\)
−0.358746 + 0.933435i \(0.616795\pi\)
\(152\) −2391.24 −1.27602
\(153\) −3048.88 −1.61103
\(154\) 1191.58 0.623506
\(155\) −123.106 −0.0637944
\(156\) 0 0
\(157\) 2022.51 1.02811 0.514057 0.857756i \(-0.328142\pi\)
0.514057 + 0.857756i \(0.328142\pi\)
\(158\) −3071.22 −1.54641
\(159\) −42.9665 −0.0214306
\(160\) −40.8241 −0.0201714
\(161\) 2316.98 1.13418
\(162\) −2206.64 −1.07018
\(163\) 2759.81 1.32616 0.663082 0.748546i \(-0.269248\pi\)
0.663082 + 0.748546i \(0.269248\pi\)
\(164\) −548.104 −0.260974
\(165\) 3.05301 0.00144046
\(166\) 3227.53 1.50907
\(167\) 442.781 0.205170 0.102585 0.994724i \(-0.467289\pi\)
0.102585 + 0.994724i \(0.467289\pi\)
\(168\) 362.338 0.166399
\(169\) 0 0
\(170\) 184.269 0.0831338
\(171\) 3282.95 1.46815
\(172\) 437.770 0.194068
\(173\) −3165.97 −1.39135 −0.695677 0.718354i \(-0.744896\pi\)
−0.695677 + 0.718354i \(0.744896\pi\)
\(174\) 108.706 0.0473619
\(175\) 4321.01 1.86650
\(176\) −825.695 −0.353631
\(177\) −143.854 −0.0610889
\(178\) 4113.73 1.73223
\(179\) 1984.97 0.828849 0.414424 0.910084i \(-0.363983\pi\)
0.414424 + 0.910084i \(0.363983\pi\)
\(180\) 24.5201 0.0101534
\(181\) −765.845 −0.314502 −0.157251 0.987559i \(-0.550263\pi\)
−0.157251 + 0.987559i \(0.550263\pi\)
\(182\) 0 0
\(183\) −189.014 −0.0763513
\(184\) −1301.28 −0.521367
\(185\) −14.6512 −0.00582259
\(186\) 400.864 0.158026
\(187\) 1255.58 0.491000
\(188\) −293.661 −0.113922
\(189\) −1000.29 −0.384977
\(190\) −198.415 −0.0757607
\(191\) 3877.18 1.46881 0.734406 0.678710i \(-0.237461\pi\)
0.734406 + 0.678710i \(0.237461\pi\)
\(192\) −189.901 −0.0713798
\(193\) −1012.82 −0.377745 −0.188872 0.982002i \(-0.560483\pi\)
−0.188872 + 0.982002i \(0.560483\pi\)
\(194\) −1402.59 −0.519072
\(195\) 0 0
\(196\) 1523.95 0.555376
\(197\) 2328.30 0.842054 0.421027 0.907048i \(-0.361670\pi\)
0.421027 + 0.907048i \(0.361670\pi\)
\(198\) 918.777 0.329771
\(199\) 2807.36 1.00004 0.500022 0.866013i \(-0.333325\pi\)
0.500022 + 0.866013i \(0.333325\pi\)
\(200\) −2426.79 −0.858001
\(201\) −330.936 −0.116131
\(202\) −422.281 −0.147087
\(203\) −2240.09 −0.774499
\(204\) −109.112 −0.0374478
\(205\) 159.139 0.0542183
\(206\) 4682.10 1.58358
\(207\) 1786.53 0.599867
\(208\) 0 0
\(209\) −1351.97 −0.447453
\(210\) 30.0652 0.00987951
\(211\) 2050.64 0.669062 0.334531 0.942385i \(-0.391422\pi\)
0.334531 + 0.942385i \(0.391422\pi\)
\(212\) 142.111 0.0460387
\(213\) −253.197 −0.0814496
\(214\) −1730.14 −0.552665
\(215\) −127.104 −0.0403183
\(216\) 561.791 0.176968
\(217\) −8260.55 −2.58416
\(218\) 345.216 0.107252
\(219\) 34.9447 0.0107824
\(220\) −10.0977 −0.00309450
\(221\) 0 0
\(222\) 47.7080 0.0144232
\(223\) −5976.81 −1.79478 −0.897392 0.441234i \(-0.854541\pi\)
−0.897392 + 0.441234i \(0.854541\pi\)
\(224\) −2739.34 −0.817096
\(225\) 3331.75 0.987186
\(226\) −4124.30 −1.21391
\(227\) −2086.97 −0.610207 −0.305104 0.952319i \(-0.598691\pi\)
−0.305104 + 0.952319i \(0.598691\pi\)
\(228\) 117.488 0.0341266
\(229\) −3653.93 −1.05440 −0.527202 0.849740i \(-0.676759\pi\)
−0.527202 + 0.849740i \(0.676759\pi\)
\(230\) −107.974 −0.0309549
\(231\) 204.860 0.0583497
\(232\) 1258.09 0.356026
\(233\) −558.289 −0.156973 −0.0784866 0.996915i \(-0.525009\pi\)
−0.0784866 + 0.996915i \(0.525009\pi\)
\(234\) 0 0
\(235\) 85.2628 0.0236678
\(236\) 475.794 0.131235
\(237\) −528.015 −0.144718
\(238\) 12364.6 3.36756
\(239\) 2105.54 0.569857 0.284929 0.958549i \(-0.408030\pi\)
0.284929 + 0.958549i \(0.408030\pi\)
\(240\) −20.8335 −0.00560332
\(241\) −5423.33 −1.44957 −0.724787 0.688973i \(-0.758062\pi\)
−0.724787 + 0.688973i \(0.758062\pi\)
\(242\) −378.367 −0.100505
\(243\) −1159.00 −0.305968
\(244\) 625.158 0.164023
\(245\) −442.471 −0.115381
\(246\) −518.196 −0.134305
\(247\) 0 0
\(248\) 4639.35 1.18790
\(249\) 554.888 0.141223
\(250\) −403.160 −0.101992
\(251\) −7030.87 −1.76807 −0.884033 0.467424i \(-0.845182\pi\)
−0.884033 + 0.467424i \(0.845182\pi\)
\(252\) 1645.32 0.411291
\(253\) −735.721 −0.182824
\(254\) 1349.56 0.333382
\(255\) 31.6801 0.00777993
\(256\) 2606.25 0.636292
\(257\) −6109.03 −1.48276 −0.741382 0.671083i \(-0.765829\pi\)
−0.741382 + 0.671083i \(0.765829\pi\)
\(258\) 413.882 0.0998727
\(259\) −983.112 −0.235860
\(260\) 0 0
\(261\) −1727.24 −0.409631
\(262\) −8508.70 −2.00637
\(263\) 5612.35 1.31587 0.657933 0.753077i \(-0.271431\pi\)
0.657933 + 0.753077i \(0.271431\pi\)
\(264\) −115.055 −0.0268225
\(265\) −41.2611 −0.00956470
\(266\) −13313.8 −3.06889
\(267\) 707.246 0.162108
\(268\) 1094.56 0.249481
\(269\) −5299.19 −1.20111 −0.600553 0.799585i \(-0.705053\pi\)
−0.600553 + 0.799585i \(0.705053\pi\)
\(270\) 46.6150 0.0105070
\(271\) −2702.76 −0.605834 −0.302917 0.953017i \(-0.597961\pi\)
−0.302917 + 0.953017i \(0.597961\pi\)
\(272\) −8567.97 −1.90996
\(273\) 0 0
\(274\) 515.762 0.113717
\(275\) −1372.07 −0.300868
\(276\) 63.9354 0.0139437
\(277\) 268.441 0.0582276 0.0291138 0.999576i \(-0.490731\pi\)
0.0291138 + 0.999576i \(0.490731\pi\)
\(278\) 1172.34 0.252921
\(279\) −6369.38 −1.36676
\(280\) 347.956 0.0742655
\(281\) 6782.10 1.43981 0.719904 0.694073i \(-0.244186\pi\)
0.719904 + 0.694073i \(0.244186\pi\)
\(282\) −277.637 −0.0586277
\(283\) 3606.17 0.757473 0.378736 0.925505i \(-0.376359\pi\)
0.378736 + 0.925505i \(0.376359\pi\)
\(284\) 837.443 0.174976
\(285\) −34.1121 −0.00708993
\(286\) 0 0
\(287\) 10678.4 2.19626
\(288\) −2112.19 −0.432160
\(289\) 8115.72 1.65189
\(290\) 104.391 0.0211381
\(291\) −241.138 −0.0485764
\(292\) −115.579 −0.0231634
\(293\) −629.575 −0.125530 −0.0627648 0.998028i \(-0.519992\pi\)
−0.0627648 + 0.998028i \(0.519992\pi\)
\(294\) 1440.79 0.285812
\(295\) −138.144 −0.0272646
\(296\) 552.142 0.108421
\(297\) 317.627 0.0620559
\(298\) 2421.12 0.470644
\(299\) 0 0
\(300\) 119.235 0.0229468
\(301\) −8528.81 −1.63320
\(302\) 4163.03 0.793230
\(303\) −72.5999 −0.0137649
\(304\) 9225.74 1.74057
\(305\) −181.511 −0.0340764
\(306\) 9533.85 1.78109
\(307\) 6511.32 1.21049 0.605246 0.796039i \(-0.293075\pi\)
0.605246 + 0.796039i \(0.293075\pi\)
\(308\) −677.569 −0.125351
\(309\) 804.962 0.148196
\(310\) 384.953 0.0705285
\(311\) 566.158 0.103228 0.0516140 0.998667i \(-0.483563\pi\)
0.0516140 + 0.998667i \(0.483563\pi\)
\(312\) 0 0
\(313\) −8279.52 −1.49516 −0.747581 0.664170i \(-0.768785\pi\)
−0.747581 + 0.664170i \(0.768785\pi\)
\(314\) −6324.38 −1.13664
\(315\) −477.710 −0.0854473
\(316\) 1746.40 0.310894
\(317\) −7529.92 −1.33414 −0.667070 0.744995i \(-0.732452\pi\)
−0.667070 + 0.744995i \(0.732452\pi\)
\(318\) 134.356 0.0236928
\(319\) 711.305 0.124845
\(320\) −182.363 −0.0318576
\(321\) −297.452 −0.0517201
\(322\) −7245.19 −1.25391
\(323\) −14028.9 −2.41669
\(324\) 1254.77 0.215152
\(325\) 0 0
\(326\) −8629.91 −1.46616
\(327\) 59.3507 0.0100370
\(328\) −5997.27 −1.00959
\(329\) 5721.22 0.958727
\(330\) −9.54674 −0.00159252
\(331\) −4350.95 −0.722507 −0.361253 0.932468i \(-0.617651\pi\)
−0.361253 + 0.932468i \(0.617651\pi\)
\(332\) −1835.28 −0.303385
\(333\) −758.038 −0.124745
\(334\) −1384.57 −0.226828
\(335\) −317.800 −0.0518307
\(336\) −1397.95 −0.226977
\(337\) −5453.18 −0.881465 −0.440733 0.897638i \(-0.645281\pi\)
−0.440733 + 0.897638i \(0.645281\pi\)
\(338\) 0 0
\(339\) −709.063 −0.113602
\(340\) −104.781 −0.0167134
\(341\) 2623.01 0.416551
\(342\) −10265.8 −1.62313
\(343\) −17808.1 −2.80334
\(344\) 4790.01 0.750756
\(345\) −18.5633 −0.00289685
\(346\) 9899.99 1.53823
\(347\) 1498.28 0.231792 0.115896 0.993261i \(-0.463026\pi\)
0.115896 + 0.993261i \(0.463026\pi\)
\(348\) −61.8137 −0.00952172
\(349\) −7113.63 −1.09107 −0.545536 0.838087i \(-0.683674\pi\)
−0.545536 + 0.838087i \(0.683674\pi\)
\(350\) −13511.8 −2.06353
\(351\) 0 0
\(352\) 869.834 0.131711
\(353\) 4106.43 0.619160 0.309580 0.950873i \(-0.399812\pi\)
0.309580 + 0.950873i \(0.399812\pi\)
\(354\) 449.831 0.0675375
\(355\) −243.147 −0.0363518
\(356\) −2339.20 −0.348251
\(357\) 2125.76 0.315147
\(358\) −6207.01 −0.916342
\(359\) 4321.68 0.635347 0.317674 0.948200i \(-0.397098\pi\)
0.317674 + 0.948200i \(0.397098\pi\)
\(360\) 268.295 0.0392788
\(361\) 8246.95 1.20235
\(362\) 2394.79 0.347700
\(363\) −65.0500 −0.00940563
\(364\) 0 0
\(365\) 33.5576 0.00481229
\(366\) 591.045 0.0844110
\(367\) −11419.3 −1.62420 −0.812101 0.583517i \(-0.801676\pi\)
−0.812101 + 0.583517i \(0.801676\pi\)
\(368\) 5020.51 0.711174
\(369\) 8233.68 1.16159
\(370\) 45.8143 0.00643723
\(371\) −2768.66 −0.387444
\(372\) −227.944 −0.0317698
\(373\) −2823.25 −0.391910 −0.195955 0.980613i \(-0.562781\pi\)
−0.195955 + 0.980613i \(0.562781\pi\)
\(374\) −3926.19 −0.542830
\(375\) −69.3125 −0.00954476
\(376\) −3213.19 −0.440712
\(377\) 0 0
\(378\) 3127.91 0.425615
\(379\) 4642.00 0.629138 0.314569 0.949235i \(-0.398140\pi\)
0.314569 + 0.949235i \(0.398140\pi\)
\(380\) 112.825 0.0152311
\(381\) 232.021 0.0311989
\(382\) −12123.9 −1.62386
\(383\) 4881.73 0.651291 0.325646 0.945492i \(-0.394418\pi\)
0.325646 + 0.945492i \(0.394418\pi\)
\(384\) 933.911 0.124111
\(385\) 196.728 0.0260421
\(386\) 3167.10 0.417620
\(387\) −6576.22 −0.863794
\(388\) 797.557 0.104355
\(389\) −438.111 −0.0571031 −0.0285515 0.999592i \(-0.509089\pi\)
−0.0285515 + 0.999592i \(0.509089\pi\)
\(390\) 0 0
\(391\) −7634.34 −0.987430
\(392\) 16674.8 2.14849
\(393\) −1462.84 −0.187763
\(394\) −7280.59 −0.930941
\(395\) −507.057 −0.0645893
\(396\) −522.446 −0.0662977
\(397\) 283.017 0.0357789 0.0178895 0.999840i \(-0.494305\pi\)
0.0178895 + 0.999840i \(0.494305\pi\)
\(398\) −8778.62 −1.10561
\(399\) −2288.96 −0.287196
\(400\) 9362.89 1.17036
\(401\) −1345.05 −0.167502 −0.0837512 0.996487i \(-0.526690\pi\)
−0.0837512 + 0.996487i \(0.526690\pi\)
\(402\) 1034.84 0.128390
\(403\) 0 0
\(404\) 240.122 0.0295706
\(405\) −364.314 −0.0446986
\(406\) 7004.75 0.856256
\(407\) 312.172 0.0380191
\(408\) −1193.89 −0.144868
\(409\) −781.457 −0.0944757 −0.0472378 0.998884i \(-0.515042\pi\)
−0.0472378 + 0.998884i \(0.515042\pi\)
\(410\) −497.628 −0.0599416
\(411\) 88.6716 0.0106420
\(412\) −2662.39 −0.318366
\(413\) −9269.62 −1.10443
\(414\) −5586.47 −0.663189
\(415\) 532.863 0.0630295
\(416\) 0 0
\(417\) 201.552 0.0236692
\(418\) 4227.60 0.494686
\(419\) −11667.2 −1.36033 −0.680164 0.733060i \(-0.738092\pi\)
−0.680164 + 0.733060i \(0.738092\pi\)
\(420\) −17.0960 −0.00198619
\(421\) −9402.48 −1.08848 −0.544239 0.838930i \(-0.683181\pi\)
−0.544239 + 0.838930i \(0.683181\pi\)
\(422\) −6412.35 −0.739688
\(423\) 4411.40 0.507068
\(424\) 1554.95 0.178102
\(425\) −14237.5 −1.62499
\(426\) 791.746 0.0900475
\(427\) −12179.6 −1.38036
\(428\) 983.816 0.111109
\(429\) 0 0
\(430\) 397.454 0.0445743
\(431\) 5286.19 0.590782 0.295391 0.955376i \(-0.404550\pi\)
0.295391 + 0.955376i \(0.404550\pi\)
\(432\) −2167.47 −0.241394
\(433\) −5444.60 −0.604274 −0.302137 0.953264i \(-0.597700\pi\)
−0.302137 + 0.953264i \(0.597700\pi\)
\(434\) 25830.7 2.85695
\(435\) 17.9473 0.00197817
\(436\) −196.301 −0.0215622
\(437\) 8220.43 0.899854
\(438\) −109.272 −0.0119206
\(439\) 13175.2 1.43238 0.716192 0.697903i \(-0.245883\pi\)
0.716192 + 0.697903i \(0.245883\pi\)
\(440\) −110.488 −0.0119712
\(441\) −22893.0 −2.47197
\(442\) 0 0
\(443\) −4445.06 −0.476729 −0.238365 0.971176i \(-0.576611\pi\)
−0.238365 + 0.971176i \(0.576611\pi\)
\(444\) −27.1283 −0.00289967
\(445\) 679.173 0.0723504
\(446\) 18689.5 1.98424
\(447\) 416.247 0.0440443
\(448\) −12236.8 −1.29047
\(449\) −14969.1 −1.57335 −0.786675 0.617367i \(-0.788199\pi\)
−0.786675 + 0.617367i \(0.788199\pi\)
\(450\) −10418.4 −1.09139
\(451\) −3390.76 −0.354023
\(452\) 2345.21 0.244047
\(453\) 715.722 0.0742330
\(454\) 6525.95 0.674621
\(455\) 0 0
\(456\) 1285.54 0.132020
\(457\) −2194.92 −0.224669 −0.112335 0.993670i \(-0.535833\pi\)
−0.112335 + 0.993670i \(0.535833\pi\)
\(458\) 11425.8 1.16571
\(459\) 3295.92 0.335164
\(460\) 61.3977 0.00622322
\(461\) −3512.47 −0.354864 −0.177432 0.984133i \(-0.556779\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(462\) −640.596 −0.0645091
\(463\) 11381.4 1.14242 0.571209 0.820805i \(-0.306475\pi\)
0.571209 + 0.820805i \(0.306475\pi\)
\(464\) −4853.90 −0.485639
\(465\) 66.1824 0.00660029
\(466\) 1745.77 0.173543
\(467\) −17611.1 −1.74506 −0.872531 0.488559i \(-0.837523\pi\)
−0.872531 + 0.488559i \(0.837523\pi\)
\(468\) 0 0
\(469\) −21324.7 −2.09954
\(470\) −266.617 −0.0261662
\(471\) −1087.31 −0.106371
\(472\) 5206.07 0.507688
\(473\) 2708.19 0.263262
\(474\) 1651.10 0.159995
\(475\) 15330.5 1.48087
\(476\) −7030.91 −0.677019
\(477\) −2134.80 −0.204918
\(478\) −6584.01 −0.630012
\(479\) 2937.43 0.280198 0.140099 0.990138i \(-0.455258\pi\)
0.140099 + 0.990138i \(0.455258\pi\)
\(480\) 21.9472 0.00208697
\(481\) 0 0
\(482\) 16958.7 1.60259
\(483\) −1245.62 −0.117345
\(484\) 215.151 0.0202058
\(485\) −231.566 −0.0216802
\(486\) 3624.20 0.338266
\(487\) −9265.77 −0.862160 −0.431080 0.902314i \(-0.641867\pi\)
−0.431080 + 0.902314i \(0.641867\pi\)
\(488\) 6840.39 0.634528
\(489\) −1483.68 −0.137208
\(490\) 1383.61 0.127561
\(491\) −18767.8 −1.72501 −0.862506 0.506046i \(-0.831106\pi\)
−0.862506 + 0.506046i \(0.831106\pi\)
\(492\) 294.663 0.0270009
\(493\) 7380.99 0.674286
\(494\) 0 0
\(495\) 151.689 0.0137736
\(496\) −17899.2 −1.62036
\(497\) −16315.4 −1.47253
\(498\) −1735.13 −0.156131
\(499\) −9803.34 −0.879475 −0.439737 0.898126i \(-0.644928\pi\)
−0.439737 + 0.898126i \(0.644928\pi\)
\(500\) 229.249 0.0205047
\(501\) −238.041 −0.0212273
\(502\) 21985.5 1.95470
\(503\) 2887.20 0.255932 0.127966 0.991779i \(-0.459155\pi\)
0.127966 + 0.991779i \(0.459155\pi\)
\(504\) 18002.9 1.59109
\(505\) −69.7183 −0.00614341
\(506\) 2300.60 0.202123
\(507\) 0 0
\(508\) −767.403 −0.0670236
\(509\) −1606.06 −0.139857 −0.0699285 0.997552i \(-0.522277\pi\)
−0.0699285 + 0.997552i \(0.522277\pi\)
\(510\) −99.0634 −0.00860118
\(511\) 2251.75 0.194935
\(512\) 5747.65 0.496119
\(513\) −3548.95 −0.305438
\(514\) 19102.9 1.63929
\(515\) 773.011 0.0661416
\(516\) −235.347 −0.0200786
\(517\) −1816.69 −0.154541
\(518\) 3074.19 0.260757
\(519\) 1702.04 0.143952
\(520\) 0 0
\(521\) −4621.78 −0.388644 −0.194322 0.980938i \(-0.562251\pi\)
−0.194322 + 0.980938i \(0.562251\pi\)
\(522\) 5401.08 0.452871
\(523\) 5965.88 0.498795 0.249398 0.968401i \(-0.419767\pi\)
0.249398 + 0.968401i \(0.419767\pi\)
\(524\) 4838.32 0.403365
\(525\) −2322.99 −0.193111
\(526\) −17549.8 −1.45477
\(527\) 27218.1 2.24979
\(528\) 443.897 0.0365874
\(529\) −7693.57 −0.632331
\(530\) 129.023 0.0105744
\(531\) −7147.43 −0.584128
\(532\) 7570.68 0.616974
\(533\) 0 0
\(534\) −2211.55 −0.179220
\(535\) −285.646 −0.0230832
\(536\) 11976.5 0.965126
\(537\) −1067.13 −0.0857543
\(538\) 16570.6 1.32790
\(539\) 9427.68 0.753393
\(540\) −26.5068 −0.00211235
\(541\) −8397.55 −0.667355 −0.333677 0.942687i \(-0.608290\pi\)
−0.333677 + 0.942687i \(0.608290\pi\)
\(542\) 8451.53 0.669786
\(543\) 411.721 0.0325389
\(544\) 9025.98 0.711371
\(545\) 56.9949 0.00447962
\(546\) 0 0
\(547\) 20935.8 1.63647 0.818237 0.574882i \(-0.194952\pi\)
0.818237 + 0.574882i \(0.194952\pi\)
\(548\) −293.279 −0.0228618
\(549\) −9391.19 −0.730066
\(550\) 4290.45 0.332628
\(551\) −7947.63 −0.614483
\(552\) 699.572 0.0539416
\(553\) −34024.0 −2.61636
\(554\) −839.414 −0.0643741
\(555\) 7.87655 0.000602416 0
\(556\) −666.628 −0.0508477
\(557\) 8477.52 0.644891 0.322445 0.946588i \(-0.395495\pi\)
0.322445 + 0.946588i \(0.395495\pi\)
\(558\) 19917.0 1.51103
\(559\) 0 0
\(560\) −1342.46 −0.101302
\(561\) −675.003 −0.0507998
\(562\) −21207.6 −1.59180
\(563\) −2282.30 −0.170848 −0.0854241 0.996345i \(-0.527225\pi\)
−0.0854241 + 0.996345i \(0.527225\pi\)
\(564\) 157.873 0.0117866
\(565\) −680.919 −0.0507017
\(566\) −11276.5 −0.837432
\(567\) −24445.9 −1.81063
\(568\) 9163.18 0.676898
\(569\) −23523.0 −1.73310 −0.866551 0.499089i \(-0.833668\pi\)
−0.866551 + 0.499089i \(0.833668\pi\)
\(570\) 106.669 0.00783834
\(571\) 11920.3 0.873643 0.436821 0.899548i \(-0.356104\pi\)
0.436821 + 0.899548i \(0.356104\pi\)
\(572\) 0 0
\(573\) −2084.39 −0.151966
\(574\) −33391.3 −2.42809
\(575\) 8342.64 0.605064
\(576\) −9435.28 −0.682529
\(577\) 17452.3 1.25918 0.629592 0.776926i \(-0.283222\pi\)
0.629592 + 0.776926i \(0.283222\pi\)
\(578\) −25377.8 −1.82626
\(579\) 544.498 0.0390822
\(580\) −59.3601 −0.00424965
\(581\) 35755.7 2.55317
\(582\) 754.037 0.0537042
\(583\) 879.144 0.0624536
\(584\) −1264.64 −0.0896085
\(585\) 0 0
\(586\) 1968.68 0.138781
\(587\) 5180.08 0.364233 0.182117 0.983277i \(-0.441705\pi\)
0.182117 + 0.983277i \(0.441705\pi\)
\(588\) −819.281 −0.0574602
\(589\) −29307.7 −2.05026
\(590\) 431.977 0.0301427
\(591\) −1251.70 −0.0871204
\(592\) −2130.24 −0.147892
\(593\) 5440.59 0.376759 0.188380 0.982096i \(-0.439676\pi\)
0.188380 + 0.982096i \(0.439676\pi\)
\(594\) −993.220 −0.0686066
\(595\) 2041.39 0.140653
\(596\) −1376.73 −0.0946190
\(597\) −1509.25 −0.103466
\(598\) 0 0
\(599\) −17258.2 −1.17721 −0.588607 0.808419i \(-0.700324\pi\)
−0.588607 + 0.808419i \(0.700324\pi\)
\(600\) 1304.65 0.0887704
\(601\) 8501.72 0.577025 0.288513 0.957476i \(-0.406839\pi\)
0.288513 + 0.957476i \(0.406839\pi\)
\(602\) 26669.6 1.80560
\(603\) −16442.6 −1.11044
\(604\) −2367.23 −0.159472
\(605\) −62.4681 −0.00419783
\(606\) 227.020 0.0152179
\(607\) −14312.1 −0.957017 −0.478508 0.878083i \(-0.658822\pi\)
−0.478508 + 0.878083i \(0.658822\pi\)
\(608\) −9718.91 −0.648279
\(609\) 1204.28 0.0801312
\(610\) 567.585 0.0376735
\(611\) 0 0
\(612\) −5421.25 −0.358074
\(613\) 27491.1 1.81135 0.905673 0.423976i \(-0.139366\pi\)
0.905673 + 0.423976i \(0.139366\pi\)
\(614\) −20360.9 −1.33827
\(615\) −85.5538 −0.00560953
\(616\) −7413.86 −0.484923
\(617\) 27892.3 1.81994 0.909970 0.414674i \(-0.136104\pi\)
0.909970 + 0.414674i \(0.136104\pi\)
\(618\) −2517.11 −0.163840
\(619\) 2742.28 0.178064 0.0890319 0.996029i \(-0.471623\pi\)
0.0890319 + 0.996029i \(0.471623\pi\)
\(620\) −218.896 −0.0141792
\(621\) −1931.28 −0.124798
\(622\) −1770.37 −0.114125
\(623\) 45573.2 2.93074
\(624\) 0 0
\(625\) 15525.1 0.993608
\(626\) 25890.0 1.65299
\(627\) 726.823 0.0462943
\(628\) 3596.25 0.228512
\(629\) 3239.31 0.205341
\(630\) 1493.80 0.0944672
\(631\) −17616.5 −1.11141 −0.555706 0.831379i \(-0.687552\pi\)
−0.555706 + 0.831379i \(0.687552\pi\)
\(632\) 19108.8 1.20270
\(633\) −1102.43 −0.0692224
\(634\) 23546.0 1.47497
\(635\) 222.811 0.0139244
\(636\) −76.3992 −0.00476325
\(637\) 0 0
\(638\) −2224.25 −0.138023
\(639\) −12580.2 −0.778816
\(640\) 896.842 0.0553919
\(641\) 13061.4 0.804826 0.402413 0.915458i \(-0.368172\pi\)
0.402413 + 0.915458i \(0.368172\pi\)
\(642\) 930.132 0.0571797
\(643\) 18121.0 1.11139 0.555694 0.831387i \(-0.312453\pi\)
0.555694 + 0.831387i \(0.312453\pi\)
\(644\) 4119.85 0.252088
\(645\) 68.3316 0.00417140
\(646\) 43868.5 2.67180
\(647\) −5095.41 −0.309615 −0.154808 0.987945i \(-0.549476\pi\)
−0.154808 + 0.987945i \(0.549476\pi\)
\(648\) 13729.5 0.832321
\(649\) 2943.42 0.178027
\(650\) 0 0
\(651\) 4440.90 0.267362
\(652\) 4907.25 0.294759
\(653\) 11717.1 0.702186 0.351093 0.936341i \(-0.385810\pi\)
0.351093 + 0.936341i \(0.385810\pi\)
\(654\) −185.589 −0.0110965
\(655\) −1404.78 −0.0838005
\(656\) 23138.3 1.37713
\(657\) 1736.23 0.103100
\(658\) −17890.2 −1.05993
\(659\) −31395.5 −1.85583 −0.927917 0.372786i \(-0.878403\pi\)
−0.927917 + 0.372786i \(0.878403\pi\)
\(660\) 5.42858 0.000320163 0
\(661\) 32211.0 1.89540 0.947701 0.319158i \(-0.103400\pi\)
0.947701 + 0.319158i \(0.103400\pi\)
\(662\) 13605.4 0.798775
\(663\) 0 0
\(664\) −20081.3 −1.17366
\(665\) −2198.11 −0.128179
\(666\) 2370.38 0.137914
\(667\) −4324.98 −0.251070
\(668\) 787.314 0.0456019
\(669\) 3213.16 0.185692
\(670\) 993.760 0.0573020
\(671\) 3867.44 0.222505
\(672\) 1472.68 0.0845383
\(673\) −542.400 −0.0310668 −0.0155334 0.999879i \(-0.504945\pi\)
−0.0155334 + 0.999879i \(0.504945\pi\)
\(674\) 17052.1 0.974513
\(675\) −3601.71 −0.205377
\(676\) 0 0
\(677\) −12012.5 −0.681944 −0.340972 0.940073i \(-0.610756\pi\)
−0.340972 + 0.940073i \(0.610756\pi\)
\(678\) 2217.24 0.125594
\(679\) −15538.3 −0.878213
\(680\) −1146.50 −0.0646562
\(681\) 1121.96 0.0631332
\(682\) −8202.14 −0.460523
\(683\) 14999.1 0.840297 0.420149 0.907455i \(-0.361978\pi\)
0.420149 + 0.907455i \(0.361978\pi\)
\(684\) 5837.44 0.326316
\(685\) 85.1520 0.00474962
\(686\) 55685.8 3.09926
\(687\) 1964.36 0.109091
\(688\) −18480.5 −1.02407
\(689\) 0 0
\(690\) 58.0474 0.00320265
\(691\) 29172.2 1.60602 0.803012 0.595963i \(-0.203230\pi\)
0.803012 + 0.595963i \(0.203230\pi\)
\(692\) −5629.45 −0.309248
\(693\) 10178.5 0.557936
\(694\) −4685.11 −0.256260
\(695\) 193.552 0.0105638
\(696\) −676.356 −0.0368351
\(697\) −35184.8 −1.91208
\(698\) 22244.3 1.20625
\(699\) 300.138 0.0162407
\(700\) 7683.23 0.414855
\(701\) −21053.3 −1.13434 −0.567170 0.823601i \(-0.691962\pi\)
−0.567170 + 0.823601i \(0.691962\pi\)
\(702\) 0 0
\(703\) −3487.99 −0.187130
\(704\) 3885.59 0.208017
\(705\) −45.8376 −0.00244872
\(706\) −12840.8 −0.684519
\(707\) −4678.17 −0.248855
\(708\) −255.789 −0.0135779
\(709\) 3195.28 0.169254 0.0846271 0.996413i \(-0.473030\pi\)
0.0846271 + 0.996413i \(0.473030\pi\)
\(710\) 760.320 0.0401892
\(711\) −26234.5 −1.38379
\(712\) −25595.2 −1.34722
\(713\) −15948.8 −0.837709
\(714\) −6647.26 −0.348414
\(715\) 0 0
\(716\) 3529.50 0.184223
\(717\) −1131.94 −0.0589585
\(718\) −13513.9 −0.702415
\(719\) −25450.5 −1.32009 −0.660044 0.751227i \(-0.729462\pi\)
−0.660044 + 0.751227i \(0.729462\pi\)
\(720\) −1035.12 −0.0535786
\(721\) 51869.8 2.67924
\(722\) −25788.2 −1.32928
\(723\) 2915.60 0.149976
\(724\) −1361.76 −0.0699023
\(725\) −8065.78 −0.413180
\(726\) 203.411 0.0103985
\(727\) 12657.0 0.645697 0.322848 0.946451i \(-0.395360\pi\)
0.322848 + 0.946451i \(0.395360\pi\)
\(728\) 0 0
\(729\) −18430.1 −0.936346
\(730\) −104.935 −0.00532028
\(731\) 28102.0 1.42188
\(732\) −336.087 −0.0169701
\(733\) 14254.0 0.718259 0.359129 0.933288i \(-0.383074\pi\)
0.359129 + 0.933288i \(0.383074\pi\)
\(734\) 35708.1 1.79565
\(735\) 237.874 0.0119376
\(736\) −5288.88 −0.264879
\(737\) 6771.33 0.338433
\(738\) −25746.7 −1.28421
\(739\) −21152.9 −1.05294 −0.526471 0.850193i \(-0.676485\pi\)
−0.526471 + 0.850193i \(0.676485\pi\)
\(740\) −26.0515 −0.00129415
\(741\) 0 0
\(742\) 8657.59 0.428342
\(743\) 8087.83 0.399345 0.199673 0.979863i \(-0.436012\pi\)
0.199673 + 0.979863i \(0.436012\pi\)
\(744\) −2494.13 −0.122902
\(745\) 399.725 0.0196575
\(746\) 8828.30 0.433280
\(747\) 27569.8 1.35037
\(748\) 2232.56 0.109131
\(749\) −19167.1 −0.935048
\(750\) 216.740 0.0105523
\(751\) 34946.5 1.69802 0.849012 0.528373i \(-0.177198\pi\)
0.849012 + 0.528373i \(0.177198\pi\)
\(752\) 12396.9 0.601156
\(753\) 3779.82 0.182928
\(754\) 0 0
\(755\) 687.313 0.0331310
\(756\) −1778.63 −0.0855664
\(757\) 30668.7 1.47249 0.736243 0.676717i \(-0.236598\pi\)
0.736243 + 0.676717i \(0.236598\pi\)
\(758\) −14515.5 −0.695551
\(759\) 395.526 0.0189153
\(760\) 1234.52 0.0589218
\(761\) 21593.1 1.02858 0.514290 0.857616i \(-0.328056\pi\)
0.514290 + 0.857616i \(0.328056\pi\)
\(762\) −725.528 −0.0344923
\(763\) 3824.42 0.181459
\(764\) 6894.06 0.326464
\(765\) 1574.03 0.0743912
\(766\) −15265.1 −0.720042
\(767\) 0 0
\(768\) −1401.13 −0.0658319
\(769\) −36796.0 −1.72548 −0.862742 0.505644i \(-0.831255\pi\)
−0.862742 + 0.505644i \(0.831255\pi\)
\(770\) −615.169 −0.0287911
\(771\) 3284.23 0.153410
\(772\) −1800.91 −0.0839590
\(773\) 3681.07 0.171279 0.0856397 0.996326i \(-0.472707\pi\)
0.0856397 + 0.996326i \(0.472707\pi\)
\(774\) 20563.8 0.954976
\(775\) −29743.4 −1.37860
\(776\) 8726.75 0.403701
\(777\) 528.525 0.0244025
\(778\) 1369.97 0.0631309
\(779\) 37886.0 1.74250
\(780\) 0 0
\(781\) 5180.71 0.237363
\(782\) 23872.5 1.09166
\(783\) 1867.19 0.0852209
\(784\) −64333.8 −2.93066
\(785\) −1044.15 −0.0474743
\(786\) 4574.31 0.207583
\(787\) −14395.5 −0.652027 −0.326013 0.945365i \(-0.605705\pi\)
−0.326013 + 0.945365i \(0.605705\pi\)
\(788\) 4139.98 0.187158
\(789\) −3017.22 −0.136142
\(790\) 1585.56 0.0714074
\(791\) −45690.3 −2.05381
\(792\) −5716.53 −0.256475
\(793\) 0 0
\(794\) −884.994 −0.0395558
\(795\) 22.1821 0.000989582 0
\(796\) 4991.81 0.222274
\(797\) 1602.22 0.0712090 0.0356045 0.999366i \(-0.488664\pi\)
0.0356045 + 0.999366i \(0.488664\pi\)
\(798\) 7157.57 0.317513
\(799\) −18851.2 −0.834676
\(800\) −9863.40 −0.435905
\(801\) 35139.7 1.55006
\(802\) 4205.96 0.185184
\(803\) −715.009 −0.0314223
\(804\) −588.440 −0.0258118
\(805\) −1196.18 −0.0523722
\(806\) 0 0
\(807\) 2848.87 0.124269
\(808\) 2627.38 0.114395
\(809\) 25997.2 1.12980 0.564902 0.825158i \(-0.308914\pi\)
0.564902 + 0.825158i \(0.308914\pi\)
\(810\) 1139.21 0.0494170
\(811\) 2200.08 0.0952594 0.0476297 0.998865i \(-0.484833\pi\)
0.0476297 + 0.998865i \(0.484833\pi\)
\(812\) −3983.13 −0.172143
\(813\) 1453.01 0.0626807
\(814\) −976.161 −0.0420325
\(815\) −1424.79 −0.0612372
\(816\) 4606.17 0.197608
\(817\) −30259.4 −1.29577
\(818\) 2443.61 0.104449
\(819\) 0 0
\(820\) 282.967 0.0120508
\(821\) 20651.3 0.877873 0.438937 0.898518i \(-0.355355\pi\)
0.438937 + 0.898518i \(0.355355\pi\)
\(822\) −277.276 −0.0117653
\(823\) −13474.0 −0.570687 −0.285343 0.958425i \(-0.592108\pi\)
−0.285343 + 0.958425i \(0.592108\pi\)
\(824\) −29131.5 −1.23161
\(825\) 737.629 0.0311284
\(826\) 28986.1 1.22101
\(827\) 1640.46 0.0689775 0.0344888 0.999405i \(-0.489020\pi\)
0.0344888 + 0.999405i \(0.489020\pi\)
\(828\) 3176.65 0.133329
\(829\) −29646.3 −1.24205 −0.621024 0.783791i \(-0.713283\pi\)
−0.621024 + 0.783791i \(0.713283\pi\)
\(830\) −1666.26 −0.0696829
\(831\) −144.315 −0.00602434
\(832\) 0 0
\(833\) 97828.0 4.06907
\(834\) −630.252 −0.0261677
\(835\) −228.592 −0.00947397
\(836\) −2403.95 −0.0994526
\(837\) 6885.45 0.284344
\(838\) 36483.2 1.50393
\(839\) −6135.11 −0.252452 −0.126226 0.992001i \(-0.540287\pi\)
−0.126226 + 0.992001i \(0.540287\pi\)
\(840\) −187.062 −0.00768365
\(841\) −20207.6 −0.828552
\(842\) 29401.5 1.20338
\(843\) −3646.08 −0.148965
\(844\) 3646.27 0.148708
\(845\) 0 0
\(846\) −13794.4 −0.560594
\(847\) −4191.67 −0.170044
\(848\) −5999.22 −0.242941
\(849\) −1938.69 −0.0783696
\(850\) 44520.6 1.79652
\(851\) −1898.11 −0.0764588
\(852\) −450.212 −0.0181033
\(853\) 14949.8 0.600085 0.300043 0.953926i \(-0.402999\pi\)
0.300043 + 0.953926i \(0.402999\pi\)
\(854\) 38085.5 1.52607
\(855\) −1694.87 −0.0677934
\(856\) 10764.8 0.429827
\(857\) 3174.24 0.126523 0.0632613 0.997997i \(-0.479850\pi\)
0.0632613 + 0.997997i \(0.479850\pi\)
\(858\) 0 0
\(859\) 21283.9 0.845400 0.422700 0.906270i \(-0.361082\pi\)
0.422700 + 0.906270i \(0.361082\pi\)
\(860\) −226.005 −0.00896129
\(861\) −5740.74 −0.227229
\(862\) −16529.9 −0.653145
\(863\) −44304.5 −1.74756 −0.873779 0.486323i \(-0.838338\pi\)
−0.873779 + 0.486323i \(0.838338\pi\)
\(864\) 2283.33 0.0899080
\(865\) 1634.48 0.0642474
\(866\) 17025.3 0.668062
\(867\) −4363.04 −0.170907
\(868\) −14688.2 −0.574365
\(869\) 10803.8 0.421742
\(870\) −56.1211 −0.00218699
\(871\) 0 0
\(872\) −2147.90 −0.0834139
\(873\) −11981.0 −0.464484
\(874\) −25705.2 −0.994843
\(875\) −4466.33 −0.172560
\(876\) 62.1355 0.00239653
\(877\) 31517.6 1.21354 0.606770 0.794877i \(-0.292465\pi\)
0.606770 + 0.794877i \(0.292465\pi\)
\(878\) −41198.7 −1.58359
\(879\) 338.462 0.0129875
\(880\) 426.278 0.0163293
\(881\) −25267.4 −0.966267 −0.483134 0.875547i \(-0.660501\pi\)
−0.483134 + 0.875547i \(0.660501\pi\)
\(882\) 71586.2 2.73292
\(883\) 19500.1 0.743184 0.371592 0.928396i \(-0.378812\pi\)
0.371592 + 0.928396i \(0.378812\pi\)
\(884\) 0 0
\(885\) 74.2668 0.00282085
\(886\) 13899.7 0.527053
\(887\) −14200.9 −0.537564 −0.268782 0.963201i \(-0.586621\pi\)
−0.268782 + 0.963201i \(0.586621\pi\)
\(888\) −296.834 −0.0112174
\(889\) 14950.9 0.564045
\(890\) −2123.77 −0.0799877
\(891\) 7762.40 0.291863
\(892\) −10627.4 −0.398916
\(893\) 20298.4 0.760648
\(894\) −1301.60 −0.0486937
\(895\) −1024.77 −0.0382730
\(896\) 60179.0 2.24379
\(897\) 0 0
\(898\) 46808.2 1.73943
\(899\) 15419.5 0.572046
\(900\) 5924.23 0.219416
\(901\) 9122.60 0.337312
\(902\) 10602.9 0.391394
\(903\) 4585.12 0.168974
\(904\) 25660.9 0.944104
\(905\) 395.379 0.0145225
\(906\) −2238.06 −0.0820690
\(907\) 170.034 0.00622480 0.00311240 0.999995i \(-0.499009\pi\)
0.00311240 + 0.999995i \(0.499009\pi\)
\(908\) −3710.86 −0.135627
\(909\) −3607.15 −0.131619
\(910\) 0 0
\(911\) −23915.6 −0.869770 −0.434885 0.900486i \(-0.643211\pi\)
−0.434885 + 0.900486i \(0.643211\pi\)
\(912\) −4959.79 −0.180082
\(913\) −11353.7 −0.411557
\(914\) 6863.50 0.248386
\(915\) 97.5812 0.00352561
\(916\) −6497.09 −0.234356
\(917\) −94262.2 −3.39456
\(918\) −10306.3 −0.370544
\(919\) 2914.50 0.104614 0.0523071 0.998631i \(-0.483343\pi\)
0.0523071 + 0.998631i \(0.483343\pi\)
\(920\) 671.804 0.0240747
\(921\) −3500.51 −0.125240
\(922\) 10983.5 0.392323
\(923\) 0 0
\(924\) 364.263 0.0129690
\(925\) −3539.85 −0.125826
\(926\) −35589.7 −1.26301
\(927\) 39994.7 1.41704
\(928\) 5113.37 0.180878
\(929\) −10396.7 −0.367172 −0.183586 0.983004i \(-0.558771\pi\)
−0.183586 + 0.983004i \(0.558771\pi\)
\(930\) −206.952 −0.00729702
\(931\) −105338. −3.70819
\(932\) −992.700 −0.0348895
\(933\) −304.369 −0.0106802
\(934\) 55069.8 1.92927
\(935\) −648.211 −0.0226725
\(936\) 0 0
\(937\) 7615.33 0.265509 0.132755 0.991149i \(-0.457618\pi\)
0.132755 + 0.991149i \(0.457618\pi\)
\(938\) 66682.3 2.32117
\(939\) 4451.10 0.154692
\(940\) 151.607 0.00526050
\(941\) −14371.4 −0.497868 −0.248934 0.968520i \(-0.580080\pi\)
−0.248934 + 0.968520i \(0.580080\pi\)
\(942\) 3400.01 0.117599
\(943\) 20617.0 0.711962
\(944\) −20085.7 −0.692515
\(945\) 516.416 0.0177767
\(946\) −8468.51 −0.291052
\(947\) −2477.84 −0.0850252 −0.0425126 0.999096i \(-0.513536\pi\)
−0.0425126 + 0.999096i \(0.513536\pi\)
\(948\) −938.868 −0.0321656
\(949\) 0 0
\(950\) −47938.5 −1.63719
\(951\) 4048.11 0.138033
\(952\) −76931.2 −2.61907
\(953\) −48096.8 −1.63485 −0.817423 0.576038i \(-0.804598\pi\)
−0.817423 + 0.576038i \(0.804598\pi\)
\(954\) 6675.52 0.226549
\(955\) −2001.65 −0.0678241
\(956\) 3743.88 0.126659
\(957\) −382.400 −0.0129167
\(958\) −9185.34 −0.309775
\(959\) 5713.79 0.192396
\(960\) 98.0392 0.00329604
\(961\) 27070.0 0.908664
\(962\) 0 0
\(963\) −14779.0 −0.494544
\(964\) −9643.29 −0.322188
\(965\) 522.886 0.0174428
\(966\) 3895.04 0.129732
\(967\) 12384.4 0.411847 0.205923 0.978568i \(-0.433980\pi\)
0.205923 + 0.978568i \(0.433980\pi\)
\(968\) 2354.16 0.0781668
\(969\) 7542.01 0.250035
\(970\) 724.107 0.0239687
\(971\) 36035.0 1.19096 0.595478 0.803372i \(-0.296963\pi\)
0.595478 + 0.803372i \(0.296963\pi\)
\(972\) −2060.84 −0.0680055
\(973\) 12987.5 0.427915
\(974\) 28974.0 0.953170
\(975\) 0 0
\(976\) −26391.1 −0.865533
\(977\) −20510.4 −0.671633 −0.335817 0.941927i \(-0.609012\pi\)
−0.335817 + 0.941927i \(0.609012\pi\)
\(978\) 4639.47 0.151691
\(979\) −14471.1 −0.472418
\(980\) −786.762 −0.0256451
\(981\) 2948.85 0.0959732
\(982\) 58687.0 1.90711
\(983\) 668.979 0.0217061 0.0108531 0.999941i \(-0.496545\pi\)
0.0108531 + 0.999941i \(0.496545\pi\)
\(984\) 3224.16 0.104454
\(985\) −1202.02 −0.0388828
\(986\) −23080.3 −0.745464
\(987\) −3075.75 −0.0991917
\(988\) 0 0
\(989\) −16466.7 −0.529435
\(990\) −474.332 −0.0152275
\(991\) 23395.2 0.749923 0.374961 0.927040i \(-0.377656\pi\)
0.374961 + 0.927040i \(0.377656\pi\)
\(992\) 18856.1 0.603508
\(993\) 2339.09 0.0747519
\(994\) 51018.2 1.62797
\(995\) −1449.34 −0.0461782
\(996\) 986.652 0.0313888
\(997\) 50642.3 1.60868 0.804342 0.594166i \(-0.202518\pi\)
0.804342 + 0.594166i \(0.202518\pi\)
\(998\) 30655.0 0.972312
\(999\) 819.458 0.0259525
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.g.1.5 17
13.3 even 3 143.4.e.b.100.13 34
13.9 even 3 143.4.e.b.133.13 yes 34
13.12 even 2 1859.4.a.h.1.13 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.b.100.13 34 13.3 even 3
143.4.e.b.133.13 yes 34 13.9 even 3
1859.4.a.g.1.5 17 1.1 even 1 trivial
1859.4.a.h.1.13 17 13.12 even 2