Properties

Label 1848.2.v.c.881.10
Level $1848$
Weight $2$
Character 1848.881
Analytic conductor $14.756$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1848,2,Mod(881,1848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1848.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.v (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7563542935\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 40x^{12} + 388x^{8} + 436x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.10
Root \(-0.312148 + 0.312148i\) of defining polynomial
Character \(\chi\) \(=\) 1848.881
Dual form 1848.2.v.c.881.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.312148 + 1.70369i) q^{3} +(-0.589216 - 2.57931i) q^{7} +(-2.80513 + 1.06361i) q^{9} +1.00000i q^{11} +2.74337i q^{13} -2.99983 q^{17} +1.65615i q^{19} +(4.21042 - 1.80897i) q^{21} -0.431822i q^{23} -5.00000 q^{25} +(-2.68768 - 4.44707i) q^{27} -5.61025i q^{29} +5.52646i q^{31} +(-1.70369 + 0.312148i) q^{33} -7.96712 q^{37} +(-4.67386 + 0.856340i) q^{39} +11.0632 q^{41} -10.0943 q^{43} +0.624297 q^{47} +(-6.30565 + 3.03954i) q^{49} +(-0.936391 - 5.11078i) q^{51} -6.55904i q^{53} +(-2.82157 + 0.516965i) q^{57} -12.7030 q^{59} -3.25628i q^{61} +(4.39620 + 6.60859i) q^{63} -6.35686 q^{67} +(0.735691 - 0.134793i) q^{69} +16.6863i q^{71} +11.5424i q^{73} +(-1.56074 - 8.51846i) q^{75} +(2.57931 - 0.589216i) q^{77} -12.1693 q^{79} +(6.73747 - 5.96712i) q^{81} -16.2615 q^{83} +(9.55814 - 1.75123i) q^{87} +9.50212 q^{89} +(7.07600 - 1.61644i) q^{91} +(-9.41538 + 1.72508i) q^{93} -7.32767i q^{97} +(-1.06361 - 2.80513i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} - 8 q^{9} + 20 q^{21} - 80 q^{25} + 24 q^{39} + 16 q^{43} - 24 q^{49} - 40 q^{51} - 72 q^{57} - 12 q^{63} - 48 q^{67} - 24 q^{79} - 16 q^{81} + 40 q^{91} - 40 q^{93} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1848\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(673\) \(925\) \(1585\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.312148 + 1.70369i 0.180219 + 0.983627i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −0.589216 2.57931i −0.222703 0.974886i
\(8\) 0 0
\(9\) −2.80513 + 1.06361i −0.935042 + 0.354536i
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 2.74337i 0.760875i 0.924807 + 0.380438i \(0.124227\pi\)
−0.924807 + 0.380438i \(0.875773\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.99983 −0.727565 −0.363782 0.931484i \(-0.618515\pi\)
−0.363782 + 0.931484i \(0.618515\pi\)
\(18\) 0 0
\(19\) 1.65615i 0.379947i 0.981789 + 0.189973i \(0.0608402\pi\)
−0.981789 + 0.189973i \(0.939160\pi\)
\(20\) 0 0
\(21\) 4.21042 1.80897i 0.918789 0.394749i
\(22\) 0 0
\(23\) 0.431822i 0.0900411i −0.998986 0.0450205i \(-0.985665\pi\)
0.998986 0.0450205i \(-0.0143353\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −2.68768 4.44707i −0.517244 0.855838i
\(28\) 0 0
\(29\) 5.61025i 1.04180i −0.853618 0.520899i \(-0.825597\pi\)
0.853618 0.520899i \(-0.174403\pi\)
\(30\) 0 0
\(31\) 5.52646i 0.992581i 0.868156 + 0.496291i \(0.165305\pi\)
−0.868156 + 0.496291i \(0.834695\pi\)
\(32\) 0 0
\(33\) −1.70369 + 0.312148i −0.296575 + 0.0543381i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.96712 −1.30979 −0.654893 0.755722i \(-0.727286\pi\)
−0.654893 + 0.755722i \(0.727286\pi\)
\(38\) 0 0
\(39\) −4.67386 + 0.856340i −0.748417 + 0.137124i
\(40\) 0 0
\(41\) 11.0632 1.72778 0.863890 0.503681i \(-0.168021\pi\)
0.863890 + 0.503681i \(0.168021\pi\)
\(42\) 0 0
\(43\) −10.0943 −1.53937 −0.769686 0.638423i \(-0.779587\pi\)
−0.769686 + 0.638423i \(0.779587\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.624297 0.0910631 0.0455315 0.998963i \(-0.485502\pi\)
0.0455315 + 0.998963i \(0.485502\pi\)
\(48\) 0 0
\(49\) −6.30565 + 3.03954i −0.900807 + 0.434220i
\(50\) 0 0
\(51\) −0.936391 5.11078i −0.131121 0.715652i
\(52\) 0 0
\(53\) 6.55904i 0.900953i −0.892788 0.450477i \(-0.851254\pi\)
0.892788 0.450477i \(-0.148746\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.82157 + 0.516965i −0.373726 + 0.0684737i
\(58\) 0 0
\(59\) −12.7030 −1.65379 −0.826896 0.562354i \(-0.809896\pi\)
−0.826896 + 0.562354i \(0.809896\pi\)
\(60\) 0 0
\(61\) 3.25628i 0.416924i −0.978031 0.208462i \(-0.933154\pi\)
0.978031 0.208462i \(-0.0668457\pi\)
\(62\) 0 0
\(63\) 4.39620 + 6.60859i 0.553869 + 0.832604i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.35686 −0.776614 −0.388307 0.921530i \(-0.626940\pi\)
−0.388307 + 0.921530i \(0.626940\pi\)
\(68\) 0 0
\(69\) 0.735691 0.134793i 0.0885668 0.0162271i
\(70\) 0 0
\(71\) 16.6863i 1.98029i 0.140030 + 0.990147i \(0.455280\pi\)
−0.140030 + 0.990147i \(0.544720\pi\)
\(72\) 0 0
\(73\) 11.5424i 1.35094i 0.737388 + 0.675469i \(0.236059\pi\)
−0.737388 + 0.675469i \(0.763941\pi\)
\(74\) 0 0
\(75\) −1.56074 8.51846i −0.180219 0.983627i
\(76\) 0 0
\(77\) 2.57931 0.589216i 0.293939 0.0671474i
\(78\) 0 0
\(79\) −12.1693 −1.36915 −0.684576 0.728941i \(-0.740013\pi\)
−0.684576 + 0.728941i \(0.740013\pi\)
\(80\) 0 0
\(81\) 6.73747 5.96712i 0.748608 0.663013i
\(82\) 0 0
\(83\) −16.2615 −1.78493 −0.892466 0.451114i \(-0.851027\pi\)
−0.892466 + 0.451114i \(0.851027\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.55814 1.75123i 1.02474 0.187752i
\(88\) 0 0
\(89\) 9.50212 1.00722 0.503611 0.863930i \(-0.332004\pi\)
0.503611 + 0.863930i \(0.332004\pi\)
\(90\) 0 0
\(91\) 7.07600 1.61644i 0.741767 0.169449i
\(92\) 0 0
\(93\) −9.41538 + 1.72508i −0.976329 + 0.178882i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.32767i 0.744012i −0.928230 0.372006i \(-0.878670\pi\)
0.928230 0.372006i \(-0.121330\pi\)
\(98\) 0 0
\(99\) −1.06361 2.80513i −0.106897 0.281926i
\(100\) 0 0
\(101\) 11.1980 1.11424 0.557120 0.830432i \(-0.311906\pi\)
0.557120 + 0.830432i \(0.311906\pi\)
\(102\) 0 0
\(103\) 7.51074i 0.740056i −0.929021 0.370028i \(-0.879348\pi\)
0.929021 0.370028i \(-0.120652\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.254436i 0.0245973i −0.999924 0.0122986i \(-0.996085\pi\)
0.999924 0.0122986i \(-0.00391488\pi\)
\(108\) 0 0
\(109\) 1.82261 0.174575 0.0872874 0.996183i \(-0.472180\pi\)
0.0872874 + 0.996183i \(0.472180\pi\)
\(110\) 0 0
\(111\) −2.48692 13.5735i −0.236048 1.28834i
\(112\) 0 0
\(113\) 17.5774i 1.65354i −0.562540 0.826770i \(-0.690176\pi\)
0.562540 0.826770i \(-0.309824\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.91788 7.69551i −0.269758 0.711450i
\(118\) 0 0
\(119\) 1.76754 + 7.73747i 0.162031 + 0.709293i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 3.45336 + 18.8482i 0.311379 + 1.69949i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.07600 0.627894 0.313947 0.949441i \(-0.398349\pi\)
0.313947 + 0.949441i \(0.398349\pi\)
\(128\) 0 0
\(129\) −3.15093 17.1976i −0.277424 1.51417i
\(130\) 0 0
\(131\) −4.15016 −0.362601 −0.181301 0.983428i \(-0.558031\pi\)
−0.181301 + 0.983428i \(0.558031\pi\)
\(132\) 0 0
\(133\) 4.27172 0.975830i 0.370405 0.0846152i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.09329i 0.0934060i −0.998909 0.0467030i \(-0.985129\pi\)
0.998909 0.0467030i \(-0.0148714\pi\)
\(138\) 0 0
\(139\) 4.15334i 0.352282i −0.984365 0.176141i \(-0.943639\pi\)
0.984365 0.176141i \(-0.0563614\pi\)
\(140\) 0 0
\(141\) 0.194873 + 1.06361i 0.0164113 + 0.0895720i
\(142\) 0 0
\(143\) −2.74337 −0.229412
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.14673 9.79409i −0.589452 0.807803i
\(148\) 0 0
\(149\) 4.22155i 0.345843i −0.984936 0.172922i \(-0.944679\pi\)
0.984936 0.172922i \(-0.0553207\pi\)
\(150\) 0 0
\(151\) −18.7806 −1.52834 −0.764171 0.645013i \(-0.776852\pi\)
−0.764171 + 0.645013i \(0.776852\pi\)
\(152\) 0 0
\(153\) 8.41489 3.19064i 0.680304 0.257948i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.43665i 0.513701i 0.966451 + 0.256850i \(0.0826848\pi\)
−0.966451 + 0.256850i \(0.917315\pi\)
\(158\) 0 0
\(159\) 11.1746 2.04739i 0.886202 0.162369i
\(160\) 0 0
\(161\) −1.11380 + 0.254436i −0.0877798 + 0.0200524i
\(162\) 0 0
\(163\) −5.32293 −0.416924 −0.208462 0.978030i \(-0.566846\pi\)
−0.208462 + 0.978030i \(0.566846\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.8621 1.76912 0.884560 0.466427i \(-0.154459\pi\)
0.884560 + 0.466427i \(0.154459\pi\)
\(168\) 0 0
\(169\) 5.47390 0.421069
\(170\) 0 0
\(171\) −1.76150 4.64571i −0.134705 0.355266i
\(172\) 0 0
\(173\) 0.367846 0.0279668 0.0139834 0.999902i \(-0.495549\pi\)
0.0139834 + 0.999902i \(0.495549\pi\)
\(174\) 0 0
\(175\) 2.94608 + 12.8965i 0.222703 + 0.974886i
\(176\) 0 0
\(177\) −3.96523 21.6420i −0.298045 1.62671i
\(178\) 0 0
\(179\) 10.6113i 0.793126i −0.918008 0.396563i \(-0.870203\pi\)
0.918008 0.396563i \(-0.129797\pi\)
\(180\) 0 0
\(181\) 4.91848i 0.365587i −0.983151 0.182794i \(-0.941486\pi\)
0.983151 0.182794i \(-0.0585140\pi\)
\(182\) 0 0
\(183\) 5.54769 1.01644i 0.410097 0.0751375i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.99983i 0.219369i
\(188\) 0 0
\(189\) −9.88673 + 9.55263i −0.719153 + 0.694851i
\(190\) 0 0
\(191\) 7.82261i 0.566025i −0.959116 0.283012i \(-0.908666\pi\)
0.959116 0.283012i \(-0.0913337\pi\)
\(192\) 0 0
\(193\) −6.71373 −0.483265 −0.241632 0.970368i \(-0.577683\pi\)
−0.241632 + 0.970368i \(0.577683\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.4421i 1.67018i 0.550115 + 0.835089i \(0.314584\pi\)
−0.550115 + 0.835089i \(0.685416\pi\)
\(198\) 0 0
\(199\) 20.4046i 1.44644i 0.690616 + 0.723221i \(0.257339\pi\)
−0.690616 + 0.723221i \(0.742661\pi\)
\(200\) 0 0
\(201\) −1.98428 10.8301i −0.139961 0.763899i
\(202\) 0 0
\(203\) −14.4706 + 3.30565i −1.01563 + 0.232011i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.459290 + 1.21132i 0.0319228 + 0.0841922i
\(208\) 0 0
\(209\) −1.65615 −0.114558
\(210\) 0 0
\(211\) 19.1876 1.32093 0.660465 0.750857i \(-0.270359\pi\)
0.660465 + 0.750857i \(0.270359\pi\)
\(212\) 0 0
\(213\) −28.4282 + 5.20859i −1.94787 + 0.356887i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 14.2544 3.25628i 0.967654 0.221050i
\(218\) 0 0
\(219\) −19.6647 + 3.60295i −1.32882 + 0.243465i
\(220\) 0 0
\(221\) 8.22964i 0.553586i
\(222\) 0 0
\(223\) 0.854824i 0.0572432i −0.999590 0.0286216i \(-0.990888\pi\)
0.999590 0.0286216i \(-0.00911179\pi\)
\(224\) 0 0
\(225\) 14.0256 5.31805i 0.935042 0.354536i
\(226\) 0 0
\(227\) 21.7483 1.44348 0.721741 0.692163i \(-0.243342\pi\)
0.721741 + 0.692163i \(0.243342\pi\)
\(228\) 0 0
\(229\) 21.5255i 1.42244i 0.702968 + 0.711222i \(0.251858\pi\)
−0.702968 + 0.711222i \(0.748142\pi\)
\(230\) 0 0
\(231\) 1.80897 + 4.21042i 0.119021 + 0.277025i
\(232\) 0 0
\(233\) 11.5078i 0.753903i −0.926233 0.376951i \(-0.876972\pi\)
0.926233 0.376951i \(-0.123028\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.79863 20.7327i −0.246747 1.34673i
\(238\) 0 0
\(239\) 18.2911i 1.18315i 0.806249 + 0.591576i \(0.201494\pi\)
−0.806249 + 0.591576i \(0.798506\pi\)
\(240\) 0 0
\(241\) 12.3249i 0.793917i 0.917836 + 0.396959i \(0.129934\pi\)
−0.917836 + 0.396959i \(0.870066\pi\)
\(242\) 0 0
\(243\) 12.2692 + 9.61594i 0.787070 + 0.616863i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.54344 −0.289092
\(248\) 0 0
\(249\) −5.07600 27.7046i −0.321679 1.75571i
\(250\) 0 0
\(251\) −12.7619 −0.805525 −0.402762 0.915305i \(-0.631950\pi\)
−0.402762 + 0.915305i \(0.631950\pi\)
\(252\) 0 0
\(253\) 0.431822 0.0271484
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.8621 −1.42610 −0.713048 0.701115i \(-0.752686\pi\)
−0.713048 + 0.701115i \(0.752686\pi\)
\(258\) 0 0
\(259\) 4.69435 + 20.5496i 0.291693 + 1.27689i
\(260\) 0 0
\(261\) 5.96712 + 15.7375i 0.369355 + 0.974125i
\(262\) 0 0
\(263\) 25.8318i 1.59286i 0.604732 + 0.796429i \(0.293280\pi\)
−0.604732 + 0.796429i \(0.706720\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.96607 + 16.1887i 0.181521 + 0.990730i
\(268\) 0 0
\(269\) −1.76150 −0.107400 −0.0537002 0.998557i \(-0.517102\pi\)
−0.0537002 + 0.998557i \(0.517102\pi\)
\(270\) 0 0
\(271\) 12.6296i 0.767196i 0.923500 + 0.383598i \(0.125315\pi\)
−0.923500 + 0.383598i \(0.874685\pi\)
\(272\) 0 0
\(273\) 4.96268 + 11.5508i 0.300355 + 0.699084i
\(274\) 0 0
\(275\) 5.00000i 0.301511i
\(276\) 0 0
\(277\) −14.1116 −0.847885 −0.423942 0.905689i \(-0.639354\pi\)
−0.423942 + 0.905689i \(0.639354\pi\)
\(278\) 0 0
\(279\) −5.87799 15.5024i −0.351906 0.928106i
\(280\) 0 0
\(281\) 7.25339i 0.432701i −0.976316 0.216350i \(-0.930585\pi\)
0.976316 0.216350i \(-0.0694154\pi\)
\(282\) 0 0
\(283\) 29.3161i 1.74266i 0.490698 + 0.871330i \(0.336742\pi\)
−0.490698 + 0.871330i \(0.663258\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.51860 28.5353i −0.384781 1.68439i
\(288\) 0 0
\(289\) −8.00105 −0.470650
\(290\) 0 0
\(291\) 12.4841 2.28732i 0.731830 0.134085i
\(292\) 0 0
\(293\) 17.7900 1.03930 0.519650 0.854379i \(-0.326062\pi\)
0.519650 + 0.854379i \(0.326062\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.44707 2.68768i 0.258045 0.155955i
\(298\) 0 0
\(299\) 1.18465 0.0685100
\(300\) 0 0
\(301\) 5.94774 + 26.0364i 0.342822 + 1.50071i
\(302\) 0 0
\(303\) 3.49543 + 19.0779i 0.200807 + 1.09600i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.9730i 1.02577i −0.858456 0.512887i \(-0.828576\pi\)
0.858456 0.512887i \(-0.171424\pi\)
\(308\) 0 0
\(309\) 12.7960 2.34447i 0.727938 0.133372i
\(310\) 0 0
\(311\) −10.1590 −0.576066 −0.288033 0.957620i \(-0.593001\pi\)
−0.288033 + 0.957620i \(0.593001\pi\)
\(312\) 0 0
\(313\) 14.5554i 0.822719i 0.911473 + 0.411359i \(0.134946\pi\)
−0.911473 + 0.411359i \(0.865054\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.0092i 0.786835i 0.919360 + 0.393417i \(0.128707\pi\)
−0.919360 + 0.393417i \(0.871293\pi\)
\(318\) 0 0
\(319\) 5.61025 0.314114
\(320\) 0 0
\(321\) 0.433481 0.0794219i 0.0241945 0.00443290i
\(322\) 0 0
\(323\) 4.96816i 0.276436i
\(324\) 0 0
\(325\) 13.7169i 0.760875i
\(326\) 0 0
\(327\) 0.568926 + 3.10517i 0.0314617 + 0.171716i
\(328\) 0 0
\(329\) −0.367846 1.61025i −0.0202800 0.0887761i
\(330\) 0 0
\(331\) 18.4410 1.01361 0.506805 0.862061i \(-0.330826\pi\)
0.506805 + 0.862061i \(0.330826\pi\)
\(332\) 0 0
\(333\) 22.3488 8.47390i 1.22471 0.464367i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 23.3067 1.26960 0.634800 0.772677i \(-0.281083\pi\)
0.634800 + 0.772677i \(0.281083\pi\)
\(338\) 0 0
\(339\) 29.9464 5.48675i 1.62647 0.297999i
\(340\) 0 0
\(341\) −5.52646 −0.299275
\(342\) 0 0
\(343\) 11.5553 + 14.4733i 0.623927 + 0.781483i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.9149i 1.87433i 0.348886 + 0.937165i \(0.386560\pi\)
−0.348886 + 0.937165i \(0.613440\pi\)
\(348\) 0 0
\(349\) 10.3733i 0.555267i −0.960687 0.277634i \(-0.910450\pi\)
0.960687 0.277634i \(-0.0895502\pi\)
\(350\) 0 0
\(351\) 12.2000 7.37330i 0.651186 0.393558i
\(352\) 0 0
\(353\) −10.8628 −0.578166 −0.289083 0.957304i \(-0.593350\pi\)
−0.289083 + 0.957304i \(0.593350\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −12.6305 + 5.42659i −0.668478 + 0.287206i
\(358\) 0 0
\(359\) 0.898619i 0.0474273i 0.999719 + 0.0237137i \(0.00754900\pi\)
−0.999719 + 0.0237137i \(0.992451\pi\)
\(360\) 0 0
\(361\) 16.2572 0.855640
\(362\) 0 0
\(363\) −0.312148 1.70369i −0.0163835 0.0894206i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.5205i 0.862362i −0.902265 0.431181i \(-0.858097\pi\)
0.902265 0.431181i \(-0.141903\pi\)
\(368\) 0 0
\(369\) −31.0336 + 11.7669i −1.61555 + 0.612560i
\(370\) 0 0
\(371\) −16.9178 + 3.86469i −0.878327 + 0.200645i
\(372\) 0 0
\(373\) 16.5342 0.856111 0.428055 0.903752i \(-0.359199\pi\)
0.428055 + 0.903752i \(0.359199\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.3910 0.792678
\(378\) 0 0
\(379\) −13.3725 −0.686900 −0.343450 0.939171i \(-0.611596\pi\)
−0.343450 + 0.939171i \(0.611596\pi\)
\(380\) 0 0
\(381\) 2.20876 + 12.0553i 0.113158 + 0.617613i
\(382\) 0 0
\(383\) 32.0421 1.63727 0.818637 0.574311i \(-0.194730\pi\)
0.818637 + 0.574311i \(0.194730\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 28.3159 10.7364i 1.43938 0.545763i
\(388\) 0 0
\(389\) 20.2270i 1.02555i −0.858524 0.512774i \(-0.828618\pi\)
0.858524 0.512774i \(-0.171382\pi\)
\(390\) 0 0
\(391\) 1.29539i 0.0655107i
\(392\) 0 0
\(393\) −1.29547 7.07059i −0.0653476 0.356664i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 21.6375i 1.08596i −0.839747 0.542978i \(-0.817297\pi\)
0.839747 0.542978i \(-0.182703\pi\)
\(398\) 0 0
\(399\) 2.99592 + 6.97309i 0.149984 + 0.349091i
\(400\) 0 0
\(401\) 15.1547i 0.756792i 0.925644 + 0.378396i \(0.123524\pi\)
−0.925644 + 0.378396i \(0.876476\pi\)
\(402\) 0 0
\(403\) −15.1611 −0.755231
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.96712i 0.394915i
\(408\) 0 0
\(409\) 22.6748i 1.12119i 0.828088 + 0.560597i \(0.189428\pi\)
−0.828088 + 0.560597i \(0.810572\pi\)
\(410\) 0 0
\(411\) 1.86263 0.341268i 0.0918766 0.0168335i
\(412\) 0 0
\(413\) 7.48482 + 32.7650i 0.368304 + 1.61226i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.07600 1.29646i 0.346513 0.0634878i
\(418\) 0 0
\(419\) −29.6243 −1.44724 −0.723621 0.690197i \(-0.757524\pi\)
−0.723621 + 0.690197i \(0.757524\pi\)
\(420\) 0 0
\(421\) −23.9509 −1.16730 −0.583648 0.812006i \(-0.698375\pi\)
−0.583648 + 0.812006i \(0.698375\pi\)
\(422\) 0 0
\(423\) −1.75123 + 0.664008i −0.0851478 + 0.0322852i
\(424\) 0 0
\(425\) 14.9991 0.727565
\(426\) 0 0
\(427\) −8.39894 + 1.91865i −0.406453 + 0.0928500i
\(428\) 0 0
\(429\) −0.856340 4.67386i −0.0413445 0.225656i
\(430\) 0 0
\(431\) 9.16924i 0.441667i −0.975312 0.220833i \(-0.929122\pi\)
0.975312 0.220833i \(-0.0708777\pi\)
\(432\) 0 0
\(433\) 9.06863i 0.435811i −0.975970 0.217905i \(-0.930078\pi\)
0.975970 0.217905i \(-0.0699224\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.715162 0.0342108
\(438\) 0 0
\(439\) 17.0785i 0.815112i 0.913180 + 0.407556i \(0.133619\pi\)
−0.913180 + 0.407556i \(0.866381\pi\)
\(440\) 0 0
\(441\) 14.4553 15.2330i 0.688346 0.725382i
\(442\) 0 0
\(443\) 7.07059i 0.335934i −0.985793 0.167967i \(-0.946280\pi\)
0.985793 0.167967i \(-0.0537202\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7.19222 1.31775i 0.340180 0.0623275i
\(448\) 0 0
\(449\) 16.0594i 0.757888i −0.925420 0.378944i \(-0.876287\pi\)
0.925420 0.378944i \(-0.123713\pi\)
\(450\) 0 0
\(451\) 11.0632i 0.520945i
\(452\) 0 0
\(453\) −5.86233 31.9963i −0.275436 1.50332i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.7294 −0.642233 −0.321117 0.947040i \(-0.604058\pi\)
−0.321117 + 0.947040i \(0.604058\pi\)
\(458\) 0 0
\(459\) 8.06256 + 13.3404i 0.376328 + 0.622678i
\(460\) 0 0
\(461\) −4.57338 −0.213003 −0.106502 0.994313i \(-0.533965\pi\)
−0.106502 + 0.994313i \(0.533965\pi\)
\(462\) 0 0
\(463\) −20.7137 −0.962648 −0.481324 0.876543i \(-0.659844\pi\)
−0.481324 + 0.876543i \(0.659844\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.2111 −0.518788 −0.259394 0.965772i \(-0.583523\pi\)
−0.259394 + 0.965772i \(0.583523\pi\)
\(468\) 0 0
\(469\) 3.74556 + 16.3963i 0.172954 + 0.757111i
\(470\) 0 0
\(471\) −10.9661 + 2.00919i −0.505290 + 0.0925787i
\(472\) 0 0
\(473\) 10.0943i 0.464138i
\(474\) 0 0
\(475\) 8.28075i 0.379947i
\(476\) 0 0
\(477\) 6.97625 + 18.3989i 0.319421 + 0.842430i
\(478\) 0 0
\(479\) −14.9889 −0.684859 −0.342429 0.939544i \(-0.611250\pi\)
−0.342429 + 0.939544i \(0.611250\pi\)
\(480\) 0 0
\(481\) 21.8568i 0.996584i
\(482\) 0 0
\(483\) −0.781152 1.81815i −0.0355437 0.0827288i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 25.7660 1.16757 0.583785 0.811908i \(-0.301571\pi\)
0.583785 + 0.811908i \(0.301571\pi\)
\(488\) 0 0
\(489\) −1.66155 9.06863i −0.0751377 0.410098i
\(490\) 0 0
\(491\) 29.1219i 1.31425i −0.753781 0.657125i \(-0.771772\pi\)
0.753781 0.657125i \(-0.228228\pi\)
\(492\) 0 0
\(493\) 16.8298i 0.757975i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 43.0390 9.83181i 1.93056 0.441017i
\(498\) 0 0
\(499\) 19.4749 0.871818 0.435909 0.899991i \(-0.356427\pi\)
0.435909 + 0.899991i \(0.356427\pi\)
\(500\) 0 0
\(501\) 7.13636 + 38.9499i 0.318829 + 1.74015i
\(502\) 0 0
\(503\) −10.7507 −0.479350 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.70867 + 9.32583i 0.0758846 + 0.414175i
\(508\) 0 0
\(509\) −22.8415 −1.01243 −0.506217 0.862406i \(-0.668956\pi\)
−0.506217 + 0.862406i \(0.668956\pi\)
\(510\) 0 0
\(511\) 29.7715 6.80098i 1.31701 0.300858i
\(512\) 0 0
\(513\) 7.36501 4.45120i 0.325173 0.196525i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.624297i 0.0274565i
\(518\) 0 0
\(519\) 0.114822 + 0.626695i 0.00504014 + 0.0275089i
\(520\) 0 0
\(521\) 27.6599 1.21180 0.605901 0.795540i \(-0.292813\pi\)
0.605901 + 0.795540i \(0.292813\pi\)
\(522\) 0 0
\(523\) 24.2281i 1.05942i −0.848179 0.529710i \(-0.822301\pi\)
0.848179 0.529710i \(-0.177699\pi\)
\(524\) 0 0
\(525\) −21.0521 + 9.04484i −0.918789 + 0.394749i
\(526\) 0 0
\(527\) 16.5784i 0.722167i
\(528\) 0 0
\(529\) 22.8135 0.991893
\(530\) 0 0
\(531\) 35.6336 13.5110i 1.54637 0.586330i
\(532\) 0 0
\(533\) 30.3505i 1.31462i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 18.0784 3.31230i 0.780140 0.142936i
\(538\) 0 0
\(539\) −3.03954 6.30565i −0.130922 0.271604i
\(540\) 0 0
\(541\) 10.5363 0.452993 0.226496 0.974012i \(-0.427273\pi\)
0.226496 + 0.974012i \(0.427273\pi\)
\(542\) 0 0
\(543\) 8.37956 1.53529i 0.359601 0.0658858i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.6103 0.581932 0.290966 0.956733i \(-0.406023\pi\)
0.290966 + 0.956733i \(0.406023\pi\)
\(548\) 0 0
\(549\) 3.46341 + 9.13427i 0.147815 + 0.389841i
\(550\) 0 0
\(551\) 9.29142 0.395828
\(552\) 0 0
\(553\) 7.17034 + 31.3883i 0.304914 + 1.33477i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.2555i 0.900624i 0.892871 + 0.450312i \(0.148687\pi\)
−0.892871 + 0.450312i \(0.851313\pi\)
\(558\) 0 0
\(559\) 27.6925i 1.17127i
\(560\) 0 0
\(561\) 5.11078 0.936391i 0.215777 0.0395345i
\(562\) 0 0
\(563\) −17.7329 −0.747352 −0.373676 0.927559i \(-0.621903\pi\)
−0.373676 + 0.927559i \(0.621903\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −19.3608 13.8621i −0.813079 0.582153i
\(568\) 0 0
\(569\) 30.2033i 1.26619i 0.774075 + 0.633094i \(0.218215\pi\)
−0.774075 + 0.633094i \(0.781785\pi\)
\(570\) 0 0
\(571\) −16.5106 −0.690945 −0.345473 0.938429i \(-0.612281\pi\)
−0.345473 + 0.938429i \(0.612281\pi\)
\(572\) 0 0
\(573\) 13.3273 2.44182i 0.556757 0.102008i
\(574\) 0 0
\(575\) 2.15911i 0.0900411i
\(576\) 0 0
\(577\) 15.9039i 0.662089i 0.943615 + 0.331045i \(0.107401\pi\)
−0.943615 + 0.331045i \(0.892599\pi\)
\(578\) 0 0
\(579\) −2.09568 11.4381i −0.0870935 0.475352i
\(580\) 0 0
\(581\) 9.58154 + 41.9434i 0.397509 + 1.74011i
\(582\) 0 0
\(583\) 6.55904 0.271648
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.32867 −0.0548400 −0.0274200 0.999624i \(-0.508729\pi\)
−0.0274200 + 0.999624i \(0.508729\pi\)
\(588\) 0 0
\(589\) −9.15265 −0.377128
\(590\) 0 0
\(591\) −39.9380 + 7.31740i −1.64283 + 0.300998i
\(592\) 0 0
\(593\) 8.40715 0.345240 0.172620 0.984988i \(-0.444777\pi\)
0.172620 + 0.984988i \(0.444777\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −34.7631 + 6.36926i −1.42276 + 0.260676i
\(598\) 0 0
\(599\) 4.63668i 0.189449i 0.995504 + 0.0947247i \(0.0301971\pi\)
−0.995504 + 0.0947247i \(0.969803\pi\)
\(600\) 0 0
\(601\) 17.9705i 0.733032i −0.930412 0.366516i \(-0.880550\pi\)
0.930412 0.366516i \(-0.119450\pi\)
\(602\) 0 0
\(603\) 17.8318 6.76122i 0.726167 0.275338i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.7034i 0.718561i 0.933230 + 0.359280i \(0.116978\pi\)
−0.933230 + 0.359280i \(0.883022\pi\)
\(608\) 0 0
\(609\) −10.1488 23.6215i −0.411249 0.957192i
\(610\) 0 0
\(611\) 1.71268i 0.0692876i
\(612\) 0 0
\(613\) 0.179477 0.00724902 0.00362451 0.999993i \(-0.498846\pi\)
0.00362451 + 0.999993i \(0.498846\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 37.8070i 1.52205i −0.648721 0.761027i \(-0.724696\pi\)
0.648721 0.761027i \(-0.275304\pi\)
\(618\) 0 0
\(619\) 0.364667i 0.0146572i −0.999973 0.00732860i \(-0.997667\pi\)
0.999973 0.00732860i \(-0.00233279\pi\)
\(620\) 0 0
\(621\) −1.92034 + 1.16060i −0.0770606 + 0.0465732i
\(622\) 0 0
\(623\) −5.59880 24.5089i −0.224311 0.981927i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −0.516965 2.82157i −0.0206456 0.112683i
\(628\) 0 0
\(629\) 23.9000 0.952954
\(630\) 0 0
\(631\) 16.7979 0.668713 0.334356 0.942447i \(-0.391481\pi\)
0.334356 + 0.942447i \(0.391481\pi\)
\(632\) 0 0
\(633\) 5.98939 + 32.6898i 0.238057 + 1.29930i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.33859 17.2988i −0.330387 0.685402i
\(638\) 0 0
\(639\) −17.7477 46.8071i −0.702086 1.85166i
\(640\) 0 0
\(641\) 17.8912i 0.706659i −0.935499 0.353329i \(-0.885050\pi\)
0.935499 0.353329i \(-0.114950\pi\)
\(642\) 0 0
\(643\) 20.2372i 0.798076i −0.916934 0.399038i \(-0.869344\pi\)
0.916934 0.399038i \(-0.130656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −41.9464 −1.64908 −0.824541 0.565802i \(-0.808566\pi\)
−0.824541 + 0.565802i \(0.808566\pi\)
\(648\) 0 0
\(649\) 12.7030i 0.498637i
\(650\) 0 0
\(651\) 9.99719 + 23.2687i 0.391821 + 0.911973i
\(652\) 0 0
\(653\) 11.2134i 0.438815i 0.975633 + 0.219407i \(0.0704123\pi\)
−0.975633 + 0.219407i \(0.929588\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.2766 32.3780i −0.478957 1.26318i
\(658\) 0 0
\(659\) 27.2555i 1.06172i 0.847459 + 0.530861i \(0.178132\pi\)
−0.847459 + 0.530861i \(0.821868\pi\)
\(660\) 0 0
\(661\) 16.4254i 0.638874i −0.947607 0.319437i \(-0.896506\pi\)
0.947607 0.319437i \(-0.103494\pi\)
\(662\) 0 0
\(663\) 14.0208 2.56887i 0.544522 0.0997667i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.42263 −0.0938046
\(668\) 0 0
\(669\) 1.45636 0.266832i 0.0563060 0.0103163i
\(670\) 0 0
\(671\) 3.25628 0.125707
\(672\) 0 0
\(673\) −22.2890 −0.859178 −0.429589 0.903025i \(-0.641342\pi\)
−0.429589 + 0.903025i \(0.641342\pi\)
\(674\) 0 0
\(675\) 13.4384 + 22.2353i 0.517244 + 0.855838i
\(676\) 0 0
\(677\) −31.1173 −1.19593 −0.597967 0.801521i \(-0.704025\pi\)
−0.597967 + 0.801521i \(0.704025\pi\)
\(678\) 0 0
\(679\) −18.9003 + 4.31758i −0.725327 + 0.165693i
\(680\) 0 0
\(681\) 6.78868 + 37.0523i 0.260143 + 1.41985i
\(682\) 0 0
\(683\) 37.2572i 1.42561i −0.701364 0.712803i \(-0.747425\pi\)
0.701364 0.712803i \(-0.252575\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −36.6728 + 6.71914i −1.39915 + 0.256351i
\(688\) 0 0
\(689\) 17.9939 0.685513
\(690\) 0 0
\(691\) 2.75111i 0.104657i −0.998630 0.0523286i \(-0.983336\pi\)
0.998630 0.0523286i \(-0.0166643\pi\)
\(692\) 0 0
\(693\) −6.60859 + 4.39620i −0.251039 + 0.166998i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −33.1876 −1.25707
\(698\) 0 0
\(699\) 19.6058 3.59215i 0.741559 0.135868i
\(700\) 0 0
\(701\) 36.5106i 1.37898i 0.724293 + 0.689492i \(0.242166\pi\)
−0.724293 + 0.689492i \(0.757834\pi\)
\(702\) 0 0
\(703\) 13.1947i 0.497649i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.59802 28.8830i −0.248144 1.08626i
\(708\) 0 0
\(709\) 40.0862 1.50547 0.752735 0.658323i \(-0.228734\pi\)
0.752735 + 0.658323i \(0.228734\pi\)
\(710\) 0 0
\(711\) 34.1364 12.9434i 1.28022 0.485414i
\(712\) 0 0
\(713\) 2.38645 0.0893731
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −31.1624 + 5.70954i −1.16378 + 0.213227i
\(718\) 0 0
\(719\) 43.1623 1.60968 0.804842 0.593490i \(-0.202250\pi\)
0.804842 + 0.593490i \(0.202250\pi\)
\(720\) 0 0
\(721\) −19.3725 + 4.42545i −0.721470 + 0.164812i
\(722\) 0 0
\(723\) −20.9978 + 3.84720i −0.780918 + 0.143079i
\(724\) 0 0
\(725\) 28.0513i 1.04180i
\(726\) 0 0
\(727\) 14.6624i 0.543799i −0.962326 0.271900i \(-0.912348\pi\)
0.962326 0.271900i \(-0.0876518\pi\)
\(728\) 0 0
\(729\) −12.5528 + 23.9046i −0.464918 + 0.885354i
\(730\) 0 0
\(731\) 30.2812 1.11999
\(732\) 0 0
\(733\) 5.75346i 0.212509i −0.994339 0.106255i \(-0.966114\pi\)
0.994339 0.106255i \(-0.0338858\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.35686i 0.234158i
\(738\) 0 0
\(739\) −8.28732 −0.304854 −0.152427 0.988315i \(-0.548709\pi\)
−0.152427 + 0.988315i \(0.548709\pi\)
\(740\) 0 0
\(741\) −1.41823 7.74062i −0.0520999 0.284359i
\(742\) 0 0
\(743\) 12.7137i 0.466421i 0.972426 + 0.233211i \(0.0749232\pi\)
−0.972426 + 0.233211i \(0.925077\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 45.6156 17.2959i 1.66899 0.632823i
\(748\) 0 0
\(749\) −0.656269 + 0.149918i −0.0239796 + 0.00547788i
\(750\) 0 0
\(751\) 50.9845 1.86045 0.930225 0.366991i \(-0.119612\pi\)
0.930225 + 0.366991i \(0.119612\pi\)
\(752\) 0 0
\(753\) −3.98361 21.7424i −0.145171 0.792336i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −13.8297 −0.502650 −0.251325 0.967903i \(-0.580866\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(758\) 0 0
\(759\) 0.134793 + 0.735691i 0.00489266 + 0.0267039i
\(760\) 0 0
\(761\) −7.97367 −0.289045 −0.144523 0.989501i \(-0.546165\pi\)
−0.144523 + 0.989501i \(0.546165\pi\)
\(762\) 0 0
\(763\) −1.07391 4.70108i −0.0388783 0.170191i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 34.8491i 1.25833i
\(768\) 0 0
\(769\) 5.27319i 0.190156i −0.995470 0.0950780i \(-0.969690\pi\)
0.995470 0.0950780i \(-0.0303101\pi\)
\(770\) 0 0
\(771\) −7.13636 38.9499i −0.257010 1.40275i
\(772\) 0 0
\(773\) 2.20707 0.0793829 0.0396915 0.999212i \(-0.487362\pi\)
0.0396915 + 0.999212i \(0.487362\pi\)
\(774\) 0 0
\(775\) 27.6323i 0.992581i
\(776\) 0 0
\(777\) −33.5449 + 14.4123i −1.20342 + 0.517037i
\(778\) 0 0
\(779\) 18.3223i 0.656464i
\(780\) 0 0
\(781\) −16.6863 −0.597081
\(782\) 0 0
\(783\) −24.9492 + 15.0786i −0.891610 + 0.538863i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 34.0792i 1.21479i 0.794399 + 0.607396i \(0.207786\pi\)
−0.794399 + 0.607396i \(0.792214\pi\)
\(788\) 0 0
\(789\) −44.0094 + 8.06336i −1.56678 + 0.287063i
\(790\) 0 0
\(791\) −45.3374 + 10.3569i −1.61201 + 0.368248i
\(792\) 0 0
\(793\) 8.93319 0.317227
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.5716 1.01206 0.506029 0.862517i \(-0.331113\pi\)
0.506029 + 0.862517i \(0.331113\pi\)
\(798\) 0 0
\(799\) −1.87278 −0.0662543
\(800\) 0 0
\(801\) −26.6546 + 10.1065i −0.941795 + 0.357097i
\(802\) 0 0
\(803\) −11.5424 −0.407323
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.549848 3.00105i −0.0193556 0.105642i
\(808\) 0 0
\(809\) 28.4264i 0.999419i 0.866193 + 0.499710i \(0.166560\pi\)
−0.866193 + 0.499710i \(0.833440\pi\)
\(810\) 0 0
\(811\) 2.87212i 0.100854i 0.998728 + 0.0504269i \(0.0160582\pi\)
−0.998728 + 0.0504269i \(0.983942\pi\)
\(812\) 0 0
\(813\) −21.5170 + 3.94232i −0.754635 + 0.138263i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16.7177i 0.584880i
\(818\) 0 0
\(819\) −18.1298 + 12.0604i −0.633508 + 0.421425i
\(820\) 0 0
\(821\) 48.8803i 1.70594i −0.521963 0.852968i \(-0.674800\pi\)
0.521963 0.852968i \(-0.325200\pi\)
\(822\) 0 0
\(823\) −52.1725 −1.81862 −0.909309 0.416121i \(-0.863389\pi\)
−0.909309 + 0.416121i \(0.863389\pi\)
\(824\) 0 0
\(825\) 8.51846 1.56074i 0.296575 0.0543381i
\(826\) 0 0
\(827\) 0.678751i 0.0236025i 0.999930 + 0.0118012i \(0.00375654\pi\)
−0.999930 + 0.0118012i \(0.996243\pi\)
\(828\) 0 0
\(829\) 20.6117i 0.715874i 0.933746 + 0.357937i \(0.116520\pi\)
−0.933746 + 0.357937i \(0.883480\pi\)
\(830\) 0 0
\(831\) −4.40492 24.0418i −0.152805 0.834002i
\(832\) 0 0
\(833\) 18.9158 9.11808i 0.655395 0.315923i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 24.5765 14.8533i 0.849489 0.513407i
\(838\) 0 0
\(839\) 2.54969 0.0880250 0.0440125 0.999031i \(-0.485986\pi\)
0.0440125 + 0.999031i \(0.485986\pi\)
\(840\) 0 0
\(841\) −2.47494 −0.0853429
\(842\) 0 0
\(843\) 12.3575 2.26413i 0.425616 0.0779809i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.589216 + 2.57931i 0.0202457 + 0.0886260i
\(848\) 0 0
\(849\) −49.9455 + 9.15096i −1.71413 + 0.314060i
\(850\) 0 0
\(851\) 3.44038i 0.117935i
\(852\) 0 0
\(853\) 23.5367i 0.805880i −0.915226 0.402940i \(-0.867988\pi\)
0.915226 0.402940i \(-0.132012\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.4216 −0.902544 −0.451272 0.892386i \(-0.649030\pi\)
−0.451272 + 0.892386i \(0.649030\pi\)
\(858\) 0 0
\(859\) 41.6137i 1.41984i 0.704282 + 0.709920i \(0.251269\pi\)
−0.704282 + 0.709920i \(0.748731\pi\)
\(860\) 0 0
\(861\) 46.5806 20.0129i 1.58746 0.682039i
\(862\) 0 0
\(863\) 8.34767i 0.284158i 0.989855 + 0.142079i \(0.0453787\pi\)
−0.989855 + 0.142079i \(0.954621\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.49751 13.6313i −0.0848200 0.462944i
\(868\) 0 0
\(869\) 12.1693i 0.412815i
\(870\) 0 0
\(871\) 17.4393i 0.590907i
\(872\) 0 0
\(873\) 7.79377 + 20.5550i 0.263779 + 0.695683i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −20.4027 −0.688951 −0.344475 0.938795i \(-0.611943\pi\)
−0.344475 + 0.938795i \(0.611943\pi\)
\(878\) 0 0
\(879\) 5.55311 + 30.3086i 0.187302 + 1.02228i
\(880\) 0 0
\(881\) 3.32647 0.112072 0.0560358 0.998429i \(-0.482154\pi\)
0.0560358 + 0.998429i \(0.482154\pi\)
\(882\) 0 0
\(883\) −22.7612 −0.765976 −0.382988 0.923753i \(-0.625105\pi\)
−0.382988 + 0.923753i \(0.625105\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.6233 1.19611 0.598057 0.801454i \(-0.295940\pi\)
0.598057 + 0.801454i \(0.295940\pi\)
\(888\) 0 0
\(889\) −4.16929 18.2512i −0.139834 0.612125i
\(890\) 0 0
\(891\) 5.96712 + 6.73747i 0.199906 + 0.225714i
\(892\) 0 0
\(893\) 1.03393i 0.0345991i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.369786 + 2.01828i 0.0123468 + 0.0673883i
\(898\) 0 0
\(899\) 31.0048 1.03407
\(900\) 0 0
\(901\) 19.6760i 0.655502i
\(902\) 0 0
\(903\) −42.5014 + 18.2603i −1.41436 + 0.607666i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −49.5774 −1.64619 −0.823095 0.567904i \(-0.807754\pi\)
−0.823095 + 0.567904i \(0.807754\pi\)
\(908\) 0 0
\(909\) −31.4117 + 11.9103i −1.04186 + 0.395039i
\(910\) 0 0
\(911\) 42.7067i 1.41494i −0.706745 0.707469i \(-0.749837\pi\)
0.706745 0.707469i \(-0.250163\pi\)
\(912\) 0 0
\(913\) 16.2615i 0.538177i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.44534 + 10.7045i 0.0807522 + 0.353495i
\(918\) 0 0
\(919\) 13.3487 0.440334 0.220167 0.975462i \(-0.429340\pi\)
0.220167 + 0.975462i \(0.429340\pi\)
\(920\) 0 0
\(921\) 30.6205 5.61025i 1.00898 0.184864i
\(922\) 0 0
\(923\) −45.7767 −1.50676
\(924\) 0 0
\(925\) 39.8356 1.30979
\(926\) 0 0
\(927\) 7.98850 + 21.0686i 0.262377 + 0.691983i
\(928\) 0 0
\(929\) −49.4962 −1.62392 −0.811958 0.583715i \(-0.801598\pi\)
−0.811958 + 0.583715i \(0.801598\pi\)
\(930\) 0 0
\(931\) −5.03393 10.4431i −0.164980 0.342259i
\(932\) 0 0
\(933\) −3.17113 17.3079i −0.103818 0.566634i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 46.5889i 1.52199i −0.648756 0.760996i \(-0.724710\pi\)
0.648756 0.760996i \(-0.275290\pi\)
\(938\) 0 0
\(939\) −24.7979 + 4.54344i −0.809248 + 0.148270i
\(940\) 0 0
\(941\) 0.833952 0.0271860 0.0135930 0.999908i \(-0.495673\pi\)
0.0135930 + 0.999908i \(0.495673\pi\)
\(942\) 0 0
\(943\) 4.77733i 0.155571i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.6119i 0.702294i −0.936320 0.351147i \(-0.885792\pi\)
0.936320 0.351147i \(-0.114208\pi\)
\(948\) 0 0
\(949\) −31.6652 −1.02790
\(950\) 0 0
\(951\) −23.8673 + 4.37295i −0.773951 + 0.141803i
\(952\) 0 0
\(953\) 52.7101i 1.70745i −0.520727 0.853723i \(-0.674339\pi\)
0.520727 0.853723i \(-0.325661\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.75123 + 9.55814i 0.0566093 + 0.308971i
\(958\) 0 0
\(959\) −2.81993 + 0.644183i −0.0910602 + 0.0208018i
\(960\) 0 0
\(961\) 0.458244 0.0147821
\(962\) 0 0
\(963\) 0.270621 + 0.713726i 0.00872063 + 0.0229995i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −45.5967 −1.46629 −0.733146 0.680071i \(-0.761949\pi\)
−0.733146 + 0.680071i \(0.761949\pi\)
\(968\) 0 0
\(969\) 8.46421 1.55080i 0.271910 0.0498190i
\(970\) 0 0
\(971\) −18.1692 −0.583079 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(972\) 0 0
\(973\) −10.7127 + 2.44721i −0.343434 + 0.0784540i
\(974\) 0 0
\(975\) 23.3693 4.28170i 0.748417 0.137124i
\(976\) 0 0
\(977\) 32.0184i 1.02436i 0.858878 + 0.512179i \(0.171162\pi\)
−0.858878 + 0.512179i \(0.828838\pi\)
\(978\) 0 0
\(979\) 9.50212i 0.303689i
\(980\) 0 0
\(981\) −5.11266 + 1.93855i −0.163235 + 0.0618931i
\(982\) 0 0
\(983\) −1.05778 −0.0337379 −0.0168689 0.999858i \(-0.505370\pi\)
−0.0168689 + 0.999858i \(0.505370\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.62855 1.12933i 0.0836677 0.0359471i
\(988\) 0 0
\(989\) 4.35895i 0.138607i
\(990\) 0 0
\(991\) −46.6113 −1.48066 −0.740328 0.672245i \(-0.765330\pi\)
−0.740328 + 0.672245i \(0.765330\pi\)
\(992\) 0 0
\(993\) 5.75633 + 31.4178i 0.182672 + 0.997013i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.1134i 0.605328i 0.953097 + 0.302664i \(0.0978760\pi\)
−0.953097 + 0.302664i \(0.902124\pi\)
\(998\) 0 0
\(999\) 21.4130 + 35.4303i 0.677479 + 1.12096i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1848.2.v.c.881.10 yes 16
3.2 odd 2 inner 1848.2.v.c.881.8 yes 16
7.6 odd 2 inner 1848.2.v.c.881.7 16
21.20 even 2 inner 1848.2.v.c.881.9 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1848.2.v.c.881.7 16 7.6 odd 2 inner
1848.2.v.c.881.8 yes 16 3.2 odd 2 inner
1848.2.v.c.881.9 yes 16 21.20 even 2 inner
1848.2.v.c.881.10 yes 16 1.1 even 1 trivial