Properties

Label 1856.2.a.w
Level $1856$
Weight $2$
Character orbit 1856.a
Self dual yes
Analytic conductor $14.820$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1856,2,Mod(1,1856)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1856, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1856.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1856 = 2^{6} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1856.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,2,0,0,0,0,0,2,0,2,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.8202346151\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + q^{5} + 2 \beta q^{7} + 2 \beta q^{9} + ( - \beta + 1) q^{11} + (2 \beta + 1) q^{13} + (\beta + 1) q^{15} + (2 \beta - 2) q^{17} + 6 q^{19} + (2 \beta + 4) q^{21} + ( - 4 \beta + 2) q^{23}+ \cdots + (2 \beta - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{11} + 2 q^{13} + 2 q^{15} - 4 q^{17} + 12 q^{19} + 8 q^{21} + 4 q^{23} - 8 q^{25} + 2 q^{27} - 2 q^{29} - 6 q^{31} - 2 q^{33} + 8 q^{37} + 10 q^{39} + 8 q^{41} + 10 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −0.414214 0 1.00000 0 −2.82843 0 −2.82843 0
1.2 0 2.41421 0 1.00000 0 2.82843 0 2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1856.2.a.w 2
4.b odd 2 1 1856.2.a.r 2
8.b even 2 1 464.2.a.h 2
8.d odd 2 1 29.2.a.a 2
24.f even 2 1 261.2.a.d 2
24.h odd 2 1 4176.2.a.bq 2
40.e odd 2 1 725.2.a.b 2
40.k even 4 2 725.2.b.b 4
56.e even 2 1 1421.2.a.j 2
88.g even 2 1 3509.2.a.j 2
104.h odd 2 1 4901.2.a.g 2
120.m even 2 1 6525.2.a.o 2
136.e odd 2 1 8381.2.a.e 2
232.b odd 2 1 841.2.a.d 2
232.k even 4 2 841.2.b.a 4
232.p odd 14 6 841.2.d.j 12
232.t odd 14 6 841.2.d.f 12
232.v even 28 12 841.2.e.k 24
696.l even 2 1 7569.2.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.2.a.a 2 8.d odd 2 1
261.2.a.d 2 24.f even 2 1
464.2.a.h 2 8.b even 2 1
725.2.a.b 2 40.e odd 2 1
725.2.b.b 4 40.k even 4 2
841.2.a.d 2 232.b odd 2 1
841.2.b.a 4 232.k even 4 2
841.2.d.f 12 232.t odd 14 6
841.2.d.j 12 232.p odd 14 6
841.2.e.k 24 232.v even 28 12
1421.2.a.j 2 56.e even 2 1
1856.2.a.r 2 4.b odd 2 1
1856.2.a.w 2 1.a even 1 1 trivial
3509.2.a.j 2 88.g even 2 1
4176.2.a.bq 2 24.h odd 2 1
4901.2.a.g 2 104.h odd 2 1
6525.2.a.o 2 120.m even 2 1
7569.2.a.c 2 696.l even 2 1
8381.2.a.e 2 136.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1856))\):

\( T_{3}^{2} - 2T_{3} - 1 \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 8 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 7 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$19$ \( (T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 6T - 41 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 23 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T - 17 \) Copy content Toggle raw display
$53$ \( T^{2} + 2T - 71 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$67$ \( T^{2} - 32 \) Copy content Toggle raw display
$71$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$73$ \( (T - 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$83$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$89$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
show more
show less