Properties

Label 1848.2.v.e.881.16
Level $1848$
Weight $2$
Character 1848.881
Analytic conductor $14.756$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1848,2,Mod(881,1848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1848.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.v (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7563542935\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.16
Character \(\chi\) \(=\) 1848.881
Dual form 1848.2.v.e.881.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.228186 + 1.71695i) q^{3} +1.84204 q^{5} +(0.286690 + 2.63017i) q^{7} +(-2.89586 - 0.783571i) q^{9} +1.00000i q^{11} +6.65872i q^{13} +(-0.420328 + 3.16270i) q^{15} -6.91093 q^{17} +0.932936i q^{19} +(-4.58130 - 0.107936i) q^{21} -6.36510i q^{23} -1.60689 q^{25} +(2.00615 - 4.79326i) q^{27} +1.98122i q^{29} -5.52322i q^{31} +(-1.71695 - 0.228186i) q^{33} +(0.528094 + 4.84488i) q^{35} +0.344178 q^{37} +(-11.4327 - 1.51943i) q^{39} -1.92582 q^{41} -1.37134 q^{43} +(-5.33429 - 1.44337i) q^{45} +10.2056 q^{47} +(-6.83562 + 1.50809i) q^{49} +(1.57698 - 11.8657i) q^{51} +6.02011i q^{53} +1.84204i q^{55} +(-1.60181 - 0.212883i) q^{57} +10.1230 q^{59} +13.4033i q^{61} +(1.23071 - 7.84126i) q^{63} +12.2656i q^{65} -7.35794 q^{67} +(10.9286 + 1.45243i) q^{69} +7.58725i q^{71} -7.92560i q^{73} +(0.366670 - 2.75895i) q^{75} +(-2.63017 + 0.286690i) q^{77} -0.993655 q^{79} +(7.77203 + 4.53823i) q^{81} -6.57988 q^{83} -12.7302 q^{85} +(-3.40166 - 0.452087i) q^{87} -9.35319 q^{89} +(-17.5136 + 1.90899i) q^{91} +(9.48311 + 1.26032i) q^{93} +1.71851i q^{95} -11.9745i q^{97} +(0.783571 - 2.89586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 4 q^{9} - 16 q^{15} + 6 q^{21} + 68 q^{25} - 68 q^{37} - 32 q^{39} + 120 q^{43} - 64 q^{49} + 56 q^{51} - 44 q^{57} + 42 q^{63} + 4 q^{67} - 56 q^{79} - 28 q^{81} - 44 q^{91} - 28 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1848\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(673\) \(925\) \(1585\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.228186 + 1.71695i −0.131743 + 0.991284i
\(4\) 0 0
\(5\) 1.84204 0.823785 0.411893 0.911232i \(-0.364868\pi\)
0.411893 + 0.911232i \(0.364868\pi\)
\(6\) 0 0
\(7\) 0.286690 + 2.63017i 0.108359 + 0.994112i
\(8\) 0 0
\(9\) −2.89586 0.783571i −0.965287 0.261190i
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 6.65872i 1.84680i 0.383845 + 0.923398i \(0.374600\pi\)
−0.383845 + 0.923398i \(0.625400\pi\)
\(14\) 0 0
\(15\) −0.420328 + 3.16270i −0.108528 + 0.816605i
\(16\) 0 0
\(17\) −6.91093 −1.67615 −0.838073 0.545558i \(-0.816318\pi\)
−0.838073 + 0.545558i \(0.816318\pi\)
\(18\) 0 0
\(19\) 0.932936i 0.214030i 0.994257 + 0.107015i \(0.0341293\pi\)
−0.994257 + 0.107015i \(0.965871\pi\)
\(20\) 0 0
\(21\) −4.58130 0.107936i −0.999723 0.0235536i
\(22\) 0 0
\(23\) 6.36510i 1.32722i −0.748081 0.663608i \(-0.769024\pi\)
0.748081 0.663608i \(-0.230976\pi\)
\(24\) 0 0
\(25\) −1.60689 −0.321378
\(26\) 0 0
\(27\) 2.00615 4.79326i 0.386084 0.922464i
\(28\) 0 0
\(29\) 1.98122i 0.367903i 0.982935 + 0.183951i \(0.0588889\pi\)
−0.982935 + 0.183951i \(0.941111\pi\)
\(30\) 0 0
\(31\) 5.52322i 0.992000i −0.868323 0.496000i \(-0.834802\pi\)
0.868323 0.496000i \(-0.165198\pi\)
\(32\) 0 0
\(33\) −1.71695 0.228186i −0.298883 0.0397221i
\(34\) 0 0
\(35\) 0.528094 + 4.84488i 0.0892642 + 0.818935i
\(36\) 0 0
\(37\) 0.344178 0.0565826 0.0282913 0.999600i \(-0.490993\pi\)
0.0282913 + 0.999600i \(0.490993\pi\)
\(38\) 0 0
\(39\) −11.4327 1.51943i −1.83070 0.243303i
\(40\) 0 0
\(41\) −1.92582 −0.300763 −0.150381 0.988628i \(-0.548050\pi\)
−0.150381 + 0.988628i \(0.548050\pi\)
\(42\) 0 0
\(43\) −1.37134 −0.209128 −0.104564 0.994518i \(-0.533345\pi\)
−0.104564 + 0.994518i \(0.533345\pi\)
\(44\) 0 0
\(45\) −5.33429 1.44337i −0.795189 0.215165i
\(46\) 0 0
\(47\) 10.2056 1.48864 0.744319 0.667825i \(-0.232774\pi\)
0.744319 + 0.667825i \(0.232774\pi\)
\(48\) 0 0
\(49\) −6.83562 + 1.50809i −0.976517 + 0.215441i
\(50\) 0 0
\(51\) 1.57698 11.8657i 0.220821 1.66154i
\(52\) 0 0
\(53\) 6.02011i 0.826926i 0.910521 + 0.413463i \(0.135681\pi\)
−0.910521 + 0.413463i \(0.864319\pi\)
\(54\) 0 0
\(55\) 1.84204i 0.248381i
\(56\) 0 0
\(57\) −1.60181 0.212883i −0.212165 0.0281971i
\(58\) 0 0
\(59\) 10.1230 1.31791 0.658953 0.752184i \(-0.270999\pi\)
0.658953 + 0.752184i \(0.270999\pi\)
\(60\) 0 0
\(61\) 13.4033i 1.71612i 0.513550 + 0.858059i \(0.328330\pi\)
−0.513550 + 0.858059i \(0.671670\pi\)
\(62\) 0 0
\(63\) 1.23071 7.84126i 0.155055 0.987906i
\(64\) 0 0
\(65\) 12.2656i 1.52136i
\(66\) 0 0
\(67\) −7.35794 −0.898916 −0.449458 0.893301i \(-0.648383\pi\)
−0.449458 + 0.893301i \(0.648383\pi\)
\(68\) 0 0
\(69\) 10.9286 + 1.45243i 1.31565 + 0.174852i
\(70\) 0 0
\(71\) 7.58725i 0.900441i 0.892917 + 0.450221i \(0.148655\pi\)
−0.892917 + 0.450221i \(0.851345\pi\)
\(72\) 0 0
\(73\) 7.92560i 0.927622i −0.885934 0.463811i \(-0.846482\pi\)
0.885934 0.463811i \(-0.153518\pi\)
\(74\) 0 0
\(75\) 0.366670 2.75895i 0.0423394 0.318577i
\(76\) 0 0
\(77\) −2.63017 + 0.286690i −0.299736 + 0.0326713i
\(78\) 0 0
\(79\) −0.993655 −0.111795 −0.0558974 0.998437i \(-0.517802\pi\)
−0.0558974 + 0.998437i \(0.517802\pi\)
\(80\) 0 0
\(81\) 7.77203 + 4.53823i 0.863559 + 0.504247i
\(82\) 0 0
\(83\) −6.57988 −0.722235 −0.361118 0.932520i \(-0.617605\pi\)
−0.361118 + 0.932520i \(0.617605\pi\)
\(84\) 0 0
\(85\) −12.7302 −1.38078
\(86\) 0 0
\(87\) −3.40166 0.452087i −0.364696 0.0484688i
\(88\) 0 0
\(89\) −9.35319 −0.991436 −0.495718 0.868484i \(-0.665095\pi\)
−0.495718 + 0.868484i \(0.665095\pi\)
\(90\) 0 0
\(91\) −17.5136 + 1.90899i −1.83592 + 0.200116i
\(92\) 0 0
\(93\) 9.48311 + 1.26032i 0.983353 + 0.130689i
\(94\) 0 0
\(95\) 1.71851i 0.176315i
\(96\) 0 0
\(97\) 11.9745i 1.21582i −0.794004 0.607912i \(-0.792007\pi\)
0.794004 0.607912i \(-0.207993\pi\)
\(98\) 0 0
\(99\) 0.783571 2.89586i 0.0787518 0.291045i
\(100\) 0 0
\(101\) 9.97020 0.992072 0.496036 0.868302i \(-0.334788\pi\)
0.496036 + 0.868302i \(0.334788\pi\)
\(102\) 0 0
\(103\) 11.1682i 1.10044i 0.835021 + 0.550218i \(0.185455\pi\)
−0.835021 + 0.550218i \(0.814545\pi\)
\(104\) 0 0
\(105\) −8.43895 0.198822i −0.823557 0.0194031i
\(106\) 0 0
\(107\) 8.60700i 0.832070i −0.909349 0.416035i \(-0.863419\pi\)
0.909349 0.416035i \(-0.136581\pi\)
\(108\) 0 0
\(109\) −3.61223 −0.345989 −0.172995 0.984923i \(-0.555344\pi\)
−0.172995 + 0.984923i \(0.555344\pi\)
\(110\) 0 0
\(111\) −0.0785368 + 0.590939i −0.00745438 + 0.0560894i
\(112\) 0 0
\(113\) 11.5392i 1.08551i −0.839890 0.542757i \(-0.817380\pi\)
0.839890 0.542757i \(-0.182620\pi\)
\(114\) 0 0
\(115\) 11.7248i 1.09334i
\(116\) 0 0
\(117\) 5.21757 19.2827i 0.482365 1.78269i
\(118\) 0 0
\(119\) −1.98129 18.1769i −0.181625 1.66628i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0.439446 3.30654i 0.0396235 0.298141i
\(124\) 0 0
\(125\) −12.1702 −1.08853
\(126\) 0 0
\(127\) 5.31196 0.471360 0.235680 0.971831i \(-0.424268\pi\)
0.235680 + 0.971831i \(0.424268\pi\)
\(128\) 0 0
\(129\) 0.312922 2.35453i 0.0275512 0.207305i
\(130\) 0 0
\(131\) 3.98885 0.348508 0.174254 0.984701i \(-0.444249\pi\)
0.174254 + 0.984701i \(0.444249\pi\)
\(132\) 0 0
\(133\) −2.45378 + 0.267463i −0.212770 + 0.0231920i
\(134\) 0 0
\(135\) 3.69541 8.82938i 0.318050 0.759912i
\(136\) 0 0
\(137\) 17.9141i 1.53051i 0.643729 + 0.765253i \(0.277386\pi\)
−0.643729 + 0.765253i \(0.722614\pi\)
\(138\) 0 0
\(139\) 22.2150i 1.88425i 0.335263 + 0.942124i \(0.391175\pi\)
−0.335263 + 0.942124i \(0.608825\pi\)
\(140\) 0 0
\(141\) −2.32877 + 17.5225i −0.196118 + 1.47566i
\(142\) 0 0
\(143\) −6.65872 −0.556830
\(144\) 0 0
\(145\) 3.64948i 0.303073i
\(146\) 0 0
\(147\) −1.02952 12.0806i −0.0849137 0.996388i
\(148\) 0 0
\(149\) 3.26433i 0.267424i 0.991020 + 0.133712i \(0.0426898\pi\)
−0.991020 + 0.133712i \(0.957310\pi\)
\(150\) 0 0
\(151\) 7.13598 0.580718 0.290359 0.956918i \(-0.406225\pi\)
0.290359 + 0.956918i \(0.406225\pi\)
\(152\) 0 0
\(153\) 20.0131 + 5.41520i 1.61796 + 0.437793i
\(154\) 0 0
\(155\) 10.1740i 0.817195i
\(156\) 0 0
\(157\) 18.7298i 1.49480i −0.664374 0.747400i \(-0.731302\pi\)
0.664374 0.747400i \(-0.268698\pi\)
\(158\) 0 0
\(159\) −10.3363 1.37371i −0.819718 0.108942i
\(160\) 0 0
\(161\) 16.7413 1.82481i 1.31940 0.143815i
\(162\) 0 0
\(163\) 5.35976 0.419809 0.209904 0.977722i \(-0.432685\pi\)
0.209904 + 0.977722i \(0.432685\pi\)
\(164\) 0 0
\(165\) −3.16270 0.420328i −0.246216 0.0327225i
\(166\) 0 0
\(167\) −10.7726 −0.833610 −0.416805 0.908996i \(-0.636850\pi\)
−0.416805 + 0.908996i \(0.636850\pi\)
\(168\) 0 0
\(169\) −31.3385 −2.41065
\(170\) 0 0
\(171\) 0.731022 2.70166i 0.0559026 0.206601i
\(172\) 0 0
\(173\) −9.06474 −0.689180 −0.344590 0.938753i \(-0.611982\pi\)
−0.344590 + 0.938753i \(0.611982\pi\)
\(174\) 0 0
\(175\) −0.460679 4.22640i −0.0348241 0.319486i
\(176\) 0 0
\(177\) −2.30994 + 17.3808i −0.173626 + 1.30642i
\(178\) 0 0
\(179\) 19.1310i 1.42992i 0.699167 + 0.714959i \(0.253555\pi\)
−0.699167 + 0.714959i \(0.746445\pi\)
\(180\) 0 0
\(181\) 14.1149i 1.04915i 0.851365 + 0.524574i \(0.175776\pi\)
−0.851365 + 0.524574i \(0.824224\pi\)
\(182\) 0 0
\(183\) −23.0129 3.05845i −1.70116 0.226087i
\(184\) 0 0
\(185\) 0.633990 0.0466119
\(186\) 0 0
\(187\) 6.91093i 0.505377i
\(188\) 0 0
\(189\) 13.1823 + 3.90234i 0.958868 + 0.283854i
\(190\) 0 0
\(191\) 13.9988i 1.01292i −0.862265 0.506458i \(-0.830955\pi\)
0.862265 0.506458i \(-0.169045\pi\)
\(192\) 0 0
\(193\) 14.0720 1.01292 0.506462 0.862262i \(-0.330953\pi\)
0.506462 + 0.862262i \(0.330953\pi\)
\(194\) 0 0
\(195\) −21.0595 2.79885i −1.50810 0.200430i
\(196\) 0 0
\(197\) 0.145471i 0.0103644i −0.999987 0.00518219i \(-0.998350\pi\)
0.999987 0.00518219i \(-0.00164955\pi\)
\(198\) 0 0
\(199\) 14.2886i 1.01289i 0.862273 + 0.506444i \(0.169040\pi\)
−0.862273 + 0.506444i \(0.830960\pi\)
\(200\) 0 0
\(201\) 1.67898 12.6333i 0.118426 0.891081i
\(202\) 0 0
\(203\) −5.21094 + 0.567995i −0.365736 + 0.0398654i
\(204\) 0 0
\(205\) −3.54744 −0.247764
\(206\) 0 0
\(207\) −4.98751 + 18.4325i −0.346656 + 1.28114i
\(208\) 0 0
\(209\) −0.932936 −0.0645326
\(210\) 0 0
\(211\) −16.2575 −1.11921 −0.559607 0.828758i \(-0.689048\pi\)
−0.559607 + 0.828758i \(0.689048\pi\)
\(212\) 0 0
\(213\) −13.0270 1.73131i −0.892593 0.118627i
\(214\) 0 0
\(215\) −2.52607 −0.172276
\(216\) 0 0
\(217\) 14.5270 1.58345i 0.986159 0.107492i
\(218\) 0 0
\(219\) 13.6079 + 1.80851i 0.919536 + 0.122208i
\(220\) 0 0
\(221\) 46.0179i 3.09550i
\(222\) 0 0
\(223\) 11.0700i 0.741300i 0.928773 + 0.370650i \(0.120865\pi\)
−0.928773 + 0.370650i \(0.879135\pi\)
\(224\) 0 0
\(225\) 4.65333 + 1.25911i 0.310222 + 0.0839408i
\(226\) 0 0
\(227\) 13.1716 0.874233 0.437116 0.899405i \(-0.356000\pi\)
0.437116 + 0.899405i \(0.356000\pi\)
\(228\) 0 0
\(229\) 16.6082i 1.09750i 0.835985 + 0.548752i \(0.184897\pi\)
−0.835985 + 0.548752i \(0.815103\pi\)
\(230\) 0 0
\(231\) 0.107936 4.58130i 0.00710166 0.301428i
\(232\) 0 0
\(233\) 13.9908i 0.916568i 0.888806 + 0.458284i \(0.151536\pi\)
−0.888806 + 0.458284i \(0.848464\pi\)
\(234\) 0 0
\(235\) 18.7991 1.22632
\(236\) 0 0
\(237\) 0.226738 1.70606i 0.0147282 0.110820i
\(238\) 0 0
\(239\) 8.11661i 0.525020i 0.964929 + 0.262510i \(0.0845503\pi\)
−0.964929 + 0.262510i \(0.915450\pi\)
\(240\) 0 0
\(241\) 23.2933i 1.50046i 0.661179 + 0.750228i \(0.270056\pi\)
−0.661179 + 0.750228i \(0.729944\pi\)
\(242\) 0 0
\(243\) −9.56540 + 12.3087i −0.613620 + 0.789601i
\(244\) 0 0
\(245\) −12.5915 + 2.77796i −0.804440 + 0.177477i
\(246\) 0 0
\(247\) −6.21216 −0.395270
\(248\) 0 0
\(249\) 1.50144 11.2973i 0.0951498 0.715940i
\(250\) 0 0
\(251\) 28.7735 1.81617 0.908083 0.418790i \(-0.137546\pi\)
0.908083 + 0.418790i \(0.137546\pi\)
\(252\) 0 0
\(253\) 6.36510 0.400171
\(254\) 0 0
\(255\) 2.90486 21.8572i 0.181909 1.36875i
\(256\) 0 0
\(257\) −12.8504 −0.801586 −0.400793 0.916169i \(-0.631265\pi\)
−0.400793 + 0.916169i \(0.631265\pi\)
\(258\) 0 0
\(259\) 0.0986725 + 0.905249i 0.00613121 + 0.0562494i
\(260\) 0 0
\(261\) 1.55242 5.73733i 0.0960926 0.355132i
\(262\) 0 0
\(263\) 20.6328i 1.27227i −0.771576 0.636137i \(-0.780531\pi\)
0.771576 0.636137i \(-0.219469\pi\)
\(264\) 0 0
\(265\) 11.0893i 0.681209i
\(266\) 0 0
\(267\) 2.13427 16.0590i 0.130615 0.982794i
\(268\) 0 0
\(269\) −7.96994 −0.485936 −0.242968 0.970034i \(-0.578121\pi\)
−0.242968 + 0.970034i \(0.578121\pi\)
\(270\) 0 0
\(271\) 6.32592i 0.384272i −0.981368 0.192136i \(-0.938458\pi\)
0.981368 0.192136i \(-0.0615415\pi\)
\(272\) 0 0
\(273\) 0.718715 30.5056i 0.0434986 1.84628i
\(274\) 0 0
\(275\) 1.60689i 0.0968991i
\(276\) 0 0
\(277\) 11.3204 0.680178 0.340089 0.940393i \(-0.389543\pi\)
0.340089 + 0.940393i \(0.389543\pi\)
\(278\) 0 0
\(279\) −4.32783 + 15.9945i −0.259101 + 0.957565i
\(280\) 0 0
\(281\) 29.1605i 1.73957i 0.493431 + 0.869785i \(0.335743\pi\)
−0.493431 + 0.869785i \(0.664257\pi\)
\(282\) 0 0
\(283\) 10.7006i 0.636082i −0.948077 0.318041i \(-0.896975\pi\)
0.948077 0.318041i \(-0.103025\pi\)
\(284\) 0 0
\(285\) −2.95060 0.392140i −0.174778 0.0232283i
\(286\) 0 0
\(287\) −0.552113 5.06524i −0.0325902 0.298992i
\(288\) 0 0
\(289\) 30.7609 1.80947
\(290\) 0 0
\(291\) 20.5596 + 2.73241i 1.20523 + 0.160177i
\(292\) 0 0
\(293\) 15.4708 0.903812 0.451906 0.892065i \(-0.350744\pi\)
0.451906 + 0.892065i \(0.350744\pi\)
\(294\) 0 0
\(295\) 18.6470 1.08567
\(296\) 0 0
\(297\) 4.79326 + 2.00615i 0.278133 + 0.116409i
\(298\) 0 0
\(299\) 42.3834 2.45110
\(300\) 0 0
\(301\) −0.393150 3.60687i −0.0226608 0.207896i
\(302\) 0 0
\(303\) −2.27506 + 17.1184i −0.130699 + 0.983425i
\(304\) 0 0
\(305\) 24.6894i 1.41371i
\(306\) 0 0
\(307\) 15.8705i 0.905777i 0.891567 + 0.452889i \(0.149606\pi\)
−0.891567 + 0.452889i \(0.850394\pi\)
\(308\) 0 0
\(309\) −19.1753 2.54843i −1.09084 0.144975i
\(310\) 0 0
\(311\) −10.8099 −0.612974 −0.306487 0.951875i \(-0.599154\pi\)
−0.306487 + 0.951875i \(0.599154\pi\)
\(312\) 0 0
\(313\) 7.74653i 0.437859i 0.975741 + 0.218930i \(0.0702566\pi\)
−0.975741 + 0.218930i \(0.929743\pi\)
\(314\) 0 0
\(315\) 2.26702 14.4439i 0.127732 0.813822i
\(316\) 0 0
\(317\) 32.4347i 1.82171i −0.412722 0.910857i \(-0.635422\pi\)
0.412722 0.910857i \(-0.364578\pi\)
\(318\) 0 0
\(319\) −1.98122 −0.110927
\(320\) 0 0
\(321\) 14.7778 + 1.96400i 0.824817 + 0.109620i
\(322\) 0 0
\(323\) 6.44746i 0.358746i
\(324\) 0 0
\(325\) 10.6998i 0.593519i
\(326\) 0 0
\(327\) 0.824262 6.20204i 0.0455818 0.342974i
\(328\) 0 0
\(329\) 2.92584 + 26.8424i 0.161307 + 1.47987i
\(330\) 0 0
\(331\) 4.54109 0.249601 0.124800 0.992182i \(-0.460171\pi\)
0.124800 + 0.992182i \(0.460171\pi\)
\(332\) 0 0
\(333\) −0.996693 0.269688i −0.0546185 0.0147788i
\(334\) 0 0
\(335\) −13.5536 −0.740514
\(336\) 0 0
\(337\) −0.520860 −0.0283731 −0.0141865 0.999899i \(-0.504516\pi\)
−0.0141865 + 0.999899i \(0.504516\pi\)
\(338\) 0 0
\(339\) 19.8122 + 2.63308i 1.07605 + 0.143009i
\(340\) 0 0
\(341\) 5.52322 0.299099
\(342\) 0 0
\(343\) −5.92623 17.5465i −0.319987 0.947422i
\(344\) 0 0
\(345\) 20.1309 + 2.67543i 1.08381 + 0.144040i
\(346\) 0 0
\(347\) 5.36414i 0.287962i 0.989580 + 0.143981i \(0.0459905\pi\)
−0.989580 + 0.143981i \(0.954010\pi\)
\(348\) 0 0
\(349\) 15.3892i 0.823765i 0.911237 + 0.411883i \(0.135129\pi\)
−0.911237 + 0.411883i \(0.864871\pi\)
\(350\) 0 0
\(351\) 31.9170 + 13.3584i 1.70360 + 0.713018i
\(352\) 0 0
\(353\) −2.83659 −0.150977 −0.0754883 0.997147i \(-0.524052\pi\)
−0.0754883 + 0.997147i \(0.524052\pi\)
\(354\) 0 0
\(355\) 13.9760i 0.741770i
\(356\) 0 0
\(357\) 31.6611 + 0.745938i 1.67568 + 0.0394792i
\(358\) 0 0
\(359\) 5.10231i 0.269290i −0.990894 0.134645i \(-0.957011\pi\)
0.990894 0.134645i \(-0.0429894\pi\)
\(360\) 0 0
\(361\) 18.1296 0.954191
\(362\) 0 0
\(363\) 0.228186 1.71695i 0.0119767 0.0901167i
\(364\) 0 0
\(365\) 14.5993i 0.764161i
\(366\) 0 0
\(367\) 22.3203i 1.16511i 0.812791 + 0.582555i \(0.197947\pi\)
−0.812791 + 0.582555i \(0.802053\pi\)
\(368\) 0 0
\(369\) 5.57691 + 1.50902i 0.290322 + 0.0785562i
\(370\) 0 0
\(371\) −15.8339 + 1.72591i −0.822057 + 0.0896045i
\(372\) 0 0
\(373\) 5.28115 0.273448 0.136724 0.990609i \(-0.456343\pi\)
0.136724 + 0.990609i \(0.456343\pi\)
\(374\) 0 0
\(375\) 2.77706 20.8956i 0.143407 1.07904i
\(376\) 0 0
\(377\) −13.1924 −0.679441
\(378\) 0 0
\(379\) −12.7099 −0.652866 −0.326433 0.945220i \(-0.605847\pi\)
−0.326433 + 0.945220i \(0.605847\pi\)
\(380\) 0 0
\(381\) −1.21212 + 9.12039i −0.0620986 + 0.467252i
\(382\) 0 0
\(383\) 14.7446 0.753414 0.376707 0.926332i \(-0.377056\pi\)
0.376707 + 0.926332i \(0.377056\pi\)
\(384\) 0 0
\(385\) −4.84488 + 0.528094i −0.246918 + 0.0269142i
\(386\) 0 0
\(387\) 3.97122 + 1.07454i 0.201868 + 0.0546221i
\(388\) 0 0
\(389\) 4.52999i 0.229679i −0.993384 0.114840i \(-0.963365\pi\)
0.993384 0.114840i \(-0.0366355\pi\)
\(390\) 0 0
\(391\) 43.9888i 2.22461i
\(392\) 0 0
\(393\) −0.910201 + 6.84867i −0.0459136 + 0.345470i
\(394\) 0 0
\(395\) −1.83035 −0.0920950
\(396\) 0 0
\(397\) 23.5710i 1.18300i 0.806306 + 0.591498i \(0.201463\pi\)
−0.806306 + 0.591498i \(0.798537\pi\)
\(398\) 0 0
\(399\) 0.100697 4.27407i 0.00504117 0.213971i
\(400\) 0 0
\(401\) 0.373777i 0.0186655i 0.999956 + 0.00933275i \(0.00297075\pi\)
−0.999956 + 0.00933275i \(0.997029\pi\)
\(402\) 0 0
\(403\) 36.7776 1.83202
\(404\) 0 0
\(405\) 14.3164 + 8.35959i 0.711387 + 0.415391i
\(406\) 0 0
\(407\) 0.344178i 0.0170603i
\(408\) 0 0
\(409\) 16.5090i 0.816315i 0.912911 + 0.408158i \(0.133829\pi\)
−0.912911 + 0.408158i \(0.866171\pi\)
\(410\) 0 0
\(411\) −30.7577 4.08776i −1.51717 0.201634i
\(412\) 0 0
\(413\) 2.90217 + 26.6253i 0.142807 + 1.31015i
\(414\) 0 0
\(415\) −12.1204 −0.594967
\(416\) 0 0
\(417\) −38.1421 5.06915i −1.86783 0.248237i
\(418\) 0 0
\(419\) 6.25550 0.305601 0.152801 0.988257i \(-0.451171\pi\)
0.152801 + 0.988257i \(0.451171\pi\)
\(420\) 0 0
\(421\) 32.9673 1.60673 0.803365 0.595487i \(-0.203041\pi\)
0.803365 + 0.595487i \(0.203041\pi\)
\(422\) 0 0
\(423\) −29.5540 7.99680i −1.43696 0.388818i
\(424\) 0 0
\(425\) 11.1051 0.538676
\(426\) 0 0
\(427\) −35.2530 + 3.84260i −1.70601 + 0.185956i
\(428\) 0 0
\(429\) 1.51943 11.4327i 0.0733587 0.551976i
\(430\) 0 0
\(431\) 17.8039i 0.857585i −0.903403 0.428793i \(-0.858939\pi\)
0.903403 0.428793i \(-0.141061\pi\)
\(432\) 0 0
\(433\) 8.07028i 0.387833i 0.981018 + 0.193916i \(0.0621190\pi\)
−0.981018 + 0.193916i \(0.937881\pi\)
\(434\) 0 0
\(435\) −6.26599 0.832761i −0.300431 0.0399279i
\(436\) 0 0
\(437\) 5.93824 0.284064
\(438\) 0 0
\(439\) 9.24798i 0.441382i −0.975344 0.220691i \(-0.929169\pi\)
0.975344 0.220691i \(-0.0708313\pi\)
\(440\) 0 0
\(441\) 20.9767 + 0.988975i 0.998890 + 0.0470940i
\(442\) 0 0
\(443\) 41.4320i 1.96849i −0.176805 0.984246i \(-0.556576\pi\)
0.176805 0.984246i \(-0.443424\pi\)
\(444\) 0 0
\(445\) −17.2289 −0.816730
\(446\) 0 0
\(447\) −5.60471 0.744875i −0.265093 0.0352314i
\(448\) 0 0
\(449\) 23.0269i 1.08671i 0.839504 + 0.543354i \(0.182846\pi\)
−0.839504 + 0.543354i \(0.817154\pi\)
\(450\) 0 0
\(451\) 1.92582i 0.0906833i
\(452\) 0 0
\(453\) −1.62833 + 12.2522i −0.0765058 + 0.575656i
\(454\) 0 0
\(455\) −32.2607 + 3.51643i −1.51240 + 0.164853i
\(456\) 0 0
\(457\) 18.3371 0.857772 0.428886 0.903359i \(-0.358906\pi\)
0.428886 + 0.903359i \(0.358906\pi\)
\(458\) 0 0
\(459\) −13.8644 + 33.1259i −0.647133 + 1.54618i
\(460\) 0 0
\(461\) 3.22224 0.150075 0.0750374 0.997181i \(-0.476092\pi\)
0.0750374 + 0.997181i \(0.476092\pi\)
\(462\) 0 0
\(463\) 41.8139 1.94326 0.971629 0.236510i \(-0.0760036\pi\)
0.971629 + 0.236510i \(0.0760036\pi\)
\(464\) 0 0
\(465\) 17.4683 + 2.32157i 0.810072 + 0.107660i
\(466\) 0 0
\(467\) 17.9760 0.831829 0.415915 0.909404i \(-0.363462\pi\)
0.415915 + 0.909404i \(0.363462\pi\)
\(468\) 0 0
\(469\) −2.10945 19.3527i −0.0974053 0.893623i
\(470\) 0 0
\(471\) 32.1582 + 4.27388i 1.48177 + 0.196930i
\(472\) 0 0
\(473\) 1.37134i 0.0630544i
\(474\) 0 0
\(475\) 1.49913i 0.0687846i
\(476\) 0 0
\(477\) 4.71718 17.4334i 0.215985 0.798221i
\(478\) 0 0
\(479\) −18.9634 −0.866458 −0.433229 0.901284i \(-0.642626\pi\)
−0.433229 + 0.901284i \(0.642626\pi\)
\(480\) 0 0
\(481\) 2.29179i 0.104496i
\(482\) 0 0
\(483\) −0.687023 + 29.1605i −0.0312606 + 1.32685i
\(484\) 0 0
\(485\) 22.0575i 1.00158i
\(486\) 0 0
\(487\) −24.0057 −1.08780 −0.543901 0.839149i \(-0.683053\pi\)
−0.543901 + 0.839149i \(0.683053\pi\)
\(488\) 0 0
\(489\) −1.22302 + 9.20246i −0.0553070 + 0.416150i
\(490\) 0 0
\(491\) 0.887157i 0.0400368i −0.999800 0.0200184i \(-0.993628\pi\)
0.999800 0.0200184i \(-0.00637248\pi\)
\(492\) 0 0
\(493\) 13.6921i 0.616659i
\(494\) 0 0
\(495\) 1.44337 5.33429i 0.0648746 0.239759i
\(496\) 0 0
\(497\) −19.9558 + 2.17519i −0.895139 + 0.0975706i
\(498\) 0 0
\(499\) −2.21216 −0.0990298 −0.0495149 0.998773i \(-0.515768\pi\)
−0.0495149 + 0.998773i \(0.515768\pi\)
\(500\) 0 0
\(501\) 2.45816 18.4961i 0.109823 0.826345i
\(502\) 0 0
\(503\) 41.6130 1.85543 0.927716 0.373286i \(-0.121769\pi\)
0.927716 + 0.373286i \(0.121769\pi\)
\(504\) 0 0
\(505\) 18.3655 0.817255
\(506\) 0 0
\(507\) 7.15101 53.8068i 0.317588 2.38964i
\(508\) 0 0
\(509\) −23.8214 −1.05586 −0.527932 0.849287i \(-0.677032\pi\)
−0.527932 + 0.849287i \(0.677032\pi\)
\(510\) 0 0
\(511\) 20.8457 2.27219i 0.922160 0.100516i
\(512\) 0 0
\(513\) 4.47181 + 1.87161i 0.197435 + 0.0826337i
\(514\) 0 0
\(515\) 20.5723i 0.906523i
\(516\) 0 0
\(517\) 10.2056i 0.448841i
\(518\) 0 0
\(519\) 2.06845 15.5637i 0.0907949 0.683173i
\(520\) 0 0
\(521\) −14.9553 −0.655202 −0.327601 0.944816i \(-0.606240\pi\)
−0.327601 + 0.944816i \(0.606240\pi\)
\(522\) 0 0
\(523\) 31.1782i 1.36333i −0.731666 0.681664i \(-0.761257\pi\)
0.731666 0.681664i \(-0.238743\pi\)
\(524\) 0 0
\(525\) 7.36165 + 0.173441i 0.321289 + 0.00756959i
\(526\) 0 0
\(527\) 38.1706i 1.66274i
\(528\) 0 0
\(529\) −17.5145 −0.761502
\(530\) 0 0
\(531\) −29.3149 7.93211i −1.27216 0.344224i
\(532\) 0 0
\(533\) 12.8235i 0.555447i
\(534\) 0 0
\(535\) 15.8544i 0.685447i
\(536\) 0 0
\(537\) −32.8470 4.36543i −1.41745 0.188382i
\(538\) 0 0
\(539\) −1.50809 6.83562i −0.0649580 0.294431i
\(540\) 0 0
\(541\) −13.0446 −0.560832 −0.280416 0.959879i \(-0.590472\pi\)
−0.280416 + 0.959879i \(0.590472\pi\)
\(542\) 0 0
\(543\) −24.2346 3.22082i −1.04000 0.138218i
\(544\) 0 0
\(545\) −6.65388 −0.285021
\(546\) 0 0
\(547\) 30.1498 1.28911 0.644557 0.764556i \(-0.277042\pi\)
0.644557 + 0.764556i \(0.277042\pi\)
\(548\) 0 0
\(549\) 10.5024 38.8142i 0.448233 1.65655i
\(550\) 0 0
\(551\) −1.84835 −0.0787423
\(552\) 0 0
\(553\) −0.284871 2.61348i −0.0121139 0.111137i
\(554\) 0 0
\(555\) −0.144668 + 1.08853i −0.00614081 + 0.0462056i
\(556\) 0 0
\(557\) 42.3853i 1.79592i −0.440075 0.897961i \(-0.645048\pi\)
0.440075 0.897961i \(-0.354952\pi\)
\(558\) 0 0
\(559\) 9.13138i 0.386216i
\(560\) 0 0
\(561\) 11.8657 + 1.57698i 0.500972 + 0.0665801i
\(562\) 0 0
\(563\) 41.1298 1.73341 0.866707 0.498817i \(-0.166232\pi\)
0.866707 + 0.498817i \(0.166232\pi\)
\(564\) 0 0
\(565\) 21.2556i 0.894231i
\(566\) 0 0
\(567\) −9.70815 + 21.7429i −0.407704 + 0.913114i
\(568\) 0 0
\(569\) 41.3862i 1.73500i 0.497439 + 0.867499i \(0.334274\pi\)
−0.497439 + 0.867499i \(0.665726\pi\)
\(570\) 0 0
\(571\) 13.7792 0.576642 0.288321 0.957534i \(-0.406903\pi\)
0.288321 + 0.957534i \(0.406903\pi\)
\(572\) 0 0
\(573\) 24.0352 + 3.19433i 1.00409 + 0.133445i
\(574\) 0 0
\(575\) 10.2280i 0.426538i
\(576\) 0 0
\(577\) 42.7307i 1.77890i −0.457031 0.889451i \(-0.651087\pi\)
0.457031 0.889451i \(-0.348913\pi\)
\(578\) 0 0
\(579\) −3.21104 + 24.1610i −0.133446 + 1.00410i
\(580\) 0 0
\(581\) −1.88638 17.3062i −0.0782604 0.717983i
\(582\) 0 0
\(583\) −6.02011 −0.249328
\(584\) 0 0
\(585\) 9.61098 35.5195i 0.397365 1.46855i
\(586\) 0 0
\(587\) 2.56414 0.105833 0.0529166 0.998599i \(-0.483148\pi\)
0.0529166 + 0.998599i \(0.483148\pi\)
\(588\) 0 0
\(589\) 5.15281 0.212318
\(590\) 0 0
\(591\) 0.249767 + 0.0331945i 0.0102740 + 0.00136544i
\(592\) 0 0
\(593\) −29.2689 −1.20193 −0.600965 0.799276i \(-0.705217\pi\)
−0.600965 + 0.799276i \(0.705217\pi\)
\(594\) 0 0
\(595\) −3.64962 33.4826i −0.149620 1.37265i
\(596\) 0 0
\(597\) −24.5328 3.26045i −1.00406 0.133441i
\(598\) 0 0
\(599\) 14.6814i 0.599867i 0.953960 + 0.299933i \(0.0969645\pi\)
−0.953960 + 0.299933i \(0.903036\pi\)
\(600\) 0 0
\(601\) 2.34778i 0.0957681i 0.998853 + 0.0478840i \(0.0152478\pi\)
−0.998853 + 0.0478840i \(0.984752\pi\)
\(602\) 0 0
\(603\) 21.3076 + 5.76547i 0.867712 + 0.234788i
\(604\) 0 0
\(605\) −1.84204 −0.0748896
\(606\) 0 0
\(607\) 8.22535i 0.333857i −0.985969 0.166928i \(-0.946615\pi\)
0.985969 0.166928i \(-0.0533848\pi\)
\(608\) 0 0
\(609\) 0.213844 9.07656i 0.00866542 0.367801i
\(610\) 0 0
\(611\) 67.9561i 2.74921i
\(612\) 0 0
\(613\) 40.3157 1.62834 0.814168 0.580629i \(-0.197193\pi\)
0.814168 + 0.580629i \(0.197193\pi\)
\(614\) 0 0
\(615\) 0.809476 6.09079i 0.0326412 0.245604i
\(616\) 0 0
\(617\) 39.3539i 1.58433i −0.610309 0.792164i \(-0.708955\pi\)
0.610309 0.792164i \(-0.291045\pi\)
\(618\) 0 0
\(619\) 9.53937i 0.383420i 0.981452 + 0.191710i \(0.0614033\pi\)
−0.981452 + 0.191710i \(0.938597\pi\)
\(620\) 0 0
\(621\) −30.5096 12.7694i −1.22431 0.512417i
\(622\) 0 0
\(623\) −2.68146 24.6005i −0.107431 0.985598i
\(624\) 0 0
\(625\) −14.3835 −0.575338
\(626\) 0 0
\(627\) 0.212883 1.60181i 0.00850174 0.0639701i
\(628\) 0 0
\(629\) −2.37859 −0.0948407
\(630\) 0 0
\(631\) 0.282052 0.0112283 0.00561416 0.999984i \(-0.498213\pi\)
0.00561416 + 0.999984i \(0.498213\pi\)
\(632\) 0 0
\(633\) 3.70974 27.9134i 0.147449 1.10946i
\(634\) 0 0
\(635\) 9.78484 0.388299
\(636\) 0 0
\(637\) −10.0419 45.5164i −0.397876 1.80343i
\(638\) 0 0
\(639\) 5.94515 21.9716i 0.235186 0.869185i
\(640\) 0 0
\(641\) 11.4777i 0.453341i −0.973971 0.226671i \(-0.927216\pi\)
0.973971 0.226671i \(-0.0727841\pi\)
\(642\) 0 0
\(643\) 30.6971i 1.21058i 0.796007 + 0.605288i \(0.206942\pi\)
−0.796007 + 0.605288i \(0.793058\pi\)
\(644\) 0 0
\(645\) 0.576414 4.33714i 0.0226963 0.170775i
\(646\) 0 0
\(647\) −28.6596 −1.12673 −0.563363 0.826209i \(-0.690493\pi\)
−0.563363 + 0.826209i \(0.690493\pi\)
\(648\) 0 0
\(649\) 10.1230i 0.397364i
\(650\) 0 0
\(651\) −0.596154 + 25.3036i −0.0233651 + 0.991724i
\(652\) 0 0
\(653\) 16.9380i 0.662837i 0.943484 + 0.331418i \(0.107527\pi\)
−0.943484 + 0.331418i \(0.892473\pi\)
\(654\) 0 0
\(655\) 7.34762 0.287095
\(656\) 0 0
\(657\) −6.21027 + 22.9515i −0.242286 + 0.895422i
\(658\) 0 0
\(659\) 16.7175i 0.651221i −0.945504 0.325610i \(-0.894430\pi\)
0.945504 0.325610i \(-0.105570\pi\)
\(660\) 0 0
\(661\) 6.43346i 0.250233i −0.992142 0.125116i \(-0.960070\pi\)
0.992142 0.125116i \(-0.0399304\pi\)
\(662\) 0 0
\(663\) 79.0106 + 10.5007i 3.06852 + 0.407812i
\(664\) 0 0
\(665\) −4.51997 + 0.492678i −0.175277 + 0.0191052i
\(666\) 0 0
\(667\) 12.6107 0.488286
\(668\) 0 0
\(669\) −19.0066 2.52602i −0.734839 0.0976614i
\(670\) 0 0
\(671\) −13.4033 −0.517429
\(672\) 0 0
\(673\) 13.4728 0.519339 0.259669 0.965698i \(-0.416386\pi\)
0.259669 + 0.965698i \(0.416386\pi\)
\(674\) 0 0
\(675\) −3.22366 + 7.70224i −0.124079 + 0.296459i
\(676\) 0 0
\(677\) −12.5143 −0.480965 −0.240482 0.970654i \(-0.577306\pi\)
−0.240482 + 0.970654i \(0.577306\pi\)
\(678\) 0 0
\(679\) 31.4949 3.43296i 1.20867 0.131745i
\(680\) 0 0
\(681\) −3.00559 + 22.6151i −0.115174 + 0.866613i
\(682\) 0 0
\(683\) 23.3443i 0.893243i −0.894723 0.446622i \(-0.852627\pi\)
0.894723 0.446622i \(-0.147373\pi\)
\(684\) 0 0
\(685\) 32.9985i 1.26081i
\(686\) 0 0
\(687\) −28.5156 3.78977i −1.08794 0.144589i
\(688\) 0 0
\(689\) −40.0862 −1.52716
\(690\) 0 0
\(691\) 40.0019i 1.52174i 0.648902 + 0.760872i \(0.275228\pi\)
−0.648902 + 0.760872i \(0.724772\pi\)
\(692\) 0 0
\(693\) 7.84126 + 1.23071i 0.297865 + 0.0467509i
\(694\) 0 0
\(695\) 40.9209i 1.55222i
\(696\) 0 0
\(697\) 13.3092 0.504122
\(698\) 0 0
\(699\) −24.0216 3.19251i −0.908579 0.120752i
\(700\) 0 0
\(701\) 11.8879i 0.449001i −0.974474 0.224500i \(-0.927925\pi\)
0.974474 0.224500i \(-0.0720750\pi\)
\(702\) 0 0
\(703\) 0.321097i 0.0121104i
\(704\) 0 0
\(705\) −4.28969 + 32.2772i −0.161559 + 1.21563i
\(706\) 0 0
\(707\) 2.85836 + 26.2234i 0.107500 + 0.986231i
\(708\) 0 0
\(709\) −16.7356 −0.628518 −0.314259 0.949337i \(-0.601756\pi\)
−0.314259 + 0.949337i \(0.601756\pi\)
\(710\) 0 0
\(711\) 2.87749 + 0.778599i 0.107914 + 0.0291997i
\(712\) 0 0
\(713\) −35.1559 −1.31660
\(714\) 0 0
\(715\) −12.2656 −0.458708
\(716\) 0 0
\(717\) −13.9358 1.85210i −0.520444 0.0691679i
\(718\) 0 0
\(719\) 37.4305 1.39592 0.697960 0.716137i \(-0.254091\pi\)
0.697960 + 0.716137i \(0.254091\pi\)
\(720\) 0 0
\(721\) −29.3743 + 3.20181i −1.09396 + 0.119242i
\(722\) 0 0
\(723\) −39.9936 5.31522i −1.48738 0.197675i
\(724\) 0 0
\(725\) 3.18360i 0.118236i
\(726\) 0 0
\(727\) 35.7945i 1.32754i −0.747935 0.663772i \(-0.768954\pi\)
0.747935 0.663772i \(-0.231046\pi\)
\(728\) 0 0
\(729\) −18.9507 19.2320i −0.701878 0.712297i
\(730\) 0 0
\(731\) 9.47725 0.350529
\(732\) 0 0
\(733\) 13.7817i 0.509038i 0.967068 + 0.254519i \(0.0819171\pi\)
−0.967068 + 0.254519i \(0.918083\pi\)
\(734\) 0 0
\(735\) −1.89642 22.2529i −0.0699506 0.820810i
\(736\) 0 0
\(737\) 7.35794i 0.271033i
\(738\) 0 0
\(739\) −40.2594 −1.48097 −0.740483 0.672076i \(-0.765403\pi\)
−0.740483 + 0.672076i \(0.765403\pi\)
\(740\) 0 0
\(741\) 1.41753 10.6660i 0.0520742 0.391825i
\(742\) 0 0
\(743\) 48.9106i 1.79435i 0.441670 + 0.897177i \(0.354386\pi\)
−0.441670 + 0.897177i \(0.645614\pi\)
\(744\) 0 0
\(745\) 6.01303i 0.220300i
\(746\) 0 0
\(747\) 19.0544 + 5.15580i 0.697165 + 0.188641i
\(748\) 0 0
\(749\) 22.6379 2.46754i 0.827170 0.0901619i
\(750\) 0 0
\(751\) −14.2946 −0.521618 −0.260809 0.965390i \(-0.583989\pi\)
−0.260809 + 0.965390i \(0.583989\pi\)
\(752\) 0 0
\(753\) −6.56571 + 49.4027i −0.239268 + 1.80034i
\(754\) 0 0
\(755\) 13.1448 0.478387
\(756\) 0 0
\(757\) −35.5185 −1.29094 −0.645472 0.763784i \(-0.723339\pi\)
−0.645472 + 0.763784i \(0.723339\pi\)
\(758\) 0 0
\(759\) −1.45243 + 10.9286i −0.0527198 + 0.396683i
\(760\) 0 0
\(761\) 33.5220 1.21517 0.607586 0.794254i \(-0.292138\pi\)
0.607586 + 0.794254i \(0.292138\pi\)
\(762\) 0 0
\(763\) −1.03559 9.50080i −0.0374909 0.343952i
\(764\) 0 0
\(765\) 36.8649 + 9.97502i 1.33285 + 0.360648i
\(766\) 0 0
\(767\) 67.4064i 2.43390i
\(768\) 0 0
\(769\) 27.6629i 0.997548i 0.866732 + 0.498774i \(0.166216\pi\)
−0.866732 + 0.498774i \(0.833784\pi\)
\(770\) 0 0
\(771\) 2.93228 22.0635i 0.105604 0.794599i
\(772\) 0 0
\(773\) 15.1488 0.544863 0.272431 0.962175i \(-0.412172\pi\)
0.272431 + 0.962175i \(0.412172\pi\)
\(774\) 0 0
\(775\) 8.87520i 0.318807i
\(776\) 0 0
\(777\) −1.57679 0.0371492i −0.0565669 0.00133272i
\(778\) 0 0
\(779\) 1.79667i 0.0643723i
\(780\) 0 0
\(781\) −7.58725 −0.271493
\(782\) 0 0
\(783\) 9.49649 + 3.97462i 0.339377 + 0.142041i
\(784\) 0 0
\(785\) 34.5010i 1.23140i
\(786\) 0 0
\(787\) 2.56564i 0.0914552i 0.998954 + 0.0457276i \(0.0145606\pi\)
−0.998954 + 0.0457276i \(0.985439\pi\)
\(788\) 0 0
\(789\) 35.4256 + 4.70813i 1.26118 + 0.167614i
\(790\) 0 0
\(791\) 30.3500 3.30816i 1.07912 0.117625i
\(792\) 0 0
\(793\) −89.2489 −3.16932
\(794\) 0 0
\(795\) −19.0398 2.53042i −0.675272 0.0897448i
\(796\) 0 0
\(797\) 24.3030 0.860856 0.430428 0.902625i \(-0.358363\pi\)
0.430428 + 0.902625i \(0.358363\pi\)
\(798\) 0 0
\(799\) −70.5301 −2.49517
\(800\) 0 0
\(801\) 27.0855 + 7.32888i 0.957020 + 0.258953i
\(802\) 0 0
\(803\) 7.92560 0.279688
\(804\) 0 0
\(805\) 30.8382 3.36137i 1.08690 0.118473i
\(806\) 0 0
\(807\) 1.81863 13.6840i 0.0640188 0.481700i
\(808\) 0 0
\(809\) 38.6623i 1.35929i −0.733539 0.679647i \(-0.762133\pi\)
0.733539 0.679647i \(-0.237867\pi\)
\(810\) 0 0
\(811\) 5.11273i 0.179532i 0.995963 + 0.0897661i \(0.0286120\pi\)
−0.995963 + 0.0897661i \(0.971388\pi\)
\(812\) 0 0
\(813\) 10.8613 + 1.44349i 0.380923 + 0.0506253i
\(814\) 0 0
\(815\) 9.87289 0.345832
\(816\) 0 0
\(817\) 1.27938i 0.0447597i
\(818\) 0 0
\(819\) 52.2127 + 8.19496i 1.82446 + 0.286355i
\(820\) 0 0
\(821\) 38.7122i 1.35106i −0.737330 0.675532i \(-0.763914\pi\)
0.737330 0.675532i \(-0.236086\pi\)
\(822\) 0 0
\(823\) −8.97914 −0.312993 −0.156497 0.987679i \(-0.550020\pi\)
−0.156497 + 0.987679i \(0.550020\pi\)
\(824\) 0 0
\(825\) 2.75895 + 0.366670i 0.0960545 + 0.0127658i
\(826\) 0 0
\(827\) 35.9159i 1.24892i 0.781058 + 0.624458i \(0.214680\pi\)
−0.781058 + 0.624458i \(0.785320\pi\)
\(828\) 0 0
\(829\) 44.0237i 1.52901i −0.644620 0.764503i \(-0.722984\pi\)
0.644620 0.764503i \(-0.277016\pi\)
\(830\) 0 0
\(831\) −2.58317 + 19.4366i −0.0896090 + 0.674250i
\(832\) 0 0
\(833\) 47.2405 10.4223i 1.63679 0.361111i
\(834\) 0 0
\(835\) −19.8436 −0.686716
\(836\) 0 0
\(837\) −26.4742 11.0804i −0.915084 0.382995i
\(838\) 0 0
\(839\) −17.4186 −0.601356 −0.300678 0.953726i \(-0.597213\pi\)
−0.300678 + 0.953726i \(0.597213\pi\)
\(840\) 0 0
\(841\) 25.0748 0.864648
\(842\) 0 0
\(843\) −50.0673 6.65403i −1.72441 0.229177i
\(844\) 0 0
\(845\) −57.7268 −1.98586
\(846\) 0 0
\(847\) −0.286690 2.63017i −0.00985078 0.0903738i
\(848\) 0 0
\(849\) 18.3724 + 2.44172i 0.630538 + 0.0837996i
\(850\) 0 0
\(851\) 2.19073i 0.0750973i
\(852\) 0 0
\(853\) 10.1747i 0.348376i −0.984712 0.174188i \(-0.944270\pi\)
0.984712 0.174188i \(-0.0557301\pi\)
\(854\) 0 0
\(855\) 1.34657 4.97656i 0.0460518 0.170195i
\(856\) 0 0
\(857\) −9.30990 −0.318020 −0.159010 0.987277i \(-0.550830\pi\)
−0.159010 + 0.987277i \(0.550830\pi\)
\(858\) 0 0
\(859\) 27.0188i 0.921870i −0.887434 0.460935i \(-0.847514\pi\)
0.887434 0.460935i \(-0.152486\pi\)
\(860\) 0 0
\(861\) 8.82277 + 0.207865i 0.300679 + 0.00708403i
\(862\) 0 0
\(863\) 1.59975i 0.0544562i −0.999629 0.0272281i \(-0.991332\pi\)
0.999629 0.0272281i \(-0.00866805\pi\)
\(864\) 0 0
\(865\) −16.6976 −0.567736
\(866\) 0 0
\(867\) −7.01923 + 52.8151i −0.238385 + 1.79370i
\(868\) 0 0
\(869\) 0.993655i 0.0337074i
\(870\) 0 0
\(871\) 48.9945i 1.66011i
\(872\) 0 0
\(873\) −9.38285 + 34.6764i −0.317561 + 1.17362i
\(874\) 0 0
\(875\) −3.48906 32.0096i −0.117952 1.08212i
\(876\) 0 0
\(877\) −49.6065 −1.67509 −0.837546 0.546368i \(-0.816010\pi\)
−0.837546 + 0.546368i \(0.816010\pi\)
\(878\) 0 0
\(879\) −3.53022 + 26.5626i −0.119071 + 0.895935i
\(880\) 0 0
\(881\) 29.9882 1.01033 0.505164 0.863024i \(-0.331432\pi\)
0.505164 + 0.863024i \(0.331432\pi\)
\(882\) 0 0
\(883\) −14.4088 −0.484896 −0.242448 0.970164i \(-0.577950\pi\)
−0.242448 + 0.970164i \(0.577950\pi\)
\(884\) 0 0
\(885\) −4.25500 + 32.0161i −0.143030 + 1.07621i
\(886\) 0 0
\(887\) 46.2449 1.55275 0.776377 0.630269i \(-0.217056\pi\)
0.776377 + 0.630269i \(0.217056\pi\)
\(888\) 0 0
\(889\) 1.52288 + 13.9714i 0.0510759 + 0.468585i
\(890\) 0 0
\(891\) −4.53823 + 7.77203i −0.152036 + 0.260373i
\(892\) 0 0
\(893\) 9.52116i 0.318614i
\(894\) 0 0
\(895\) 35.2400i 1.17794i
\(896\) 0 0
\(897\) −9.67131 + 72.7704i −0.322916 + 2.42973i
\(898\) 0 0
\(899\) 10.9427 0.364959
\(900\) 0 0
\(901\) 41.6046i 1.38605i
\(902\) 0 0
\(903\) 6.28254 + 0.148017i 0.209070 + 0.00492570i
\(904\) 0 0
\(905\) 26.0001i 0.864273i
\(906\) 0 0
\(907\) 46.2720 1.53644 0.768218 0.640188i \(-0.221144\pi\)
0.768218 + 0.640188i \(0.221144\pi\)
\(908\) 0 0
\(909\) −28.8723 7.81236i −0.957635 0.259120i
\(910\) 0 0
\(911\) 32.5083i 1.07705i 0.842610 + 0.538524i \(0.181018\pi\)
−0.842610 + 0.538524i \(0.818982\pi\)
\(912\) 0 0
\(913\) 6.57988i 0.217762i
\(914\) 0 0
\(915\) −42.3906 5.63379i −1.40139 0.186247i
\(916\) 0 0
\(917\) 1.14356 + 10.4914i 0.0377638 + 0.346456i
\(918\) 0 0
\(919\) −25.9753 −0.856847 −0.428424 0.903578i \(-0.640931\pi\)
−0.428424 + 0.903578i \(0.640931\pi\)
\(920\) 0 0
\(921\) −27.2489 3.62143i −0.897882 0.119330i
\(922\) 0 0
\(923\) −50.5214 −1.66293
\(924\) 0 0
\(925\) −0.553057 −0.0181844
\(926\) 0 0
\(927\) 8.75108 32.3416i 0.287423 1.06224i
\(928\) 0 0
\(929\) 30.5766 1.00319 0.501593 0.865104i \(-0.332748\pi\)
0.501593 + 0.865104i \(0.332748\pi\)
\(930\) 0 0
\(931\) −1.40695 6.37720i −0.0461109 0.209004i
\(932\) 0 0
\(933\) 2.46667 18.5601i 0.0807553 0.607631i
\(934\) 0 0
\(935\) 12.7302i 0.416322i
\(936\) 0 0
\(937\) 24.4170i 0.797670i 0.917023 + 0.398835i \(0.130585\pi\)
−0.917023 + 0.398835i \(0.869415\pi\)
\(938\) 0 0
\(939\) −13.3004 1.76765i −0.434043 0.0576851i
\(940\) 0 0
\(941\) −46.0463 −1.50107 −0.750533 0.660833i \(-0.770203\pi\)
−0.750533 + 0.660833i \(0.770203\pi\)
\(942\) 0 0
\(943\) 12.2580i 0.399177i
\(944\) 0 0
\(945\) 24.2822 + 7.18827i 0.789901 + 0.233835i
\(946\) 0 0
\(947\) 3.11758i 0.101308i −0.998716 0.0506538i \(-0.983869\pi\)
0.998716 0.0506538i \(-0.0161305\pi\)
\(948\) 0 0
\(949\) 52.7743 1.71313
\(950\) 0 0
\(951\) 55.6889 + 7.40115i 1.80584 + 0.239999i
\(952\) 0 0
\(953\) 34.9315i 1.13154i −0.824563 0.565771i \(-0.808579\pi\)
0.824563 0.565771i \(-0.191421\pi\)
\(954\) 0 0
\(955\) 25.7863i 0.834425i
\(956\) 0 0
\(957\) 0.452087 3.40166i 0.0146139 0.109960i
\(958\) 0 0
\(959\) −47.1172 + 5.13580i −1.52149 + 0.165844i
\(960\) 0 0
\(961\) 0.494041 0.0159368
\(962\) 0 0
\(963\) −6.74419 + 24.9247i −0.217328 + 0.803186i
\(964\) 0 0
\(965\) 25.9212 0.834432
\(966\) 0 0
\(967\) −42.9211 −1.38025 −0.690125 0.723690i \(-0.742445\pi\)
−0.690125 + 0.723690i \(0.742445\pi\)
\(968\) 0 0
\(969\) 11.0700 + 1.47122i 0.355619 + 0.0472624i
\(970\) 0 0
\(971\) −41.2692 −1.32439 −0.662195 0.749331i \(-0.730375\pi\)
−0.662195 + 0.749331i \(0.730375\pi\)
\(972\) 0 0
\(973\) −58.4292 + 6.36881i −1.87315 + 0.204175i
\(974\) 0 0
\(975\) 18.3711 + 2.44155i 0.588346 + 0.0781922i
\(976\) 0 0
\(977\) 22.6863i 0.725798i 0.931828 + 0.362899i \(0.118213\pi\)
−0.931828 + 0.362899i \(0.881787\pi\)
\(978\) 0 0
\(979\) 9.35319i 0.298929i
\(980\) 0 0
\(981\) 10.4605 + 2.83044i 0.333979 + 0.0903690i
\(982\) 0 0
\(983\) 56.3951 1.79873 0.899363 0.437204i \(-0.144031\pi\)
0.899363 + 0.437204i \(0.144031\pi\)
\(984\) 0 0
\(985\) 0.267963i 0.00853802i
\(986\) 0 0
\(987\) −46.7549 1.10155i −1.48822 0.0350627i
\(988\) 0 0
\(989\) 8.72874i 0.277558i
\(990\) 0 0
\(991\) 27.2609 0.865971 0.432985 0.901401i \(-0.357460\pi\)
0.432985 + 0.901401i \(0.357460\pi\)
\(992\) 0 0
\(993\) −1.03621 + 7.79684i −0.0328833 + 0.247425i
\(994\) 0 0
\(995\) 26.3201i 0.834403i
\(996\) 0 0
\(997\) 22.3734i 0.708573i 0.935137 + 0.354286i \(0.115276\pi\)
−0.935137 + 0.354286i \(0.884724\pi\)
\(998\) 0 0
\(999\) 0.690474 1.64974i 0.0218456 0.0521954i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1848.2.v.e.881.16 yes 32
3.2 odd 2 inner 1848.2.v.e.881.18 yes 32
7.6 odd 2 inner 1848.2.v.e.881.17 yes 32
21.20 even 2 inner 1848.2.v.e.881.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1848.2.v.e.881.15 32 21.20 even 2 inner
1848.2.v.e.881.16 yes 32 1.1 even 1 trivial
1848.2.v.e.881.17 yes 32 7.6 odd 2 inner
1848.2.v.e.881.18 yes 32 3.2 odd 2 inner