Properties

Label 1859.4.a.c
Level $1859$
Weight $4$
Character orbit 1859.a
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,-6,26,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 34x^{4} - 26x^{3} + 249x^{2} + 274x - 200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + ( - \beta_{4} - 1) q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + (\beta_{3} + \beta_1 + 1) q^{5} + (\beta_{5} - 2 \beta_{4} - \beta_{3} + \cdots + 2) q^{6} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 9) q^{7}+ \cdots + (22 \beta_{5} - 55 \beta_{4} + \cdots + 11 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 6 q^{3} + 26 q^{4} + 8 q^{5} + 15 q^{6} + 53 q^{7} + 36 q^{8} - 52 q^{10} - 66 q^{11} - 19 q^{12} - 120 q^{14} + 23 q^{15} + 26 q^{16} - 117 q^{17} + 27 q^{18} + 67 q^{19} - 10 q^{20} - 19 q^{21}+ \cdots - 2036 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 34x^{4} - 26x^{3} + 249x^{2} + 274x - 200 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 2\nu^{4} + 29\nu^{3} - 32\nu^{2} - 158\nu + 56 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{5} - 7\nu^{4} - 85\nu^{3} + 121\nu^{2} + 452\nu - 256 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{5} + 7\nu^{4} + 86\nu^{3} - 123\nu^{2} - 467\nu + 266 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + 4\beta_{4} + 2\beta_{2} + 17\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{5} + 4\beta_{4} - 6\beta_{3} + 29\beta_{2} + 37\beta _1 + 211 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 66\beta_{5} + 124\beta_{4} - 14\beta_{3} + 84\beta_{2} + 377\beta _1 + 474 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.34903
3.11199
0.512502
−2.30499
−2.36134
−4.30719
−4.34903 −6.31201 10.9140 2.31865 27.4511 33.8589 −12.6732 12.8415 −10.0839
1.2 −2.11199 4.05013 −3.53950 16.1679 −8.55384 9.75779 24.3713 −10.5964 −34.1465
1.3 0.487498 0.0966010 −7.76235 −13.1745 0.0470928 11.9172 −7.68411 −26.9907 −6.42254
1.4 3.30499 0.708355 2.92295 6.96953 2.34111 −22.1312 −16.7796 −26.4982 23.0342
1.5 3.36134 −9.16081 3.29862 0.852032 −30.7926 −5.75009 −15.8029 56.9204 2.86397
1.6 5.30719 4.61773 20.1662 −5.13365 24.5072 25.3474 64.5685 −5.67656 −27.2453
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.c 6
13.b even 2 1 143.4.a.b 6
39.d odd 2 1 1287.4.a.f 6
52.b odd 2 1 2288.4.a.m 6
143.d odd 2 1 1573.4.a.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.a.b 6 13.b even 2 1
1287.4.a.f 6 39.d odd 2 1
1573.4.a.d 6 143.d odd 2 1
1859.4.a.c 6 1.a even 1 1 trivial
2288.4.a.m 6 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 6T_{2}^{5} - 19T_{2}^{4} + 142T_{2}^{3} - 18T_{2}^{2} - 564T_{2} + 264 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 6 T^{5} + \cdots + 264 \) Copy content Toggle raw display
$3$ \( T^{6} + 6 T^{5} + \cdots + 74 \) Copy content Toggle raw display
$5$ \( T^{6} - 8 T^{5} + \cdots + 15056 \) Copy content Toggle raw display
$7$ \( T^{6} - 53 T^{5} + \cdots + 12700172 \) Copy content Toggle raw display
$11$ \( (T + 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 117 T^{5} + \cdots + 64149376 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 49335856960 \) Copy content Toggle raw display
$23$ \( T^{6} + 158 T^{5} + \cdots + 158607016 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 14715687201280 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 2334074232384 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 1475360000224 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 19515694713824 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 4882557023552 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 359796596534272 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 33677222445392 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 703896062106752 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 76\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 73\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 260628470656 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 24\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 71\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 46\!\cdots\!64 \) Copy content Toggle raw display
show more
show less