Newspace parameters
| Level: | \( N \) | \(=\) | \( 1856 = 2^{6} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1856.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(14.8202346151\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(i, \sqrt{29})\) |
|
|
|
| Defining polynomial: |
\( x^{4} + 15x^{2} + 49 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{59}]\) |
| Coefficient ring index: | \( 2^{4} \) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 289.3 | ||
| Root | \(-3.19258i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 1856.289 |
| Dual form | 1856.2.g.a.289.4 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1856\mathbb{Z}\right)^\times\).
| \(n\) | \(321\) | \(581\) | \(639\) |
| \(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | −3.00000 | −1.00000 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 5.00000 | 1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 5.38516 | 1.00000 | ||||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | − 10.7703i | − 1.93441i | −0.254000 | − | 0.967204i | \(-0.581746\pi\) | ||||
| 0.254000 | − | 0.967204i | \(-0.418254\pi\) | |||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 10.7703 | 1.77063 | 0.885316 | − | 0.464991i | \(-0.153942\pi\) | ||||
| 0.885316 | + | 0.464991i | \(0.153942\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | − 10.7703i | − 1.57101i | −0.618853 | − | 0.785507i | \(-0.712402\pi\) | ||||
| 0.618853 | − | 0.785507i | \(-0.287598\pi\) | |||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | −7.00000 | −1.00000 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | − 2.00000i | − 0.260378i | −0.991489 | − | 0.130189i | \(-0.958442\pi\) | ||||
| 0.991489 | − | 0.130189i | \(-0.0415584\pi\) | |||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | 10.7703 | 1.37900 | 0.689500 | − | 0.724286i | \(-0.257830\pi\) | ||||
| 0.689500 | + | 0.724286i | \(0.257830\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 6.00000i | 0.733017i | 0.930415 | + | 0.366508i | \(0.119447\pi\) | ||||
| −0.930415 | + | 0.366508i | \(0.880553\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | − 10.7703i | − 1.21176i | −0.795557 | − | 0.605878i | \(-0.792822\pi\) | ||||
| 0.795557 | − | 0.605878i | \(-0.207178\pi\) | |||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 9.00000 | 1.00000 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | − 10.0000i | − 1.09764i | −0.835940 | − | 0.548821i | \(-0.815077\pi\) | ||||
| 0.835940 | − | 0.548821i | \(-0.184923\pi\) | |||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 10.7703 | 1.07169 | 0.535844 | − | 0.844317i | \(-0.319994\pi\) | ||||
| 0.535844 | + | 0.844317i | \(0.319994\pi\) | |||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 14.0000i | 1.35343i | 0.736245 | + | 0.676716i | \(0.236597\pi\) | ||||
| −0.736245 | + | 0.676716i | \(0.763403\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −11.0000 | −1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 0 | 0 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | − 10.7703i | − 0.955712i | −0.878438 | − | 0.477856i | \(-0.841414\pi\) | ||||
| 0.878438 | − | 0.477856i | \(-0.158586\pi\) | |||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | − 18.0000i | − 1.52674i | −0.645961 | − | 0.763370i | \(-0.723543\pi\) | ||||
| 0.645961 | − | 0.763370i | \(-0.276457\pi\) | |||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 10.7703 | 0.859566 | 0.429783 | − | 0.902932i | \(-0.358590\pi\) | ||||
| 0.429783 | + | 0.902932i | \(0.358590\pi\) | |||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | 13.0000 | 1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 0 | 0 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 22.0000i | 1.64436i | 0.569230 | + | 0.822179i | \(0.307242\pi\) | ||||
| −0.569230 | + | 0.822179i | \(0.692758\pi\) | |||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | − 10.7703i | − 0.779314i | −0.920960 | − | 0.389657i | \(-0.872594\pi\) | ||||
| 0.920960 | − | 0.389657i | \(-0.127406\pi\) | |||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 0 | 0 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | −15.0000 | −1.00000 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | − 26.0000i | − 1.72568i | −0.505477 | − | 0.862840i | \(-0.668683\pi\) | ||||
| 0.505477 | − | 0.862840i | \(-0.331317\pi\) | |||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 10.7703 | 0.711723 | 0.355862 | − | 0.934539i | \(-0.384187\pi\) | ||||
| 0.355862 | + | 0.934539i | \(0.384187\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 2.00000 | 0.131024 | 0.0655122 | − | 0.997852i | \(-0.479132\pi\) | ||||
| 0.0655122 | + | 0.997852i | \(0.479132\pi\) | |||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | −6.00000 | −0.386494 | −0.193247 | − | 0.981150i | \(-0.561902\pi\) | ||||
| −0.193247 | + | 0.981150i | \(0.561902\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 0 | 0 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 10.0000 | 0.623783 | 0.311891 | − | 0.950118i | \(-0.399037\pi\) | ||||
| 0.311891 | + | 0.950118i | \(0.399037\pi\) | |||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | −16.1555 | −1.00000 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 32.3110i | 1.99238i | 0.0872041 | + | 0.996190i | \(0.472207\pi\) | ||||
| −0.0872041 | + | 0.996190i | \(0.527793\pi\) | |||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | −32.3110 | −1.97004 | −0.985018 | − | 0.172452i | \(-0.944831\pi\) | ||||
| −0.985018 | + | 0.172452i | \(0.944831\pi\) | |||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | − 10.7703i | − 0.654251i | −0.944981 | − | 0.327125i | \(-0.893920\pi\) | ||||
| 0.944981 | − | 0.327125i | \(-0.106080\pi\) | |||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 32.3110i | 1.93441i | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | −14.0000 | −0.835170 | −0.417585 | − | 0.908638i | \(-0.637123\pi\) | ||||
| −0.417585 | + | 0.908638i | \(0.637123\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 30.0000i | 1.78331i | 0.452711 | + | 0.891657i | \(0.350457\pi\) | ||||
| −0.452711 | + | 0.891657i | \(0.649543\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 17.0000 | 1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | −32.3110 | −1.88763 | −0.943814 | − | 0.330477i | \(-0.892790\pi\) | ||||
| −0.943814 | + | 0.330477i | \(0.892790\pi\) | |||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 0 | 0 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 32.3110i | 1.83219i | 0.400963 | + | 0.916094i | \(0.368675\pi\) | ||||
| −0.400963 | + | 0.916094i | \(0.631325\pi\) | |||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 18.0000 | 1.01742 | 0.508710 | − | 0.860938i | \(-0.330123\pi\) | ||||
| 0.508710 | + | 0.860938i | \(0.330123\pi\) | |||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 10.7703 | 0.604922 | 0.302461 | − | 0.953162i | \(-0.402192\pi\) | ||||
| 0.302461 | + | 0.953162i | \(0.402192\pi\) | |||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | −32.3110 | −1.77063 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 0 | 0 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | − 34.0000i | − 1.82522i | −0.408836 | − | 0.912608i | \(-0.634065\pi\) | ||||
| 0.408836 | − | 0.912608i | \(-0.365935\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | −22.0000 | −1.17094 | −0.585471 | − | 0.810693i | \(-0.699090\pi\) | ||||
| −0.585471 | + | 0.810693i | \(0.699090\pi\) | |||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 32.3110i | 1.70531i | 0.522475 | + | 0.852654i | \(0.325009\pi\) | ||||
| −0.522475 | + | 0.852654i | \(0.674991\pi\) | |||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −19.0000 | −1.00000 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | − 10.7703i | − 0.562207i | −0.959678 | − | 0.281103i | \(-0.909300\pi\) | ||||
| 0.959678 | − | 0.281103i | \(-0.0907004\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | −32.3110 | −1.63823 | −0.819116 | − | 0.573628i | \(-0.805536\pi\) | ||||
| −0.819116 | + | 0.573628i | \(0.805536\pi\) | |||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | 26.0000 | 1.29838 | 0.649189 | − | 0.760627i | \(-0.275108\pi\) | ||||
| 0.649189 | + | 0.760627i | \(0.275108\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 38.0000i | 1.85642i | 0.372055 | + | 0.928211i | \(0.378653\pi\) | ||||
| −0.372055 | + | 0.928211i | \(0.621347\pi\) | |||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 10.7703 | 0.524914 | 0.262457 | − | 0.964944i | \(-0.415467\pi\) | ||||
| 0.262457 | + | 0.964944i | \(0.415467\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 32.3110i | 1.57101i | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 0 | 0 | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 21.0000 | 1.00000 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 0 | 0 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | −30.0000 | −1.40334 | −0.701670 | − | 0.712502i | \(-0.747562\pi\) | ||||
| −0.701670 | + | 0.712502i | \(0.747562\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | −32.3110 | −1.50487 | −0.752436 | − | 0.658665i | \(-0.771121\pi\) | ||||
| −0.752436 | + | 0.658665i | \(0.771121\pi\) | |||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 0 | 0 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | − 10.7703i | − 0.492109i | −0.969256 | − | 0.246054i | \(-0.920866\pi\) | ||||
| 0.969256 | − | 0.246054i | \(-0.0791342\pi\) | |||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | − 42.0000i | − 1.88018i | −0.340929 | − | 0.940089i | \(-0.610742\pi\) | ||||
| 0.340929 | − | 0.940089i | \(-0.389258\pi\) | |||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 32.3110i | 1.44068i | 0.693623 | + | 0.720338i | \(0.256013\pi\) | ||||
| −0.693623 | + | 0.720338i | \(0.743987\pi\) | |||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 0 | 0 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 34.0000 | 1.48957 | 0.744784 | − | 0.667306i | \(-0.232553\pi\) | ||||
| 0.744784 | + | 0.667306i | \(0.232553\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | − 2.00000i | − 0.0874539i | −0.999044 | − | 0.0437269i | \(-0.986077\pi\) | ||||
| 0.999044 | − | 0.0437269i | \(-0.0139232\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −23.0000 | −1.00000 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 6.00000i | 0.260378i | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | 10.7703 | 0.463053 | 0.231526 | − | 0.972829i | \(-0.425628\pi\) | ||||
| 0.231526 | + | 0.972829i | \(0.425628\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 0 | 0 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | − 10.0000i | − 0.427569i | −0.976881 | − | 0.213785i | \(-0.931421\pi\) | ||||
| 0.976881 | − | 0.213785i | \(-0.0685791\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | −32.3110 | −1.37900 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 14.0000i | 0.585882i | 0.956131 | + | 0.292941i | \(0.0946339\pi\) | ||||
| −0.956131 | + | 0.292941i | \(0.905366\pi\) | |||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 0 | 0 | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 46.0000i | 1.89862i | 0.314337 | + | 0.949312i | \(0.398218\pi\) | ||||
| −0.314337 | + | 0.949312i | \(0.601782\pi\) | |||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | −38.0000 | −1.56047 | −0.780236 | − | 0.625485i | \(-0.784901\pi\) | ||||
| −0.780236 | + | 0.625485i | \(0.784901\pi\) | |||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 32.3110i | 1.32019i | 0.751182 | + | 0.660096i | \(0.229484\pi\) | ||||
| −0.751182 | + | 0.660096i | \(0.770516\pi\) | |||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | − 18.0000i | − 0.733017i | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | 0 | 0 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | − 10.7703i | − 0.437154i | −0.975820 | − | 0.218577i | \(-0.929858\pi\) | ||||
| 0.975820 | − | 0.218577i | \(-0.0701415\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 25.0000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 22.0000i | 0.867595i | 0.901010 | + | 0.433798i | \(0.142827\pi\) | ||||
| −0.901010 | + | 0.433798i | \(0.857173\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | −32.3110 | −1.26443 | −0.632213 | − | 0.774794i | \(-0.717853\pi\) | ||||
| −0.632213 | + | 0.774794i | \(0.717853\pi\) | |||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 42.0000 | 1.61898 | 0.809491 | − | 0.587133i | \(-0.199743\pi\) | ||||
| 0.809491 | + | 0.587133i | \(0.199743\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 10.7703 | 0.413937 | 0.206969 | − | 0.978348i | \(-0.433640\pi\) | ||||
| 0.206969 | + | 0.978348i | \(0.433640\pi\) | |||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | − 50.0000i | − 1.91320i | −0.291409 | − | 0.956598i | \(-0.594124\pi\) | ||||
| 0.291409 | − | 0.956598i | \(-0.405876\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | − 26.0000i | − 0.989087i | −0.869153 | − | 0.494543i | \(-0.835335\pi\) | ||||
| 0.869153 | − | 0.494543i | \(-0.164665\pi\) | |||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 32.3110i | 1.21176i | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 0 | 0 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | 26.9258 | 1.00000 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | − 53.8516i | − 1.99725i | −0.0524503 | − | 0.998624i | \(-0.516703\pi\) | ||||
| 0.0524503 | − | 0.998624i | \(-0.483297\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | −27.0000 | −1.00000 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 53.8516 | 1.98906 | 0.994528 | − | 0.104470i | \(-0.0333147\pi\) | ||||
| 0.994528 | + | 0.104470i | \(0.0333147\pi\) | |||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | − 53.8516i | − 1.97563i | −0.155647 | − | 0.987813i | \(-0.549746\pi\) | ||||
| 0.155647 | − | 0.987813i | \(-0.450254\pi\) | |||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 30.0000i | 1.09764i | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | − 10.7703i | − 0.393015i | −0.980502 | − | 0.196507i | \(-0.937040\pi\) | ||||
| 0.980502 | − | 0.196507i | \(-0.0629600\pi\) | |||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 53.8516 | 1.95727 | 0.978636 | − | 0.205602i | \(-0.0659152\pi\) | ||||
| 0.978636 | + | 0.205602i | \(0.0659152\pi\) | |||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | −46.0000 | −1.66750 | −0.833749 | − | 0.552143i | \(-0.813810\pi\) | ||||
| −0.833749 | + | 0.552143i | \(0.813810\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 0 | 0 | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | −32.3110 | −1.16215 | −0.581073 | − | 0.813852i | \(-0.697367\pi\) | ||||
| −0.581073 | + | 0.813852i | \(0.697367\pi\) | |||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | − 53.8516i | − 1.93441i | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 54.0000i | 1.92489i | 0.271473 | + | 0.962446i | \(0.412489\pi\) | ||||
| −0.271473 | + | 0.962446i | \(0.587511\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 53.8516 | 1.90752 | 0.953762 | − | 0.300564i | \(-0.0971749\pi\) | ||||
| 0.953762 | + | 0.300564i | \(0.0971749\pi\) | |||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | − 34.0000i | − 1.19390i | −0.802278 | − | 0.596951i | \(-0.796379\pi\) | ||||
| 0.802278 | − | 0.596951i | \(-0.203621\pi\) | |||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | − 53.8516i | − 1.87715i | −0.345075 | − | 0.938575i | \(-0.612146\pi\) | ||||
| 0.345075 | − | 0.938575i | \(-0.387854\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | 10.7703 | 0.374069 | 0.187035 | − | 0.982353i | \(-0.440112\pi\) | ||||
| 0.187035 | + | 0.982353i | \(0.440112\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 32.3110i | 1.11550i | 0.830009 | + | 0.557750i | \(0.188335\pi\) | ||||
| −0.830009 | + | 0.557750i | \(0.811665\pi\) | |||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | 29.0000 | 1.00000 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 0 | 0 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 0 | 0 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 53.8516 | 1.84385 | 0.921923 | − | 0.387374i | \(-0.126618\pi\) | ||||
| 0.921923 | + | 0.387374i | \(0.126618\pi\) | |||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 50.0000 | 1.70797 | 0.853984 | − | 0.520300i | \(-0.174180\pi\) | ||||
| 0.853984 | + | 0.520300i | \(0.174180\pi\) | |||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 38.0000i | 1.27880i | 0.768874 | + | 0.639401i | \(0.220818\pi\) | ||||
| −0.768874 | + | 0.639401i | \(0.779182\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | − 53.8516i | − 1.80816i | −0.427362 | − | 0.904081i | \(-0.640557\pi\) | ||||
| 0.427362 | − | 0.904081i | \(-0.359443\pi\) | |||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 0 | 0 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | − 58.0000i | − 1.93441i | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | −32.3110 | −1.07169 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | − 10.7703i | − 0.356837i | −0.983955 | − | 0.178418i | \(-0.942902\pi\) | ||||
| 0.983955 | − | 0.178418i | \(-0.0570981\pi\) | |||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 53.8516 | 1.77063 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | 2.00000 | 0.0656179 | 0.0328089 | − | 0.999462i | \(-0.489555\pi\) | ||||
| 0.0328089 | + | 0.999462i | \(0.489555\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 0 | 0 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | −6.00000 | −0.196011 | −0.0980057 | − | 0.995186i | \(-0.531246\pi\) | ||||
| −0.0980057 | + | 0.995186i | \(0.531246\pi\) | |||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 10.0000 | 0.323932 | 0.161966 | − | 0.986796i | \(-0.448217\pi\) | ||||
| 0.161966 | + | 0.986796i | \(0.448217\pi\) | |||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −85.0000 | −2.74194 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | − 42.0000i | − 1.35343i | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | − 53.8516i | − 1.73175i | −0.500258 | − | 0.865876i | \(-0.666762\pi\) | ||||
| 0.500258 | − | 0.865876i | \(-0.333238\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | −14.0000 | −0.447900 | −0.223950 | − | 0.974601i | \(-0.571895\pi\) | ||||
| −0.223950 | + | 0.974601i | \(0.571895\pi\) | |||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 32.3110i | 1.03056i | 0.857022 | + | 0.515280i | \(0.172312\pi\) | ||||
| −0.857022 | + | 0.515280i | \(0.827688\pi\) | |||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 10.7703 | 0.341100 | 0.170550 | − | 0.985349i | \(-0.445446\pi\) | ||||
| 0.170550 | + | 0.985349i | \(0.445446\pi\) | |||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 1856.2.g.a.289.3 | yes | 4 | |
| 4.3 | odd | 2 | inner | 1856.2.g.a.289.4 | yes | 4 | |
| 8.3 | odd | 2 | inner | 1856.2.g.a.289.2 | yes | 4 | |
| 8.5 | even | 2 | inner | 1856.2.g.a.289.1 | ✓ | 4 | |
| 29.28 | even | 2 | inner | 1856.2.g.a.289.2 | yes | 4 | |
| 116.115 | odd | 2 | inner | 1856.2.g.a.289.1 | ✓ | 4 | |
| 232.115 | odd | 2 | CM | 1856.2.g.a.289.3 | yes | 4 | |
| 232.173 | even | 2 | inner | 1856.2.g.a.289.4 | yes | 4 | |
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 1856.2.g.a.289.1 | ✓ | 4 | 8.5 | even | 2 | inner | |
| 1856.2.g.a.289.1 | ✓ | 4 | 116.115 | odd | 2 | inner | |
| 1856.2.g.a.289.2 | yes | 4 | 8.3 | odd | 2 | inner | |
| 1856.2.g.a.289.2 | yes | 4 | 29.28 | even | 2 | inner | |
| 1856.2.g.a.289.3 | yes | 4 | 1.1 | even | 1 | trivial | |
| 1856.2.g.a.289.3 | yes | 4 | 232.115 | odd | 2 | CM | |
| 1856.2.g.a.289.4 | yes | 4 | 4.3 | odd | 2 | inner | |
| 1856.2.g.a.289.4 | yes | 4 | 232.173 | even | 2 | inner | |