Properties

Label 1848.2.v.c.881.4
Level $1848$
Weight $2$
Character 1848.881
Analytic conductor $14.756$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1848,2,Mod(881,1848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1848.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.v (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7563542935\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 40x^{12} + 388x^{8} + 436x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.4
Root \(1.35082 - 1.35082i\) of defining polynomial
Character \(\chi\) \(=\) 1848.881
Dual form 1848.2.v.c.881.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35082 + 1.08411i) q^{3} +(-1.77571 - 1.96134i) q^{7} +(0.649405 - 2.92887i) q^{9} +1.00000i q^{11} -5.74450i q^{13} +3.64881 q^{17} +0.413771i q^{19} +(4.52497 + 0.724334i) q^{21} +8.85023i q^{23} -5.00000 q^{25} +(2.29799 + 4.66039i) q^{27} +1.29881i q^{29} -0.874646i q^{31} +(-1.08411 - 1.35082i) q^{33} -5.80404 q^{37} +(6.22768 + 7.75976i) q^{39} -4.71563 q^{41} +0.0536958 q^{43} -2.70163 q^{47} +(-0.693688 + 6.96554i) q^{49} +(-4.92887 + 3.95572i) q^{51} +10.7080i q^{53} +(-0.448574 - 0.558929i) q^{57} -3.93184 q^{59} +1.55312i q^{61} +(-6.89766 + 3.92713i) q^{63} -11.1029 q^{67} +(-9.59464 - 11.9550i) q^{69} -8.56571i q^{71} -16.4060i q^{73} +(6.75408 - 5.42056i) q^{75} +(1.96134 - 1.77571i) q^{77} +12.0068 q^{79} +(-8.15655 - 3.80404i) q^{81} -9.82140 q^{83} +(-1.40805 - 1.75445i) q^{87} -3.78872 q^{89} +(-11.2669 + 10.2006i) q^{91} +(0.948214 + 1.18149i) q^{93} -8.52783i q^{97} +(2.92887 + 0.649405i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} - 8 q^{9} + 20 q^{21} - 80 q^{25} + 24 q^{39} + 16 q^{43} - 24 q^{49} - 40 q^{51} - 72 q^{57} - 12 q^{63} - 48 q^{67} - 24 q^{79} - 16 q^{81} + 40 q^{91} - 40 q^{93} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1848\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(673\) \(925\) \(1585\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.35082 + 1.08411i −0.779894 + 0.625912i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.77571 1.96134i −0.671156 0.741316i
\(8\) 0 0
\(9\) 0.649405 2.92887i 0.216468 0.976290i
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 5.74450i 1.59324i −0.604482 0.796619i \(-0.706620\pi\)
0.604482 0.796619i \(-0.293380\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.64881 0.884966 0.442483 0.896777i \(-0.354098\pi\)
0.442483 + 0.896777i \(0.354098\pi\)
\(18\) 0 0
\(19\) 0.413771i 0.0949257i 0.998873 + 0.0474628i \(0.0151136\pi\)
−0.998873 + 0.0474628i \(0.984886\pi\)
\(20\) 0 0
\(21\) 4.52497 + 0.724334i 0.987429 + 0.158063i
\(22\) 0 0
\(23\) 8.85023i 1.84540i 0.385517 + 0.922701i \(0.374023\pi\)
−0.385517 + 0.922701i \(0.625977\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 2.29799 + 4.66039i 0.442249 + 0.896892i
\(28\) 0 0
\(29\) 1.29881i 0.241183i 0.992702 + 0.120591i \(0.0384791\pi\)
−0.992702 + 0.120591i \(0.961521\pi\)
\(30\) 0 0
\(31\) 0.874646i 0.157091i −0.996911 0.0785455i \(-0.974972\pi\)
0.996911 0.0785455i \(-0.0250276\pi\)
\(32\) 0 0
\(33\) −1.08411 1.35082i −0.188720 0.235147i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.80404 −0.954179 −0.477089 0.878855i \(-0.658308\pi\)
−0.477089 + 0.878855i \(0.658308\pi\)
\(38\) 0 0
\(39\) 6.22768 + 7.75976i 0.997227 + 1.24256i
\(40\) 0 0
\(41\) −4.71563 −0.736457 −0.368229 0.929735i \(-0.620036\pi\)
−0.368229 + 0.929735i \(0.620036\pi\)
\(42\) 0 0
\(43\) 0.0536958 0.00818854 0.00409427 0.999992i \(-0.498697\pi\)
0.00409427 + 0.999992i \(0.498697\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.70163 −0.394073 −0.197037 0.980396i \(-0.563132\pi\)
−0.197037 + 0.980396i \(0.563132\pi\)
\(48\) 0 0
\(49\) −0.693688 + 6.96554i −0.0990982 + 0.995078i
\(50\) 0 0
\(51\) −4.92887 + 3.95572i −0.690180 + 0.553911i
\(52\) 0 0
\(53\) 10.7080i 1.47085i 0.677604 + 0.735427i \(0.263018\pi\)
−0.677604 + 0.735427i \(0.736982\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.448574 0.558929i −0.0594151 0.0740319i
\(58\) 0 0
\(59\) −3.93184 −0.511881 −0.255941 0.966692i \(-0.582385\pi\)
−0.255941 + 0.966692i \(0.582385\pi\)
\(60\) 0 0
\(61\) 1.55312i 0.198857i 0.995045 + 0.0994283i \(0.0317014\pi\)
−0.995045 + 0.0994283i \(0.968299\pi\)
\(62\) 0 0
\(63\) −6.89766 + 3.92713i −0.869023 + 0.494772i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.1029 −1.35643 −0.678215 0.734864i \(-0.737246\pi\)
−0.678215 + 0.734864i \(0.737246\pi\)
\(68\) 0 0
\(69\) −9.59464 11.9550i −1.15506 1.43922i
\(70\) 0 0
\(71\) 8.56571i 1.01656i −0.861191 0.508281i \(-0.830281\pi\)
0.861191 0.508281i \(-0.169719\pi\)
\(72\) 0 0
\(73\) 16.4060i 1.92017i −0.279705 0.960086i \(-0.590237\pi\)
0.279705 0.960086i \(-0.409763\pi\)
\(74\) 0 0
\(75\) 6.75408 5.42056i 0.779894 0.625912i
\(76\) 0 0
\(77\) 1.96134 1.77571i 0.223515 0.202361i
\(78\) 0 0
\(79\) 12.0068 1.35087 0.675434 0.737420i \(-0.263956\pi\)
0.675434 + 0.737420i \(0.263956\pi\)
\(80\) 0 0
\(81\) −8.15655 3.80404i −0.906283 0.422671i
\(82\) 0 0
\(83\) −9.82140 −1.07804 −0.539019 0.842293i \(-0.681205\pi\)
−0.539019 + 0.842293i \(0.681205\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.40805 1.75445i −0.150959 0.188097i
\(88\) 0 0
\(89\) −3.78872 −0.401603 −0.200802 0.979632i \(-0.564355\pi\)
−0.200802 + 0.979632i \(0.564355\pi\)
\(90\) 0 0
\(91\) −11.2669 + 10.2006i −1.18109 + 1.06931i
\(92\) 0 0
\(93\) 0.948214 + 1.18149i 0.0983252 + 0.122514i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.52783i 0.865869i −0.901425 0.432935i \(-0.857478\pi\)
0.901425 0.432935i \(-0.142522\pi\)
\(98\) 0 0
\(99\) 2.92887 + 0.649405i 0.294362 + 0.0652676i
\(100\) 0 0
\(101\) 7.23941 0.720348 0.360174 0.932885i \(-0.382717\pi\)
0.360174 + 0.932885i \(0.382717\pi\)
\(102\) 0 0
\(103\) 15.8725i 1.56397i 0.623298 + 0.781984i \(0.285792\pi\)
−0.623298 + 0.781984i \(0.714208\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.7155i 1.51927i 0.650348 + 0.759636i \(0.274623\pi\)
−0.650348 + 0.759636i \(0.725377\pi\)
\(108\) 0 0
\(109\) −4.86524 −0.466006 −0.233003 0.972476i \(-0.574855\pi\)
−0.233003 + 0.972476i \(0.574855\pi\)
\(110\) 0 0
\(111\) 7.84019 6.29223i 0.744158 0.597232i
\(112\) 0 0
\(113\) 8.50523i 0.800105i −0.916492 0.400053i \(-0.868992\pi\)
0.916492 0.400053i \(-0.131008\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −16.8249 3.73050i −1.55546 0.344885i
\(118\) 0 0
\(119\) −6.47924 7.15655i −0.593951 0.656040i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 6.36994 5.11226i 0.574358 0.460957i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.2669 −0.999776 −0.499888 0.866090i \(-0.666625\pi\)
−0.499888 + 0.866090i \(0.666625\pi\)
\(128\) 0 0
\(129\) −0.0725332 + 0.0582123i −0.00638619 + 0.00512530i
\(130\) 0 0
\(131\) −19.6553 −1.71729 −0.858646 0.512568i \(-0.828694\pi\)
−0.858646 + 0.512568i \(0.828694\pi\)
\(132\) 0 0
\(133\) 0.811545 0.734739i 0.0703699 0.0637100i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.73988i 0.404955i 0.979287 + 0.202478i \(0.0648994\pi\)
−0.979287 + 0.202478i \(0.935101\pi\)
\(138\) 0 0
\(139\) 10.3928i 0.881502i 0.897629 + 0.440751i \(0.145288\pi\)
−0.897629 + 0.440751i \(0.854712\pi\)
\(140\) 0 0
\(141\) 3.64940 2.92887i 0.307335 0.246655i
\(142\) 0 0
\(143\) 5.74450 0.480379
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −6.61438 10.1612i −0.545545 0.838082i
\(148\) 0 0
\(149\) 13.9114i 1.13967i 0.821759 + 0.569835i \(0.192993\pi\)
−0.821759 + 0.569835i \(0.807007\pi\)
\(150\) 0 0
\(151\) 16.6194 1.35247 0.676234 0.736687i \(-0.263611\pi\)
0.676234 + 0.736687i \(0.263611\pi\)
\(152\) 0 0
\(153\) 2.36955 10.6869i 0.191567 0.863984i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.1001i 0.965693i 0.875705 + 0.482847i \(0.160397\pi\)
−0.875705 + 0.482847i \(0.839603\pi\)
\(158\) 0 0
\(159\) −11.6086 14.4645i −0.920625 1.14711i
\(160\) 0 0
\(161\) 17.3583 15.7155i 1.36803 1.23855i
\(162\) 0 0
\(163\) −12.2207 −0.957200 −0.478600 0.878033i \(-0.658856\pi\)
−0.478600 + 0.878033i \(0.658856\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.0259 −1.47227 −0.736134 0.676836i \(-0.763351\pi\)
−0.736134 + 0.676836i \(0.763351\pi\)
\(168\) 0 0
\(169\) −19.9993 −1.53841
\(170\) 0 0
\(171\) 1.21188 + 0.268705i 0.0926749 + 0.0205484i
\(172\) 0 0
\(173\) −4.79732 −0.364734 −0.182367 0.983231i \(-0.558376\pi\)
−0.182367 + 0.983231i \(0.558376\pi\)
\(174\) 0 0
\(175\) 8.87856 + 9.80669i 0.671156 + 0.741316i
\(176\) 0 0
\(177\) 5.31118 4.26255i 0.399213 0.320393i
\(178\) 0 0
\(179\) 0.612625i 0.0457897i 0.999738 + 0.0228949i \(0.00728830\pi\)
−0.999738 + 0.0228949i \(0.992712\pi\)
\(180\) 0 0
\(181\) 6.40671i 0.476207i 0.971240 + 0.238103i \(0.0765257\pi\)
−0.971240 + 0.238103i \(0.923474\pi\)
\(182\) 0 0
\(183\) −1.68376 2.09798i −0.124467 0.155087i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.64881i 0.266827i
\(188\) 0 0
\(189\) 5.06001 12.7827i 0.368062 0.929801i
\(190\) 0 0
\(191\) 1.13476i 0.0821083i −0.999157 0.0410541i \(-0.986928\pi\)
0.999157 0.0410541i \(-0.0130716\pi\)
\(192\) 0 0
\(193\) −16.2057 −1.16651 −0.583256 0.812288i \(-0.698222\pi\)
−0.583256 + 0.812288i \(0.698222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.50905i 0.606245i −0.952952 0.303122i \(-0.901971\pi\)
0.952952 0.303122i \(-0.0980291\pi\)
\(198\) 0 0
\(199\) 2.39498i 0.169776i 0.996391 + 0.0848880i \(0.0270532\pi\)
−0.996391 + 0.0848880i \(0.972947\pi\)
\(200\) 0 0
\(201\) 14.9979 12.0367i 1.05787 0.849005i
\(202\) 0 0
\(203\) 2.54740 2.30631i 0.178793 0.161871i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 25.9212 + 5.74738i 1.80165 + 0.399471i
\(208\) 0 0
\(209\) −0.413771 −0.0286212
\(210\) 0 0
\(211\) 3.20642 0.220739 0.110370 0.993891i \(-0.464797\pi\)
0.110370 + 0.993891i \(0.464797\pi\)
\(212\) 0 0
\(213\) 9.28619 + 11.5707i 0.636279 + 0.792811i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.71548 + 1.55312i −0.116454 + 0.105433i
\(218\) 0 0
\(219\) 17.7859 + 22.1614i 1.20186 + 1.49753i
\(220\) 0 0
\(221\) 20.9606i 1.40996i
\(222\) 0 0
\(223\) 22.2484i 1.48986i −0.667140 0.744932i \(-0.732482\pi\)
0.667140 0.744932i \(-0.267518\pi\)
\(224\) 0 0
\(225\) −3.24702 + 14.6443i −0.216468 + 0.976290i
\(226\) 0 0
\(227\) −1.66760 −0.110682 −0.0553412 0.998468i \(-0.517625\pi\)
−0.0553412 + 0.998468i \(0.517625\pi\)
\(228\) 0 0
\(229\) 12.1184i 0.800808i 0.916339 + 0.400404i \(0.131130\pi\)
−0.916339 + 0.400404i \(0.868870\pi\)
\(230\) 0 0
\(231\) −0.724334 + 4.52497i −0.0476577 + 0.297721i
\(232\) 0 0
\(233\) 16.1171i 1.05587i 0.849285 + 0.527934i \(0.177033\pi\)
−0.849285 + 0.527934i \(0.822967\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −16.2189 + 13.0167i −1.05353 + 0.845525i
\(238\) 0 0
\(239\) 18.7109i 1.21031i 0.796108 + 0.605155i \(0.206889\pi\)
−0.796108 + 0.605155i \(0.793111\pi\)
\(240\) 0 0
\(241\) 11.6955i 0.753373i 0.926341 + 0.376686i \(0.122937\pi\)
−0.926341 + 0.376686i \(0.877063\pi\)
\(242\) 0 0
\(243\) 15.1420 3.70405i 0.971359 0.237615i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.37691 0.151239
\(248\) 0 0
\(249\) 13.2669 10.6475i 0.840756 0.674758i
\(250\) 0 0
\(251\) −31.0932 −1.96259 −0.981293 0.192520i \(-0.938334\pi\)
−0.981293 + 0.192520i \(0.938334\pi\)
\(252\) 0 0
\(253\) −8.85023 −0.556410
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.0259 1.18680 0.593401 0.804907i \(-0.297785\pi\)
0.593401 + 0.804907i \(0.297785\pi\)
\(258\) 0 0
\(259\) 10.3063 + 11.3837i 0.640403 + 0.707348i
\(260\) 0 0
\(261\) 3.80404 + 0.843453i 0.235464 + 0.0522084i
\(262\) 0 0
\(263\) 0.789757i 0.0486985i 0.999704 + 0.0243492i \(0.00775137\pi\)
−0.999704 + 0.0243492i \(0.992249\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.11786 4.10739i 0.313208 0.251368i
\(268\) 0 0
\(269\) 1.21188 0.0738898 0.0369449 0.999317i \(-0.488237\pi\)
0.0369449 + 0.999317i \(0.488237\pi\)
\(270\) 0 0
\(271\) 22.5642i 1.37068i −0.728224 0.685340i \(-0.759654\pi\)
0.728224 0.685340i \(-0.240346\pi\)
\(272\) 0 0
\(273\) 4.16094 25.9937i 0.251831 1.57321i
\(274\) 0 0
\(275\) 5.00000i 0.301511i
\(276\) 0 0
\(277\) −16.4733 −0.989786 −0.494893 0.868954i \(-0.664793\pi\)
−0.494893 + 0.868954i \(0.664793\pi\)
\(278\) 0 0
\(279\) −2.56172 0.567999i −0.153366 0.0340052i
\(280\) 0 0
\(281\) 4.40166i 0.262581i 0.991344 + 0.131291i \(0.0419121\pi\)
−0.991344 + 0.131291i \(0.958088\pi\)
\(282\) 0 0
\(283\) 17.1896i 1.02182i 0.859635 + 0.510908i \(0.170691\pi\)
−0.859635 + 0.510908i \(0.829309\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.37360 + 9.24893i 0.494278 + 0.545947i
\(288\) 0 0
\(289\) −3.68618 −0.216834
\(290\) 0 0
\(291\) 9.24511 + 11.5195i 0.541958 + 0.675286i
\(292\) 0 0
\(293\) 25.3619 1.48166 0.740828 0.671694i \(-0.234433\pi\)
0.740828 + 0.671694i \(0.234433\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.66039 + 2.29799i −0.270423 + 0.133343i
\(298\) 0 0
\(299\) 50.8402 2.94016
\(300\) 0 0
\(301\) −0.0953484 0.105316i −0.00549579 0.00607029i
\(302\) 0 0
\(303\) −9.77910 + 7.84833i −0.561795 + 0.450875i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0.961500i 0.0548757i −0.999624 0.0274379i \(-0.991265\pi\)
0.999624 0.0274379i \(-0.00873484\pi\)
\(308\) 0 0
\(309\) −17.2076 21.4409i −0.978907 1.21973i
\(310\) 0 0
\(311\) 22.9577 1.30181 0.650907 0.759158i \(-0.274389\pi\)
0.650907 + 0.759158i \(0.274389\pi\)
\(312\) 0 0
\(313\) 1.75961i 0.0994591i 0.998763 + 0.0497295i \(0.0158359\pi\)
−0.998763 + 0.0497295i \(0.984164\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.34500i 0.244040i −0.992528 0.122020i \(-0.961063\pi\)
0.992528 0.122020i \(-0.0389371\pi\)
\(318\) 0 0
\(319\) −1.29881 −0.0727194
\(320\) 0 0
\(321\) −17.0373 21.2287i −0.950931 1.18487i
\(322\) 0 0
\(323\) 1.50977i 0.0840060i
\(324\) 0 0
\(325\) 28.7225i 1.59324i
\(326\) 0 0
\(327\) 6.57204 5.27446i 0.363435 0.291679i
\(328\) 0 0
\(329\) 4.79732 + 5.29881i 0.264485 + 0.292133i
\(330\) 0 0
\(331\) −9.19524 −0.505416 −0.252708 0.967543i \(-0.581321\pi\)
−0.252708 + 0.967543i \(0.581321\pi\)
\(332\) 0 0
\(333\) −3.76917 + 16.9993i −0.206549 + 0.931555i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −31.5233 −1.71719 −0.858593 0.512658i \(-0.828661\pi\)
−0.858593 + 0.512658i \(0.828661\pi\)
\(338\) 0 0
\(339\) 9.22062 + 11.4890i 0.500795 + 0.623997i
\(340\) 0 0
\(341\) 0.874646 0.0473647
\(342\) 0 0
\(343\) 14.8936 11.0082i 0.804177 0.594390i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.1945i 0.976733i −0.872639 0.488366i \(-0.837593\pi\)
0.872639 0.488366i \(-0.162407\pi\)
\(348\) 0 0
\(349\) 10.2260i 0.547386i −0.961817 0.273693i \(-0.911755\pi\)
0.961817 0.273693i \(-0.0882452\pi\)
\(350\) 0 0
\(351\) 26.7716 13.2008i 1.42896 0.704608i
\(352\) 0 0
\(353\) 4.43065 0.235820 0.117910 0.993024i \(-0.462381\pi\)
0.117910 + 0.993024i \(0.462381\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 16.5108 + 2.64296i 0.873842 + 0.139880i
\(358\) 0 0
\(359\) 24.1321i 1.27365i −0.771010 0.636823i \(-0.780248\pi\)
0.771010 0.636823i \(-0.219752\pi\)
\(360\) 0 0
\(361\) 18.8288 0.990989
\(362\) 0 0
\(363\) 1.35082 1.08411i 0.0708994 0.0569011i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 29.7853i 1.55478i 0.629018 + 0.777390i \(0.283457\pi\)
−0.629018 + 0.777390i \(0.716543\pi\)
\(368\) 0 0
\(369\) −3.06235 + 13.8115i −0.159420 + 0.718995i
\(370\) 0 0
\(371\) 21.0019 19.0143i 1.09037 0.987173i
\(372\) 0 0
\(373\) 27.9681 1.44813 0.724066 0.689730i \(-0.242271\pi\)
0.724066 + 0.689730i \(0.242271\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.46101 0.384262
\(378\) 0 0
\(379\) 37.1314 1.90731 0.953657 0.300897i \(-0.0972862\pi\)
0.953657 + 0.300897i \(0.0972862\pi\)
\(380\) 0 0
\(381\) 15.2195 12.2146i 0.779719 0.625772i
\(382\) 0 0
\(383\) −12.6703 −0.647422 −0.323711 0.946156i \(-0.604931\pi\)
−0.323711 + 0.946156i \(0.604931\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.0348703 0.157268i 0.00177256 0.00799439i
\(388\) 0 0
\(389\) 30.4869i 1.54575i 0.634560 + 0.772873i \(0.281181\pi\)
−0.634560 + 0.772873i \(0.718819\pi\)
\(390\) 0 0
\(391\) 32.2928i 1.63312i
\(392\) 0 0
\(393\) 26.5507 21.3086i 1.33931 1.07487i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.8797i 0.847170i −0.905856 0.423585i \(-0.860771\pi\)
0.905856 0.423585i \(-0.139229\pi\)
\(398\) 0 0
\(399\) −0.299709 + 1.87230i −0.0150042 + 0.0937324i
\(400\) 0 0
\(401\) 2.98953i 0.149290i −0.997210 0.0746451i \(-0.976218\pi\)
0.997210 0.0746451i \(-0.0237824\pi\)
\(402\) 0 0
\(403\) −5.02440 −0.250283
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.80404i 0.287696i
\(408\) 0 0
\(409\) 3.07346i 0.151973i 0.997109 + 0.0759864i \(0.0242105\pi\)
−0.997109 + 0.0759864i \(0.975789\pi\)
\(410\) 0 0
\(411\) −5.13856 6.40270i −0.253466 0.315822i
\(412\) 0 0
\(413\) 6.98181 + 7.71166i 0.343553 + 0.379466i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −11.2669 14.0387i −0.551743 0.687478i
\(418\) 0 0
\(419\) −19.3649 −0.946039 −0.473020 0.881052i \(-0.656836\pi\)
−0.473020 + 0.881052i \(0.656836\pi\)
\(420\) 0 0
\(421\) 39.9400 1.94656 0.973278 0.229628i \(-0.0737511\pi\)
0.973278 + 0.229628i \(0.0737511\pi\)
\(422\) 0 0
\(423\) −1.75445 + 7.91272i −0.0853044 + 0.384730i
\(424\) 0 0
\(425\) −18.2441 −0.884966
\(426\) 0 0
\(427\) 3.04619 2.75790i 0.147416 0.133464i
\(428\) 0 0
\(429\) −7.75976 + 6.22768i −0.374645 + 0.300675i
\(430\) 0 0
\(431\) 29.8964i 1.44006i −0.693943 0.720030i \(-0.744128\pi\)
0.693943 0.720030i \(-0.255872\pi\)
\(432\) 0 0
\(433\) 13.2486i 0.636688i −0.947975 0.318344i \(-0.896873\pi\)
0.947975 0.318344i \(-0.103127\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.66197 −0.175176
\(438\) 0 0
\(439\) 31.9013i 1.52256i −0.648421 0.761282i \(-0.724570\pi\)
0.648421 0.761282i \(-0.275430\pi\)
\(440\) 0 0
\(441\) 19.9507 + 6.55518i 0.950032 + 0.312151i
\(442\) 0 0
\(443\) 21.3086i 1.01240i −0.862416 0.506200i \(-0.831050\pi\)
0.862416 0.506200i \(-0.168950\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −15.0815 18.7918i −0.713333 0.888821i
\(448\) 0 0
\(449\) 12.3780i 0.584153i −0.956395 0.292076i \(-0.905654\pi\)
0.956395 0.292076i \(-0.0943462\pi\)
\(450\) 0 0
\(451\) 4.71563i 0.222050i
\(452\) 0 0
\(453\) −22.4498 + 18.0173i −1.05478 + 0.846526i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.0286 1.49823 0.749117 0.662438i \(-0.230478\pi\)
0.749117 + 0.662438i \(0.230478\pi\)
\(458\) 0 0
\(459\) 8.38495 + 17.0049i 0.391376 + 0.793719i
\(460\) 0 0
\(461\) −5.58432 −0.260088 −0.130044 0.991508i \(-0.541512\pi\)
−0.130044 + 0.991508i \(0.541512\pi\)
\(462\) 0 0
\(463\) −30.2057 −1.40378 −0.701889 0.712286i \(-0.747660\pi\)
−0.701889 + 0.712286i \(0.747660\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.0538 −1.34445 −0.672224 0.740347i \(-0.734661\pi\)
−0.672224 + 0.740347i \(0.734661\pi\)
\(468\) 0 0
\(469\) 19.7155 + 21.7764i 0.910376 + 1.00554i
\(470\) 0 0
\(471\) −13.1179 16.3450i −0.604439 0.753138i
\(472\) 0 0
\(473\) 0.0536958i 0.00246894i
\(474\) 0 0
\(475\) 2.06886i 0.0949257i
\(476\) 0 0
\(477\) 31.3623 + 6.95381i 1.43598 + 0.318393i
\(478\) 0 0
\(479\) 15.2777 0.698057 0.349028 0.937112i \(-0.386512\pi\)
0.349028 + 0.937112i \(0.386512\pi\)
\(480\) 0 0
\(481\) 33.3413i 1.52023i
\(482\) 0 0
\(483\) −6.41053 + 40.0470i −0.291689 + 1.82220i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −3.60216 −0.163229 −0.0816147 0.996664i \(-0.526008\pi\)
−0.0816147 + 0.996664i \(0.526008\pi\)
\(488\) 0 0
\(489\) 16.5079 13.2486i 0.746514 0.599123i
\(490\) 0 0
\(491\) 8.81451i 0.397793i −0.980020 0.198897i \(-0.936264\pi\)
0.980020 0.198897i \(-0.0637358\pi\)
\(492\) 0 0
\(493\) 4.73911i 0.213439i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.8002 + 15.2102i −0.753594 + 0.682273i
\(498\) 0 0
\(499\) −10.3131 −0.461678 −0.230839 0.972992i \(-0.574147\pi\)
−0.230839 + 0.972992i \(0.574147\pi\)
\(500\) 0 0
\(501\) 25.7005 20.6262i 1.14821 0.921510i
\(502\) 0 0
\(503\) 9.19198 0.409850 0.204925 0.978778i \(-0.434305\pi\)
0.204925 + 0.978778i \(0.434305\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 27.0153 21.6814i 1.19979 0.962907i
\(508\) 0 0
\(509\) 13.0932 0.580347 0.290174 0.956974i \(-0.406287\pi\)
0.290174 + 0.956974i \(0.406287\pi\)
\(510\) 0 0
\(511\) −32.1776 + 29.1323i −1.42345 + 1.28874i
\(512\) 0 0
\(513\) −1.92834 + 0.950844i −0.0851381 + 0.0419808i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.70163i 0.118818i
\(518\) 0 0
\(519\) 6.48029 5.20083i 0.284453 0.228291i
\(520\) 0 0
\(521\) 16.7758 0.734963 0.367481 0.930031i \(-0.380220\pi\)
0.367481 + 0.930031i \(0.380220\pi\)
\(522\) 0 0
\(523\) 36.5895i 1.59995i 0.600035 + 0.799974i \(0.295153\pi\)
−0.600035 + 0.799974i \(0.704847\pi\)
\(524\) 0 0
\(525\) −22.6248 3.62167i −0.987429 0.158063i
\(526\) 0 0
\(527\) 3.19142i 0.139020i
\(528\) 0 0
\(529\) −55.3267 −2.40551
\(530\) 0 0
\(531\) −2.55335 + 11.5158i −0.110806 + 0.499745i
\(532\) 0 0
\(533\) 27.0889i 1.17335i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.664153 0.827543i −0.0286603 0.0357111i
\(538\) 0 0
\(539\) −6.96554 0.693688i −0.300027 0.0298792i
\(540\) 0 0
\(541\) 13.3405 0.573551 0.286776 0.957998i \(-0.407417\pi\)
0.286776 + 0.957998i \(0.407417\pi\)
\(542\) 0 0
\(543\) −6.94558 8.65428i −0.298064 0.371391i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.70119 0.286522 0.143261 0.989685i \(-0.454241\pi\)
0.143261 + 0.989685i \(0.454241\pi\)
\(548\) 0 0
\(549\) 4.54889 + 1.00860i 0.194142 + 0.0430462i
\(550\) 0 0
\(551\) −0.537410 −0.0228944
\(552\) 0 0
\(553\) −21.3206 23.5493i −0.906644 1.00142i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.970709i 0.0411302i 0.999789 + 0.0205651i \(0.00654654\pi\)
−0.999789 + 0.0205651i \(0.993453\pi\)
\(558\) 0 0
\(559\) 0.308456i 0.0130463i
\(560\) 0 0
\(561\) −3.95572 4.92887i −0.167010 0.208097i
\(562\) 0 0
\(563\) 9.36788 0.394809 0.197405 0.980322i \(-0.436749\pi\)
0.197405 + 0.980322i \(0.436749\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 7.02268 + 22.7526i 0.294925 + 0.955521i
\(568\) 0 0
\(569\) 41.0278i 1.71998i −0.510313 0.859988i \(-0.670471\pi\)
0.510313 0.859988i \(-0.329529\pi\)
\(570\) 0 0
\(571\) −7.42713 −0.310816 −0.155408 0.987850i \(-0.549669\pi\)
−0.155408 + 0.987850i \(0.549669\pi\)
\(572\) 0 0
\(573\) 1.23021 + 1.53285i 0.0513926 + 0.0640357i
\(574\) 0 0
\(575\) 44.2512i 1.84540i
\(576\) 0 0
\(577\) 11.6524i 0.485095i 0.970139 + 0.242548i \(0.0779831\pi\)
−0.970139 + 0.242548i \(0.922017\pi\)
\(578\) 0 0
\(579\) 21.8909 17.5688i 0.909755 0.730134i
\(580\) 0 0
\(581\) 17.4400 + 19.2631i 0.723533 + 0.799167i
\(582\) 0 0
\(583\) −10.7080 −0.443479
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.4798 −1.13421 −0.567106 0.823645i \(-0.691937\pi\)
−0.567106 + 0.823645i \(0.691937\pi\)
\(588\) 0 0
\(589\) 0.361904 0.0149120
\(590\) 0 0
\(591\) 9.22476 + 11.4942i 0.379456 + 0.472807i
\(592\) 0 0
\(593\) −36.3665 −1.49339 −0.746697 0.665164i \(-0.768361\pi\)
−0.746697 + 0.665164i \(0.768361\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.59643 3.23518i −0.106265 0.132407i
\(598\) 0 0
\(599\) 36.7864i 1.50305i 0.659703 + 0.751526i \(0.270682\pi\)
−0.659703 + 0.751526i \(0.729318\pi\)
\(600\) 0 0
\(601\) 42.6639i 1.74030i −0.492790 0.870149i \(-0.664023\pi\)
0.492790 0.870149i \(-0.335977\pi\)
\(602\) 0 0
\(603\) −7.21024 + 32.5188i −0.293624 + 1.32427i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.9486i 0.931454i −0.884929 0.465727i \(-0.845793\pi\)
0.884929 0.465727i \(-0.154207\pi\)
\(608\) 0 0
\(609\) −0.940772 + 5.87707i −0.0381220 + 0.238151i
\(610\) 0 0
\(611\) 15.5195i 0.627853i
\(612\) 0 0
\(613\) −1.76239 −0.0711822 −0.0355911 0.999366i \(-0.511331\pi\)
−0.0355911 + 0.999366i \(0.511331\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.4658i 1.66935i −0.550742 0.834676i \(-0.685655\pi\)
0.550742 0.834676i \(-0.314345\pi\)
\(618\) 0 0
\(619\) 25.2507i 1.01491i −0.861677 0.507457i \(-0.830586\pi\)
0.861677 0.507457i \(-0.169414\pi\)
\(620\) 0 0
\(621\) −41.2455 + 20.3378i −1.65513 + 0.816128i
\(622\) 0 0
\(623\) 6.72767 + 7.43095i 0.269539 + 0.297715i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0.558929 0.448574i 0.0223215 0.0179143i
\(628\) 0 0
\(629\) −21.1778 −0.844416
\(630\) 0 0
\(631\) −6.09239 −0.242534 −0.121267 0.992620i \(-0.538696\pi\)
−0.121267 + 0.992620i \(0.538696\pi\)
\(632\) 0 0
\(633\) −4.33129 + 3.47612i −0.172153 + 0.138163i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 40.0136 + 3.98489i 1.58540 + 0.157887i
\(638\) 0 0
\(639\) −25.0878 5.56261i −0.992460 0.220054i
\(640\) 0 0
\(641\) 10.8323i 0.427849i 0.976850 + 0.213924i \(0.0686246\pi\)
−0.976850 + 0.213924i \(0.931375\pi\)
\(642\) 0 0
\(643\) 6.90733i 0.272399i −0.990681 0.136199i \(-0.956511\pi\)
0.990681 0.136199i \(-0.0434887\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.27972 −0.246881 −0.123441 0.992352i \(-0.539393\pi\)
−0.123441 + 0.992352i \(0.539393\pi\)
\(648\) 0 0
\(649\) 3.93184i 0.154338i
\(650\) 0 0
\(651\) 0.633536 3.95775i 0.0248302 0.155116i
\(652\) 0 0
\(653\) 7.11975i 0.278617i 0.990249 + 0.139309i \(0.0444880\pi\)
−0.990249 + 0.139309i \(0.955512\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −48.0509 10.6541i −1.87464 0.415656i
\(658\) 0 0
\(659\) 6.97071i 0.271540i 0.990740 + 0.135770i \(0.0433509\pi\)
−0.990740 + 0.135770i \(0.956649\pi\)
\(660\) 0 0
\(661\) 31.1260i 1.21066i 0.795974 + 0.605330i \(0.206959\pi\)
−0.795974 + 0.605330i \(0.793041\pi\)
\(662\) 0 0
\(663\) 22.7236 + 28.3139i 0.882512 + 1.09962i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −11.4948 −0.445079
\(668\) 0 0
\(669\) 24.1198 + 30.0535i 0.932524 + 1.16194i
\(670\) 0 0
\(671\) −1.55312 −0.0599575
\(672\) 0 0
\(673\) −31.3386 −1.20801 −0.604006 0.796979i \(-0.706430\pi\)
−0.604006 + 0.796979i \(0.706430\pi\)
\(674\) 0 0
\(675\) −11.4900 23.3019i −0.442249 0.896892i
\(676\) 0 0
\(677\) −26.5921 −1.02202 −0.511008 0.859576i \(-0.670728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(678\) 0 0
\(679\) −16.7259 + 15.1430i −0.641883 + 0.581134i
\(680\) 0 0
\(681\) 2.25262 1.80786i 0.0863205 0.0692774i
\(682\) 0 0
\(683\) 39.8288i 1.52401i −0.647573 0.762003i \(-0.724216\pi\)
0.647573 0.762003i \(-0.275784\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −13.1377 16.3698i −0.501235 0.624545i
\(688\) 0 0
\(689\) 61.5119 2.34342
\(690\) 0 0
\(691\) 32.9916i 1.25506i −0.778593 0.627529i \(-0.784066\pi\)
0.778593 0.627529i \(-0.215934\pi\)
\(692\) 0 0
\(693\) −3.92713 6.89766i −0.149179 0.262020i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17.2064 −0.651740
\(698\) 0 0
\(699\) −17.4728 21.7713i −0.660881 0.823465i
\(700\) 0 0
\(701\) 27.4271i 1.03591i 0.855408 + 0.517954i \(0.173306\pi\)
−0.855408 + 0.517954i \(0.826694\pi\)
\(702\) 0 0
\(703\) 2.40155i 0.0905760i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.8551 14.1989i −0.483466 0.534005i
\(708\) 0 0
\(709\) −0.925719 −0.0347661 −0.0173831 0.999849i \(-0.505533\pi\)
−0.0173831 + 0.999849i \(0.505533\pi\)
\(710\) 0 0
\(711\) 7.79726 35.1663i 0.292420 1.31884i
\(712\) 0 0
\(713\) 7.74082 0.289896
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.2847 25.2750i −0.757548 0.943913i
\(718\) 0 0
\(719\) 17.3438 0.646816 0.323408 0.946260i \(-0.395171\pi\)
0.323408 + 0.946260i \(0.395171\pi\)
\(720\) 0 0
\(721\) 31.1314 28.1851i 1.15939 1.04967i
\(722\) 0 0
\(723\) −12.6792 15.7984i −0.471545 0.587551i
\(724\) 0 0
\(725\) 6.49405i 0.241183i
\(726\) 0 0
\(727\) 44.1374i 1.63697i −0.574531 0.818483i \(-0.694816\pi\)
0.574531 0.818483i \(-0.305184\pi\)
\(728\) 0 0
\(729\) −16.4384 + 21.4191i −0.608831 + 0.793300i
\(730\) 0 0
\(731\) 0.195926 0.00724658
\(732\) 0 0
\(733\) 12.3596i 0.456514i 0.973601 + 0.228257i \(0.0733026\pi\)
−0.973601 + 0.228257i \(0.926697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.1029i 0.408979i
\(738\) 0 0
\(739\) 5.51952 0.203039 0.101519 0.994834i \(-0.467630\pi\)
0.101519 + 0.994834i \(0.467630\pi\)
\(740\) 0 0
\(741\) −3.21077 + 2.57683i −0.117950 + 0.0946624i
\(742\) 0 0
\(743\) 22.2057i 0.814648i 0.913284 + 0.407324i \(0.133538\pi\)
−0.913284 + 0.407324i \(0.866462\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.37806 + 28.7656i −0.233361 + 1.05248i
\(748\) 0 0
\(749\) 30.8233 27.9062i 1.12626 1.01967i
\(750\) 0 0
\(751\) 16.4279 0.599461 0.299730 0.954024i \(-0.403103\pi\)
0.299730 + 0.954024i \(0.403103\pi\)
\(752\) 0 0
\(753\) 42.0012 33.7085i 1.53061 1.22841i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.58261 0.0938666 0.0469333 0.998898i \(-0.485055\pi\)
0.0469333 + 0.998898i \(0.485055\pi\)
\(758\) 0 0
\(759\) 11.9550 9.59464i 0.433940 0.348263i
\(760\) 0 0
\(761\) 19.3292 0.700683 0.350341 0.936622i \(-0.386066\pi\)
0.350341 + 0.936622i \(0.386066\pi\)
\(762\) 0 0
\(763\) 8.63927 + 9.54238i 0.312763 + 0.345457i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.5864i 0.815549i
\(768\) 0 0
\(769\) 33.0184i 1.19067i 0.803476 + 0.595337i \(0.202981\pi\)
−0.803476 + 0.595337i \(0.797019\pi\)
\(770\) 0 0
\(771\) −25.7005 + 20.6262i −0.925580 + 0.742834i
\(772\) 0 0
\(773\) −28.7839 −1.03529 −0.517643 0.855597i \(-0.673190\pi\)
−0.517643 + 0.855597i \(0.673190\pi\)
\(774\) 0 0
\(775\) 4.37323i 0.157091i
\(776\) 0 0
\(777\) −26.2631 4.20406i −0.942184 0.150820i
\(778\) 0 0
\(779\) 1.95119i 0.0699087i
\(780\) 0 0
\(781\) 8.56571 0.306505
\(782\) 0 0
\(783\) −6.05296 + 2.98466i −0.216315 + 0.106663i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.76054i 0.169695i 0.996394 + 0.0848474i \(0.0270403\pi\)
−0.996394 + 0.0848474i \(0.972960\pi\)
\(788\) 0 0
\(789\) −0.856185 1.06682i −0.0304810 0.0379796i
\(790\) 0 0
\(791\) −16.6816 + 15.1029i −0.593130 + 0.536996i
\(792\) 0 0
\(793\) 8.92190 0.316826
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44.3009 −1.56922 −0.784609 0.619990i \(-0.787137\pi\)
−0.784609 + 0.619990i \(0.787137\pi\)
\(798\) 0 0
\(799\) −9.85774 −0.348742
\(800\) 0 0
\(801\) −2.46041 + 11.0967i −0.0869343 + 0.392081i
\(802\) 0 0
\(803\) 16.4060 0.578954
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.63703 + 1.31382i −0.0576262 + 0.0462485i
\(808\) 0 0
\(809\) 51.7252i 1.81856i 0.416183 + 0.909281i \(0.363368\pi\)
−0.416183 + 0.909281i \(0.636632\pi\)
\(810\) 0 0
\(811\) 11.4779i 0.403043i 0.979484 + 0.201522i \(0.0645886\pi\)
−0.979484 + 0.201522i \(0.935411\pi\)
\(812\) 0 0
\(813\) 24.4621 + 30.4801i 0.857925 + 1.06898i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.0222178i 0.000777302i
\(818\) 0 0
\(819\) 22.5594 + 39.6236i 0.788289 + 1.38456i
\(820\) 0 0
\(821\) 29.2486i 1.02078i 0.859943 + 0.510391i \(0.170499\pi\)
−0.859943 + 0.510391i \(0.829501\pi\)
\(822\) 0 0
\(823\) 29.8514 1.04056 0.520278 0.853997i \(-0.325828\pi\)
0.520278 + 0.853997i \(0.325828\pi\)
\(824\) 0 0
\(825\) 5.42056 + 6.75408i 0.188720 + 0.235147i
\(826\) 0 0
\(827\) 16.6374i 0.578538i 0.957248 + 0.289269i \(0.0934122\pi\)
−0.957248 + 0.289269i \(0.906588\pi\)
\(828\) 0 0
\(829\) 8.49699i 0.295113i 0.989054 + 0.147556i \(0.0471408\pi\)
−0.989054 + 0.147556i \(0.952859\pi\)
\(830\) 0 0
\(831\) 22.2524 17.8589i 0.771928 0.619519i
\(832\) 0 0
\(833\) −2.53113 + 25.4159i −0.0876986 + 0.880610i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.07619 2.00993i 0.140894 0.0694734i
\(838\) 0 0
\(839\) −44.8609 −1.54877 −0.774385 0.632714i \(-0.781941\pi\)
−0.774385 + 0.632714i \(0.781941\pi\)
\(840\) 0 0
\(841\) 27.3131 0.941831
\(842\) 0 0
\(843\) −4.77189 5.94583i −0.164353 0.204785i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.77571 + 1.96134i 0.0610142 + 0.0673923i
\(848\) 0 0
\(849\) −18.6355 23.2200i −0.639567 0.796908i
\(850\) 0 0
\(851\) 51.3671i 1.76084i
\(852\) 0 0
\(853\) 52.4036i 1.79427i −0.441761 0.897133i \(-0.645646\pi\)
0.441761 0.897133i \(-0.354354\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.2128 −0.656296 −0.328148 0.944626i \(-0.606424\pi\)
−0.328148 + 0.944626i \(0.606424\pi\)
\(858\) 0 0
\(859\) 47.0927i 1.60678i −0.595451 0.803392i \(-0.703026\pi\)
0.595451 0.803392i \(-0.296974\pi\)
\(860\) 0 0
\(861\) −21.3381 3.41569i −0.727199 0.116406i
\(862\) 0 0
\(863\) 31.4479i 1.07050i 0.844695 + 0.535249i \(0.179782\pi\)
−0.844695 + 0.535249i \(0.820218\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.97936 3.99624i 0.169108 0.135719i
\(868\) 0 0
\(869\) 12.0068i 0.407302i
\(870\) 0 0
\(871\) 63.7803i 2.16111i
\(872\) 0 0
\(873\) −24.9769 5.53801i −0.845339 0.187433i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.1843 −0.782877 −0.391438 0.920204i \(-0.628022\pi\)
−0.391438 + 0.920204i \(0.628022\pi\)
\(878\) 0 0
\(879\) −34.2592 + 27.4951i −1.15553 + 0.927387i
\(880\) 0 0
\(881\) 54.9910 1.85269 0.926347 0.376671i \(-0.122931\pi\)
0.926347 + 0.376671i \(0.122931\pi\)
\(882\) 0 0
\(883\) 16.5188 0.555902 0.277951 0.960595i \(-0.410345\pi\)
0.277951 + 0.960595i \(0.410345\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.412981 0.0138666 0.00693328 0.999976i \(-0.497793\pi\)
0.00693328 + 0.999976i \(0.497793\pi\)
\(888\) 0 0
\(889\) 20.0068 + 22.0982i 0.671006 + 0.741150i
\(890\) 0 0
\(891\) 3.80404 8.15655i 0.127440 0.273255i
\(892\) 0 0
\(893\) 1.11786i 0.0374077i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −68.6757 + 55.1164i −2.29301 + 1.84028i
\(898\) 0 0
\(899\) 1.13600 0.0378877
\(900\) 0 0
\(901\) 39.0714i 1.30166i
\(902\) 0 0
\(903\) 0.242972 + 0.0388937i 0.00808560 + 0.00129430i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −40.5052 −1.34495 −0.672477 0.740118i \(-0.734770\pi\)
−0.672477 + 0.740118i \(0.734770\pi\)
\(908\) 0 0
\(909\) 4.70131 21.2033i 0.155932 0.703268i
\(910\) 0 0
\(911\) 27.8833i 0.923816i 0.886928 + 0.461908i \(0.152835\pi\)
−0.886928 + 0.461908i \(0.847165\pi\)
\(912\) 0 0
\(913\) 9.82140i 0.325041i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 34.9022 + 38.5507i 1.15257 + 1.27306i
\(918\) 0 0
\(919\) 32.1340 1.06000 0.530002 0.847996i \(-0.322191\pi\)
0.530002 + 0.847996i \(0.322191\pi\)
\(920\) 0 0
\(921\) 1.04237 + 1.29881i 0.0343474 + 0.0427972i
\(922\) 0 0
\(923\) −49.2057 −1.61963
\(924\) 0 0
\(925\) 29.0202 0.954179
\(926\) 0 0
\(927\) 46.4886 + 10.3077i 1.52689 + 0.338550i
\(928\) 0 0
\(929\) 10.6328 0.348851 0.174426 0.984670i \(-0.444193\pi\)
0.174426 + 0.984670i \(0.444193\pi\)
\(930\) 0 0
\(931\) −2.88214 0.287028i −0.0944584 0.00940697i
\(932\) 0 0
\(933\) −31.0117 + 24.8887i −1.01528 + 0.814821i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 36.0591i 1.17800i −0.808133 0.588999i \(-0.799522\pi\)
0.808133 0.588999i \(-0.200478\pi\)
\(938\) 0 0
\(939\) −1.90761 2.37691i −0.0622526 0.0775675i
\(940\) 0 0
\(941\) −38.3020 −1.24861 −0.624305 0.781180i \(-0.714618\pi\)
−0.624305 + 0.781180i \(0.714618\pi\)
\(942\) 0 0
\(943\) 41.7344i 1.35906i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.5593i 1.22051i −0.792204 0.610256i \(-0.791066\pi\)
0.792204 0.610256i \(-0.208934\pi\)
\(948\) 0 0
\(949\) −94.2440 −3.05929
\(950\) 0 0
\(951\) 4.71047 + 5.86930i 0.152747 + 0.190325i
\(952\) 0 0
\(953\) 41.8312i 1.35504i 0.735502 + 0.677522i \(0.236946\pi\)
−0.735502 + 0.677522i \(0.763054\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.75445 1.40805i 0.0567134 0.0455159i
\(958\) 0 0
\(959\) 9.29650 8.41667i 0.300200 0.271788i
\(960\) 0 0
\(961\) 30.2350 0.975322
\(962\) 0 0
\(963\) 46.0286 + 10.2057i 1.48325 + 0.328874i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −40.4046 −1.29933 −0.649663 0.760223i \(-0.725090\pi\)
−0.649663 + 0.760223i \(0.725090\pi\)
\(968\) 0 0
\(969\) −1.63676 2.03942i −0.0525804 0.0655158i
\(970\) 0 0
\(971\) 1.62450 0.0521326 0.0260663 0.999660i \(-0.491702\pi\)
0.0260663 + 0.999660i \(0.491702\pi\)
\(972\) 0 0
\(973\) 20.3837 18.4545i 0.653471 0.591625i
\(974\) 0 0
\(975\) −31.1384 38.7988i −0.997227 1.24256i
\(976\) 0 0
\(977\) 4.69000i 0.150047i −0.997182 0.0750233i \(-0.976097\pi\)
0.997182 0.0750233i \(-0.0239031\pi\)
\(978\) 0 0
\(979\) 3.78872i 0.121088i
\(980\) 0 0
\(981\) −3.15951 + 14.2497i −0.100875 + 0.454956i
\(982\) 0 0
\(983\) 19.7390 0.629575 0.314788 0.949162i \(-0.398067\pi\)
0.314788 + 0.949162i \(0.398067\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −12.2248 1.95688i −0.389120 0.0622883i
\(988\) 0 0
\(989\) 0.475221i 0.0151111i
\(990\) 0 0
\(991\) −35.3874 −1.12412 −0.562059 0.827097i \(-0.689990\pi\)
−0.562059 + 0.827097i \(0.689990\pi\)
\(992\) 0 0
\(993\) 12.4211 9.96866i 0.394171 0.316346i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27.5968i 0.874000i −0.899461 0.437000i \(-0.856041\pi\)
0.899461 0.437000i \(-0.143959\pi\)
\(998\) 0 0
\(999\) −13.3377 27.0491i −0.421985 0.855795i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1848.2.v.c.881.4 yes 16
3.2 odd 2 inner 1848.2.v.c.881.14 yes 16
7.6 odd 2 inner 1848.2.v.c.881.13 yes 16
21.20 even 2 inner 1848.2.v.c.881.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1848.2.v.c.881.3 16 21.20 even 2 inner
1848.2.v.c.881.4 yes 16 1.1 even 1 trivial
1848.2.v.c.881.13 yes 16 7.6 odd 2 inner
1848.2.v.c.881.14 yes 16 3.2 odd 2 inner