Properties

Label 182.2.g.d.29.1
Level $182$
Weight $2$
Character 182.29
Analytic conductor $1.453$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,2,Mod(29,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,2,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 29.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 182.29
Dual form 182.2.g.d.113.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.00000 + 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{5} +(-1.00000 + 1.73205i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-1.00000 - 1.73205i) q^{11} -2.00000 q^{12} +(-3.50000 + 0.866025i) q^{13} +1.00000 q^{14} +(1.00000 + 1.73205i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} -1.00000 q^{18} +(2.00000 - 3.46410i) q^{19} +(-0.500000 + 0.866025i) q^{20} +2.00000 q^{21} +(1.00000 - 1.73205i) q^{22} +(-1.00000 - 1.73205i) q^{23} +(-1.00000 - 1.73205i) q^{24} -4.00000 q^{25} +(-2.50000 - 2.59808i) q^{26} +4.00000 q^{27} +(0.500000 + 0.866025i) q^{28} +(2.50000 + 4.33013i) q^{29} +(-1.00000 + 1.73205i) q^{30} +6.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{33} -1.00000 q^{34} +(0.500000 - 0.866025i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-3.50000 - 6.06218i) q^{37} +4.00000 q^{38} +(-5.00000 - 5.19615i) q^{39} -1.00000 q^{40} +(3.50000 + 6.06218i) q^{41} +(1.00000 + 1.73205i) q^{42} +(1.00000 - 1.73205i) q^{43} +2.00000 q^{44} +(-0.500000 + 0.866025i) q^{45} +(1.00000 - 1.73205i) q^{46} +(1.00000 - 1.73205i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-2.00000 - 3.46410i) q^{50} -2.00000 q^{51} +(1.00000 - 3.46410i) q^{52} -9.00000 q^{53} +(2.00000 + 3.46410i) q^{54} +(-1.00000 - 1.73205i) q^{55} +(-0.500000 + 0.866025i) q^{56} +8.00000 q^{57} +(-2.50000 + 4.33013i) q^{58} +(3.00000 - 5.19615i) q^{59} -2.00000 q^{60} +(-2.50000 + 4.33013i) q^{61} +(3.00000 + 5.19615i) q^{62} +(0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +(-3.50000 + 0.866025i) q^{65} +4.00000 q^{66} +(-5.00000 - 8.66025i) q^{67} +(-0.500000 - 0.866025i) q^{68} +(2.00000 - 3.46410i) q^{69} +1.00000 q^{70} +(-8.00000 + 13.8564i) q^{71} +(0.500000 - 0.866025i) q^{72} -3.00000 q^{73} +(3.50000 - 6.06218i) q^{74} +(-4.00000 - 6.92820i) q^{75} +(2.00000 + 3.46410i) q^{76} -2.00000 q^{77} +(2.00000 - 6.92820i) q^{78} -10.0000 q^{79} +(-0.500000 - 0.866025i) q^{80} +(5.50000 + 9.52628i) q^{81} +(-3.50000 + 6.06218i) q^{82} +14.0000 q^{83} +(-1.00000 + 1.73205i) q^{84} +(-0.500000 + 0.866025i) q^{85} +2.00000 q^{86} +(-5.00000 + 8.66025i) q^{87} +(1.00000 + 1.73205i) q^{88} +(3.00000 + 5.19615i) q^{89} -1.00000 q^{90} +(-1.00000 + 3.46410i) q^{91} +2.00000 q^{92} +(6.00000 + 10.3923i) q^{93} +(2.00000 - 3.46410i) q^{95} +2.00000 q^{96} +(-1.00000 + 1.73205i) q^{97} +(0.500000 - 0.866025i) q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} + 2 q^{5} - 2 q^{6} + q^{7} - 2 q^{8} - q^{9} + q^{10} - 2 q^{11} - 4 q^{12} - 7 q^{13} + 2 q^{14} + 2 q^{15} - q^{16} - q^{17} - 2 q^{18} + 4 q^{19} - q^{20} + 4 q^{21}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) −1.00000 + 1.73205i −0.408248 + 0.707107i
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) −2.00000 −0.577350
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 1.00000 0.267261
\(15\) 1.00000 + 1.73205i 0.258199 + 0.447214i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 2.00000 0.436436
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) −1.00000 1.73205i −0.208514 0.361158i 0.742732 0.669588i \(-0.233529\pi\)
−0.951247 + 0.308431i \(0.900196\pi\)
\(24\) −1.00000 1.73205i −0.204124 0.353553i
\(25\) −4.00000 −0.800000
\(26\) −2.50000 2.59808i −0.490290 0.509525i
\(27\) 4.00000 0.769800
\(28\) 0.500000 + 0.866025i 0.0944911 + 0.163663i
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 2.00000 3.46410i 0.348155 0.603023i
\(34\) −1.00000 −0.171499
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −3.50000 6.06218i −0.575396 0.996616i −0.995998 0.0893706i \(-0.971514\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) 4.00000 0.648886
\(39\) −5.00000 5.19615i −0.800641 0.832050i
\(40\) −1.00000 −0.158114
\(41\) 3.50000 + 6.06218i 0.546608 + 0.946753i 0.998504 + 0.0546823i \(0.0174146\pi\)
−0.451896 + 0.892071i \(0.649252\pi\)
\(42\) 1.00000 + 1.73205i 0.154303 + 0.267261i
\(43\) 1.00000 1.73205i 0.152499 0.264135i −0.779647 0.626219i \(-0.784601\pi\)
0.932145 + 0.362084i \(0.117935\pi\)
\(44\) 2.00000 0.301511
\(45\) −0.500000 + 0.866025i −0.0745356 + 0.129099i
\(46\) 1.00000 1.73205i 0.147442 0.255377i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 1.73205i 0.144338 0.250000i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) −2.00000 −0.280056
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 2.00000 + 3.46410i 0.272166 + 0.471405i
\(55\) −1.00000 1.73205i −0.134840 0.233550i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 8.00000 1.05963
\(58\) −2.50000 + 4.33013i −0.328266 + 0.568574i
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) −2.00000 −0.258199
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 3.00000 + 5.19615i 0.381000 + 0.659912i
\(63\) 0.500000 + 0.866025i 0.0629941 + 0.109109i
\(64\) 1.00000 0.125000
\(65\) −3.50000 + 0.866025i −0.434122 + 0.107417i
\(66\) 4.00000 0.492366
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) −0.500000 0.866025i −0.0606339 0.105021i
\(69\) 2.00000 3.46410i 0.240772 0.417029i
\(70\) 1.00000 0.119523
\(71\) −8.00000 + 13.8564i −0.949425 + 1.64445i −0.202787 + 0.979223i \(0.565000\pi\)
−0.746639 + 0.665230i \(0.768333\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) −3.00000 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(74\) 3.50000 6.06218i 0.406867 0.704714i
\(75\) −4.00000 6.92820i −0.461880 0.800000i
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −2.00000 −0.227921
\(78\) 2.00000 6.92820i 0.226455 0.784465i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) −3.50000 + 6.06218i −0.386510 + 0.669456i
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) −1.00000 + 1.73205i −0.109109 + 0.188982i
\(85\) −0.500000 + 0.866025i −0.0542326 + 0.0939336i
\(86\) 2.00000 0.215666
\(87\) −5.00000 + 8.66025i −0.536056 + 0.928477i
\(88\) 1.00000 + 1.73205i 0.106600 + 0.184637i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) −1.00000 −0.105409
\(91\) −1.00000 + 3.46410i −0.104828 + 0.363137i
\(92\) 2.00000 0.208514
\(93\) 6.00000 + 10.3923i 0.622171 + 1.07763i
\(94\) 0 0
\(95\) 2.00000 3.46410i 0.205196 0.355409i
\(96\) 2.00000 0.204124
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0.500000 0.866025i 0.0505076 0.0874818i
\(99\) 2.00000 0.201008
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 7.50000 + 12.9904i 0.746278 + 1.29259i 0.949595 + 0.313478i \(0.101494\pi\)
−0.203317 + 0.979113i \(0.565172\pi\)
\(102\) −1.00000 1.73205i −0.0990148 0.171499i
\(103\) −20.0000 −1.97066 −0.985329 0.170664i \(-0.945409\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 3.50000 0.866025i 0.343203 0.0849208i
\(105\) 2.00000 0.195180
\(106\) −4.50000 7.79423i −0.437079 0.757042i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) −2.00000 + 3.46410i −0.192450 + 0.333333i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 1.00000 1.73205i 0.0953463 0.165145i
\(111\) 7.00000 12.1244i 0.664411 1.15079i
\(112\) −1.00000 −0.0944911
\(113\) −9.50000 + 16.4545i −0.893685 + 1.54791i −0.0582609 + 0.998301i \(0.518556\pi\)
−0.835424 + 0.549606i \(0.814778\pi\)
\(114\) 4.00000 + 6.92820i 0.374634 + 0.648886i
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) −5.00000 −0.464238
\(117\) 1.00000 3.46410i 0.0924500 0.320256i
\(118\) 6.00000 0.552345
\(119\) 0.500000 + 0.866025i 0.0458349 + 0.0793884i
\(120\) −1.00000 1.73205i −0.0912871 0.158114i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −5.00000 −0.452679
\(123\) −7.00000 + 12.1244i −0.631169 + 1.09322i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) −9.00000 −0.804984
\(126\) −0.500000 + 0.866025i −0.0445435 + 0.0771517i
\(127\) −2.00000 3.46410i −0.177471 0.307389i 0.763542 0.645758i \(-0.223458\pi\)
−0.941014 + 0.338368i \(0.890125\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 4.00000 0.352180
\(130\) −2.50000 2.59808i −0.219265 0.227866i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 2.00000 + 3.46410i 0.174078 + 0.301511i
\(133\) −2.00000 3.46410i −0.173422 0.300376i
\(134\) 5.00000 8.66025i 0.431934 0.748132i
\(135\) 4.00000 0.344265
\(136\) 0.500000 0.866025i 0.0428746 0.0742611i
\(137\) 2.50000 4.33013i 0.213589 0.369948i −0.739246 0.673436i \(-0.764818\pi\)
0.952835 + 0.303488i \(0.0981512\pi\)
\(138\) 4.00000 0.340503
\(139\) 7.00000 12.1244i 0.593732 1.02837i −0.399992 0.916519i \(-0.630987\pi\)
0.993724 0.111856i \(-0.0356795\pi\)
\(140\) 0.500000 + 0.866025i 0.0422577 + 0.0731925i
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) 5.00000 + 5.19615i 0.418121 + 0.434524i
\(144\) 1.00000 0.0833333
\(145\) 2.50000 + 4.33013i 0.207614 + 0.359597i
\(146\) −1.50000 2.59808i −0.124141 0.215018i
\(147\) 1.00000 1.73205i 0.0824786 0.142857i
\(148\) 7.00000 0.575396
\(149\) 10.5000 18.1865i 0.860194 1.48990i −0.0115483 0.999933i \(-0.503676\pi\)
0.871742 0.489966i \(-0.162991\pi\)
\(150\) 4.00000 6.92820i 0.326599 0.565685i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −2.00000 + 3.46410i −0.162221 + 0.280976i
\(153\) −0.500000 0.866025i −0.0404226 0.0700140i
\(154\) −1.00000 1.73205i −0.0805823 0.139573i
\(155\) 6.00000 0.481932
\(156\) 7.00000 1.73205i 0.560449 0.138675i
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) −5.00000 8.66025i −0.397779 0.688973i
\(159\) −9.00000 15.5885i −0.713746 1.23625i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) −2.00000 −0.157622
\(162\) −5.50000 + 9.52628i −0.432121 + 0.748455i
\(163\) 3.00000 5.19615i 0.234978 0.406994i −0.724288 0.689497i \(-0.757831\pi\)
0.959266 + 0.282503i \(0.0911648\pi\)
\(164\) −7.00000 −0.546608
\(165\) 2.00000 3.46410i 0.155700 0.269680i
\(166\) 7.00000 + 12.1244i 0.543305 + 0.941033i
\(167\) 3.00000 + 5.19615i 0.232147 + 0.402090i 0.958440 0.285295i \(-0.0920916\pi\)
−0.726293 + 0.687386i \(0.758758\pi\)
\(168\) −2.00000 −0.154303
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) −1.00000 −0.0766965
\(171\) 2.00000 + 3.46410i 0.152944 + 0.264906i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) 5.00000 8.66025i 0.380143 0.658427i −0.610939 0.791677i \(-0.709208\pi\)
0.991082 + 0.133250i \(0.0425415\pi\)
\(174\) −10.0000 −0.758098
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 12.0000 0.901975
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) −0.500000 0.866025i −0.0372678 0.0645497i
\(181\) −23.0000 −1.70958 −0.854788 0.518977i \(-0.826313\pi\)
−0.854788 + 0.518977i \(0.826313\pi\)
\(182\) −3.50000 + 0.866025i −0.259437 + 0.0641941i
\(183\) −10.0000 −0.739221
\(184\) 1.00000 + 1.73205i 0.0737210 + 0.127688i
\(185\) −3.50000 6.06218i −0.257325 0.445700i
\(186\) −6.00000 + 10.3923i −0.439941 + 0.762001i
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) 2.00000 3.46410i 0.145479 0.251976i
\(190\) 4.00000 0.290191
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 1.00000 + 1.73205i 0.0721688 + 0.125000i
\(193\) 12.5000 + 21.6506i 0.899770 + 1.55845i 0.827788 + 0.561041i \(0.189599\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) −5.00000 5.19615i −0.358057 0.372104i
\(196\) 1.00000 0.0714286
\(197\) −9.00000 15.5885i −0.641223 1.11063i −0.985160 0.171639i \(-0.945094\pi\)
0.343937 0.938993i \(-0.388239\pi\)
\(198\) 1.00000 + 1.73205i 0.0710669 + 0.123091i
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) 4.00000 0.282843
\(201\) 10.0000 17.3205i 0.705346 1.22169i
\(202\) −7.50000 + 12.9904i −0.527698 + 0.914000i
\(203\) 5.00000 0.350931
\(204\) 1.00000 1.73205i 0.0700140 0.121268i
\(205\) 3.50000 + 6.06218i 0.244451 + 0.423401i
\(206\) −10.0000 17.3205i −0.696733 1.20678i
\(207\) 2.00000 0.139010
\(208\) 2.50000 + 2.59808i 0.173344 + 0.180144i
\(209\) −8.00000 −0.553372
\(210\) 1.00000 + 1.73205i 0.0690066 + 0.119523i
\(211\) 7.00000 + 12.1244i 0.481900 + 0.834675i 0.999784 0.0207756i \(-0.00661356\pi\)
−0.517884 + 0.855451i \(0.673280\pi\)
\(212\) 4.50000 7.79423i 0.309061 0.535310i
\(213\) −32.0000 −2.19260
\(214\) 0 0
\(215\) 1.00000 1.73205i 0.0681994 0.118125i
\(216\) −4.00000 −0.272166
\(217\) 3.00000 5.19615i 0.203653 0.352738i
\(218\) 1.00000 + 1.73205i 0.0677285 + 0.117309i
\(219\) −3.00000 5.19615i −0.202721 0.351123i
\(220\) 2.00000 0.134840
\(221\) 1.00000 3.46410i 0.0672673 0.233021i
\(222\) 14.0000 0.939618
\(223\) 6.00000 + 10.3923i 0.401790 + 0.695920i 0.993942 0.109906i \(-0.0350549\pi\)
−0.592152 + 0.805826i \(0.701722\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) −19.0000 −1.26386
\(227\) −5.00000 + 8.66025i −0.331862 + 0.574801i −0.982877 0.184263i \(-0.941010\pi\)
0.651015 + 0.759065i \(0.274343\pi\)
\(228\) −4.00000 + 6.92820i −0.264906 + 0.458831i
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 1.00000 1.73205i 0.0659380 0.114208i
\(231\) −2.00000 3.46410i −0.131590 0.227921i
\(232\) −2.50000 4.33013i −0.164133 0.284287i
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 3.50000 0.866025i 0.228802 0.0566139i
\(235\) 0 0
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) −10.0000 17.3205i −0.649570 1.12509i
\(238\) −0.500000 + 0.866025i −0.0324102 + 0.0561361i
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 1.00000 1.73205i 0.0645497 0.111803i
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) 7.00000 0.449977
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) −2.50000 4.33013i −0.160046 0.277208i
\(245\) −0.500000 0.866025i −0.0319438 0.0553283i
\(246\) −14.0000 −0.892607
\(247\) −4.00000 + 13.8564i −0.254514 + 0.881662i
\(248\) −6.00000 −0.381000
\(249\) 14.0000 + 24.2487i 0.887214 + 1.53670i
\(250\) −4.50000 7.79423i −0.284605 0.492950i
\(251\) −10.0000 + 17.3205i −0.631194 + 1.09326i 0.356113 + 0.934443i \(0.384102\pi\)
−0.987308 + 0.158818i \(0.949232\pi\)
\(252\) −1.00000 −0.0629941
\(253\) −2.00000 + 3.46410i −0.125739 + 0.217786i
\(254\) 2.00000 3.46410i 0.125491 0.217357i
\(255\) −2.00000 −0.125245
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.50000 + 12.9904i 0.467837 + 0.810318i 0.999325 0.0367485i \(-0.0117000\pi\)
−0.531487 + 0.847066i \(0.678367\pi\)
\(258\) 2.00000 + 3.46410i 0.124515 + 0.215666i
\(259\) −7.00000 −0.434959
\(260\) 1.00000 3.46410i 0.0620174 0.214834i
\(261\) −5.00000 −0.309492
\(262\) 0 0
\(263\) 7.00000 + 12.1244i 0.431638 + 0.747620i 0.997015 0.0772134i \(-0.0246023\pi\)
−0.565376 + 0.824833i \(0.691269\pi\)
\(264\) −2.00000 + 3.46410i −0.123091 + 0.213201i
\(265\) −9.00000 −0.552866
\(266\) 2.00000 3.46410i 0.122628 0.212398i
\(267\) −6.00000 + 10.3923i −0.367194 + 0.635999i
\(268\) 10.0000 0.610847
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 2.00000 + 3.46410i 0.121716 + 0.210819i
\(271\) 15.0000 + 25.9808i 0.911185 + 1.57822i 0.812393 + 0.583111i \(0.198165\pi\)
0.0987925 + 0.995108i \(0.468502\pi\)
\(272\) 1.00000 0.0606339
\(273\) −7.00000 + 1.73205i −0.423659 + 0.104828i
\(274\) 5.00000 0.302061
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 2.00000 + 3.46410i 0.120386 + 0.208514i
\(277\) 8.50000 14.7224i 0.510716 0.884585i −0.489207 0.872167i \(-0.662714\pi\)
0.999923 0.0124177i \(-0.00395278\pi\)
\(278\) 14.0000 0.839664
\(279\) −3.00000 + 5.19615i −0.179605 + 0.311086i
\(280\) −0.500000 + 0.866025i −0.0298807 + 0.0517549i
\(281\) −29.0000 −1.72999 −0.864997 0.501776i \(-0.832680\pi\)
−0.864997 + 0.501776i \(0.832680\pi\)
\(282\) 0 0
\(283\) 11.0000 + 19.0526i 0.653882 + 1.13256i 0.982173 + 0.187980i \(0.0601941\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) −8.00000 13.8564i −0.474713 0.822226i
\(285\) 8.00000 0.473879
\(286\) −2.00000 + 6.92820i −0.118262 + 0.409673i
\(287\) 7.00000 0.413197
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) −2.50000 + 4.33013i −0.146805 + 0.254274i
\(291\) −4.00000 −0.234484
\(292\) 1.50000 2.59808i 0.0877809 0.152041i
\(293\) 3.50000 6.06218i 0.204472 0.354156i −0.745492 0.666514i \(-0.767786\pi\)
0.949964 + 0.312358i \(0.101119\pi\)
\(294\) 2.00000 0.116642
\(295\) 3.00000 5.19615i 0.174667 0.302532i
\(296\) 3.50000 + 6.06218i 0.203433 + 0.352357i
\(297\) −4.00000 6.92820i −0.232104 0.402015i
\(298\) 21.0000 1.21650
\(299\) 5.00000 + 5.19615i 0.289157 + 0.300501i
\(300\) 8.00000 0.461880
\(301\) −1.00000 1.73205i −0.0576390 0.0998337i
\(302\) 4.00000 + 6.92820i 0.230174 + 0.398673i
\(303\) −15.0000 + 25.9808i −0.861727 + 1.49256i
\(304\) −4.00000 −0.229416
\(305\) −2.50000 + 4.33013i −0.143150 + 0.247942i
\(306\) 0.500000 0.866025i 0.0285831 0.0495074i
\(307\) −6.00000 −0.342438 −0.171219 0.985233i \(-0.554771\pi\)
−0.171219 + 0.985233i \(0.554771\pi\)
\(308\) 1.00000 1.73205i 0.0569803 0.0986928i
\(309\) −20.0000 34.6410i −1.13776 1.97066i
\(310\) 3.00000 + 5.19615i 0.170389 + 0.295122i
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 5.00000 + 5.19615i 0.283069 + 0.294174i
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) −5.50000 9.52628i −0.310383 0.537599i
\(315\) 0.500000 + 0.866025i 0.0281718 + 0.0487950i
\(316\) 5.00000 8.66025i 0.281272 0.487177i
\(317\) −25.0000 −1.40414 −0.702070 0.712108i \(-0.747741\pi\)
−0.702070 + 0.712108i \(0.747741\pi\)
\(318\) 9.00000 15.5885i 0.504695 0.874157i
\(319\) 5.00000 8.66025i 0.279946 0.484881i
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −1.00000 1.73205i −0.0557278 0.0965234i
\(323\) 2.00000 + 3.46410i 0.111283 + 0.192748i
\(324\) −11.0000 −0.611111
\(325\) 14.0000 3.46410i 0.776580 0.192154i
\(326\) 6.00000 0.332309
\(327\) 2.00000 + 3.46410i 0.110600 + 0.191565i
\(328\) −3.50000 6.06218i −0.193255 0.334728i
\(329\) 0 0
\(330\) 4.00000 0.220193
\(331\) 9.00000 15.5885i 0.494685 0.856819i −0.505296 0.862946i \(-0.668617\pi\)
0.999981 + 0.00612670i \(0.00195020\pi\)
\(332\) −7.00000 + 12.1244i −0.384175 + 0.665410i
\(333\) 7.00000 0.383598
\(334\) −3.00000 + 5.19615i −0.164153 + 0.284321i
\(335\) −5.00000 8.66025i −0.273179 0.473160i
\(336\) −1.00000 1.73205i −0.0545545 0.0944911i
\(337\) 27.0000 1.47078 0.735392 0.677642i \(-0.236998\pi\)
0.735392 + 0.677642i \(0.236998\pi\)
\(338\) 11.0000 + 6.92820i 0.598321 + 0.376845i
\(339\) −38.0000 −2.06388
\(340\) −0.500000 0.866025i −0.0271163 0.0469668i
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) −2.00000 + 3.46410i −0.108148 + 0.187317i
\(343\) −1.00000 −0.0539949
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 2.00000 3.46410i 0.107676 0.186501i
\(346\) 10.0000 0.537603
\(347\) 7.00000 12.1244i 0.375780 0.650870i −0.614664 0.788789i \(-0.710708\pi\)
0.990443 + 0.137920i \(0.0440416\pi\)
\(348\) −5.00000 8.66025i −0.268028 0.464238i
\(349\) −1.00000 1.73205i −0.0535288 0.0927146i 0.838019 0.545640i \(-0.183714\pi\)
−0.891548 + 0.452926i \(0.850380\pi\)
\(350\) −4.00000 −0.213809
\(351\) −14.0000 + 3.46410i −0.747265 + 0.184900i
\(352\) −2.00000 −0.106600
\(353\) −12.5000 21.6506i −0.665308 1.15235i −0.979202 0.202889i \(-0.934967\pi\)
0.313894 0.949458i \(-0.398366\pi\)
\(354\) 6.00000 + 10.3923i 0.318896 + 0.552345i
\(355\) −8.00000 + 13.8564i −0.424596 + 0.735422i
\(356\) −6.00000 −0.317999
\(357\) −1.00000 + 1.73205i −0.0529256 + 0.0916698i
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0.500000 0.866025i 0.0263523 0.0456435i
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) −11.5000 19.9186i −0.604427 1.04690i
\(363\) 14.0000 0.734809
\(364\) −2.50000 2.59808i −0.131036 0.136176i
\(365\) −3.00000 −0.157027
\(366\) −5.00000 8.66025i −0.261354 0.452679i
\(367\) −3.00000 5.19615i −0.156599 0.271237i 0.777041 0.629450i \(-0.216720\pi\)
−0.933640 + 0.358213i \(0.883386\pi\)
\(368\) −1.00000 + 1.73205i −0.0521286 + 0.0902894i
\(369\) −7.00000 −0.364405
\(370\) 3.50000 6.06218i 0.181956 0.315158i
\(371\) −4.50000 + 7.79423i −0.233628 + 0.404656i
\(372\) −12.0000 −0.622171
\(373\) −9.50000 + 16.4545i −0.491891 + 0.851981i −0.999956 0.00933789i \(-0.997028\pi\)
0.508065 + 0.861319i \(0.330361\pi\)
\(374\) 1.00000 + 1.73205i 0.0517088 + 0.0895622i
\(375\) −9.00000 15.5885i −0.464758 0.804984i
\(376\) 0 0
\(377\) −12.5000 12.9904i −0.643783 0.669039i
\(378\) 4.00000 0.205738
\(379\) −17.0000 29.4449i −0.873231 1.51248i −0.858635 0.512588i \(-0.828687\pi\)
−0.0145964 0.999893i \(-0.504646\pi\)
\(380\) 2.00000 + 3.46410i 0.102598 + 0.177705i
\(381\) 4.00000 6.92820i 0.204926 0.354943i
\(382\) 6.00000 0.306987
\(383\) 9.00000 15.5885i 0.459879 0.796533i −0.539076 0.842257i \(-0.681226\pi\)
0.998954 + 0.0457244i \(0.0145596\pi\)
\(384\) −1.00000 + 1.73205i −0.0510310 + 0.0883883i
\(385\) −2.00000 −0.101929
\(386\) −12.5000 + 21.6506i −0.636233 + 1.10199i
\(387\) 1.00000 + 1.73205i 0.0508329 + 0.0880451i
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) 23.0000 1.16615 0.583073 0.812420i \(-0.301850\pi\)
0.583073 + 0.812420i \(0.301850\pi\)
\(390\) 2.00000 6.92820i 0.101274 0.350823i
\(391\) 2.00000 0.101144
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) −10.0000 −0.503155
\(396\) −1.00000 + 1.73205i −0.0502519 + 0.0870388i
\(397\) −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i \(-0.947600\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(398\) 20.0000 1.00251
\(399\) 4.00000 6.92820i 0.200250 0.346844i
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) −11.5000 19.9186i −0.574283 0.994687i −0.996119 0.0880147i \(-0.971948\pi\)
0.421837 0.906672i \(-0.361386\pi\)
\(402\) 20.0000 0.997509
\(403\) −21.0000 + 5.19615i −1.04608 + 0.258839i
\(404\) −15.0000 −0.746278
\(405\) 5.50000 + 9.52628i 0.273297 + 0.473365i
\(406\) 2.50000 + 4.33013i 0.124073 + 0.214901i
\(407\) −7.00000 + 12.1244i −0.346977 + 0.600982i
\(408\) 2.00000 0.0990148
\(409\) 15.5000 26.8468i 0.766426 1.32749i −0.173064 0.984911i \(-0.555367\pi\)
0.939490 0.342578i \(-0.111300\pi\)
\(410\) −3.50000 + 6.06218i −0.172853 + 0.299390i
\(411\) 10.0000 0.493264
\(412\) 10.0000 17.3205i 0.492665 0.853320i
\(413\) −3.00000 5.19615i −0.147620 0.255686i
\(414\) 1.00000 + 1.73205i 0.0491473 + 0.0851257i
\(415\) 14.0000 0.687233
\(416\) −1.00000 + 3.46410i −0.0490290 + 0.169842i
\(417\) 28.0000 1.37117
\(418\) −4.00000 6.92820i −0.195646 0.338869i
\(419\) 5.00000 + 8.66025i 0.244266 + 0.423081i 0.961925 0.273314i \(-0.0881197\pi\)
−0.717659 + 0.696395i \(0.754786\pi\)
\(420\) −1.00000 + 1.73205i −0.0487950 + 0.0845154i
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) −7.00000 + 12.1244i −0.340755 + 0.590204i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) 2.00000 3.46410i 0.0970143 0.168034i
\(426\) −16.0000 27.7128i −0.775203 1.34269i
\(427\) 2.50000 + 4.33013i 0.120983 + 0.209550i
\(428\) 0 0
\(429\) −4.00000 + 13.8564i −0.193122 + 0.668994i
\(430\) 2.00000 0.0964486
\(431\) −10.0000 17.3205i −0.481683 0.834300i 0.518096 0.855323i \(-0.326641\pi\)
−0.999779 + 0.0210230i \(0.993308\pi\)
\(432\) −2.00000 3.46410i −0.0962250 0.166667i
\(433\) −4.50000 + 7.79423i −0.216256 + 0.374567i −0.953660 0.300885i \(-0.902718\pi\)
0.737404 + 0.675452i \(0.236051\pi\)
\(434\) 6.00000 0.288009
\(435\) −5.00000 + 8.66025i −0.239732 + 0.415227i
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) −8.00000 −0.382692
\(438\) 3.00000 5.19615i 0.143346 0.248282i
\(439\) −5.00000 8.66025i −0.238637 0.413331i 0.721686 0.692220i \(-0.243367\pi\)
−0.960323 + 0.278889i \(0.910034\pi\)
\(440\) 1.00000 + 1.73205i 0.0476731 + 0.0825723i
\(441\) 1.00000 0.0476190
\(442\) 3.50000 0.866025i 0.166478 0.0411926i
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 7.00000 + 12.1244i 0.332205 + 0.575396i
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) −6.00000 + 10.3923i −0.284108 + 0.492090i
\(447\) 42.0000 1.98653
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) −15.0000 + 25.9808i −0.707894 + 1.22611i 0.257743 + 0.966213i \(0.417021\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) 4.00000 0.188562
\(451\) 7.00000 12.1244i 0.329617 0.570914i
\(452\) −9.50000 16.4545i −0.446842 0.773954i
\(453\) 8.00000 + 13.8564i 0.375873 + 0.651031i
\(454\) −10.0000 −0.469323
\(455\) −1.00000 + 3.46410i −0.0468807 + 0.162400i
\(456\) −8.00000 −0.374634
\(457\) 4.50000 + 7.79423i 0.210501 + 0.364599i 0.951871 0.306497i \(-0.0991571\pi\)
−0.741370 + 0.671096i \(0.765824\pi\)
\(458\) −1.00000 1.73205i −0.0467269 0.0809334i
\(459\) −2.00000 + 3.46410i −0.0933520 + 0.161690i
\(460\) 2.00000 0.0932505
\(461\) 5.50000 9.52628i 0.256161 0.443683i −0.709050 0.705159i \(-0.750876\pi\)
0.965210 + 0.261476i \(0.0842091\pi\)
\(462\) 2.00000 3.46410i 0.0930484 0.161165i
\(463\) 18.0000 0.836531 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(464\) 2.50000 4.33013i 0.116060 0.201021i
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) 7.00000 + 12.1244i 0.324269 + 0.561650i
\(467\) −2.00000 −0.0925490 −0.0462745 0.998929i \(-0.514735\pi\)
−0.0462745 + 0.998929i \(0.514735\pi\)
\(468\) 2.50000 + 2.59808i 0.115563 + 0.120096i
\(469\) −10.0000 −0.461757
\(470\) 0 0
\(471\) −11.0000 19.0526i −0.506853 0.877896i
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) −4.00000 −0.183920
\(474\) 10.0000 17.3205i 0.459315 0.795557i
\(475\) −8.00000 + 13.8564i −0.367065 + 0.635776i
\(476\) −1.00000 −0.0458349
\(477\) 4.50000 7.79423i 0.206041 0.356873i
\(478\) 9.00000 + 15.5885i 0.411650 + 0.712999i
\(479\) 3.00000 + 5.19615i 0.137073 + 0.237418i 0.926388 0.376571i \(-0.122897\pi\)
−0.789314 + 0.613990i \(0.789564\pi\)
\(480\) 2.00000 0.0912871
\(481\) 17.5000 + 18.1865i 0.797931 + 0.829235i
\(482\) 19.0000 0.865426
\(483\) −2.00000 3.46410i −0.0910032 0.157622i
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) −10.0000 −0.453609
\(487\) −16.0000 + 27.7128i −0.725029 + 1.25579i 0.233933 + 0.972253i \(0.424840\pi\)
−0.958962 + 0.283535i \(0.908493\pi\)
\(488\) 2.50000 4.33013i 0.113170 0.196016i
\(489\) 12.0000 0.542659
\(490\) 0.500000 0.866025i 0.0225877 0.0391230i
\(491\) −8.00000 13.8564i −0.361035 0.625331i 0.627096 0.778942i \(-0.284243\pi\)
−0.988131 + 0.153611i \(0.950910\pi\)
\(492\) −7.00000 12.1244i −0.315584 0.546608i
\(493\) −5.00000 −0.225189
\(494\) −14.0000 + 3.46410i −0.629890 + 0.155857i
\(495\) 2.00000 0.0898933
\(496\) −3.00000 5.19615i −0.134704 0.233314i
\(497\) 8.00000 + 13.8564i 0.358849 + 0.621545i
\(498\) −14.0000 + 24.2487i −0.627355 + 1.08661i
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 4.50000 7.79423i 0.201246 0.348569i
\(501\) −6.00000 + 10.3923i −0.268060 + 0.464294i
\(502\) −20.0000 −0.892644
\(503\) −7.00000 + 12.1244i −0.312115 + 0.540598i −0.978820 0.204723i \(-0.934371\pi\)
0.666705 + 0.745321i \(0.267704\pi\)
\(504\) −0.500000 0.866025i −0.0222718 0.0385758i
\(505\) 7.50000 + 12.9904i 0.333746 + 0.578064i
\(506\) −4.00000 −0.177822
\(507\) 22.0000 + 13.8564i 0.977054 + 0.615385i
\(508\) 4.00000 0.177471
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) −1.00000 1.73205i −0.0442807 0.0766965i
\(511\) −1.50000 + 2.59808i −0.0663561 + 0.114932i
\(512\) −1.00000 −0.0441942
\(513\) 8.00000 13.8564i 0.353209 0.611775i
\(514\) −7.50000 + 12.9904i −0.330811 + 0.572981i
\(515\) −20.0000 −0.881305
\(516\) −2.00000 + 3.46410i −0.0880451 + 0.152499i
\(517\) 0 0
\(518\) −3.50000 6.06218i −0.153781 0.266357i
\(519\) 20.0000 0.877903
\(520\) 3.50000 0.866025i 0.153485 0.0379777i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) −2.50000 4.33013i −0.109422 0.189525i
\(523\) −18.0000 31.1769i −0.787085 1.36327i −0.927746 0.373213i \(-0.878256\pi\)
0.140660 0.990058i \(-0.455077\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) −7.00000 + 12.1244i −0.305215 + 0.528647i
\(527\) −3.00000 + 5.19615i −0.130682 + 0.226348i
\(528\) −4.00000 −0.174078
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) −4.50000 7.79423i −0.195468 0.338560i
\(531\) 3.00000 + 5.19615i 0.130189 + 0.225494i
\(532\) 4.00000 0.173422
\(533\) −17.5000 18.1865i −0.758009 0.787746i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) 5.00000 + 8.66025i 0.215967 + 0.374066i
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) −1.00000 + 1.73205i −0.0430730 + 0.0746047i
\(540\) −2.00000 + 3.46410i −0.0860663 + 0.149071i
\(541\) 7.00000 0.300954 0.150477 0.988614i \(-0.451919\pi\)
0.150477 + 0.988614i \(0.451919\pi\)
\(542\) −15.0000 + 25.9808i −0.644305 + 1.11597i
\(543\) −23.0000 39.8372i −0.987024 1.70958i
\(544\) 0.500000 + 0.866025i 0.0214373 + 0.0371305i
\(545\) 2.00000 0.0856706
\(546\) −5.00000 5.19615i −0.213980 0.222375i
\(547\) 38.0000 1.62476 0.812381 0.583127i \(-0.198171\pi\)
0.812381 + 0.583127i \(0.198171\pi\)
\(548\) 2.50000 + 4.33013i 0.106795 + 0.184974i
\(549\) −2.50000 4.33013i −0.106697 0.184805i
\(550\) −4.00000 + 6.92820i −0.170561 + 0.295420i
\(551\) 20.0000 0.852029
\(552\) −2.00000 + 3.46410i −0.0851257 + 0.147442i
\(553\) −5.00000 + 8.66025i −0.212622 + 0.368271i
\(554\) 17.0000 0.722261
\(555\) 7.00000 12.1244i 0.297133 0.514650i
\(556\) 7.00000 + 12.1244i 0.296866 + 0.514187i
\(557\) −3.50000 6.06218i −0.148300 0.256863i 0.782299 0.622903i \(-0.214047\pi\)
−0.930599 + 0.366040i \(0.880713\pi\)
\(558\) −6.00000 −0.254000
\(559\) −2.00000 + 6.92820i −0.0845910 + 0.293032i
\(560\) −1.00000 −0.0422577
\(561\) 2.00000 + 3.46410i 0.0844401 + 0.146254i
\(562\) −14.5000 25.1147i −0.611646 1.05940i
\(563\) −7.00000 + 12.1244i −0.295015 + 0.510981i −0.974988 0.222256i \(-0.928658\pi\)
0.679974 + 0.733237i \(0.261991\pi\)
\(564\) 0 0
\(565\) −9.50000 + 16.4545i −0.399668 + 0.692245i
\(566\) −11.0000 + 19.0526i −0.462364 + 0.800839i
\(567\) 11.0000 0.461957
\(568\) 8.00000 13.8564i 0.335673 0.581402i
\(569\) −7.00000 12.1244i −0.293455 0.508279i 0.681169 0.732126i \(-0.261472\pi\)
−0.974624 + 0.223847i \(0.928139\pi\)
\(570\) 4.00000 + 6.92820i 0.167542 + 0.290191i
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) −7.00000 + 1.73205i −0.292685 + 0.0724207i
\(573\) 12.0000 0.501307
\(574\) 3.50000 + 6.06218i 0.146087 + 0.253030i
\(575\) 4.00000 + 6.92820i 0.166812 + 0.288926i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −39.0000 −1.62359 −0.811796 0.583942i \(-0.801510\pi\)
−0.811796 + 0.583942i \(0.801510\pi\)
\(578\) −8.00000 + 13.8564i −0.332756 + 0.576351i
\(579\) −25.0000 + 43.3013i −1.03896 + 1.79954i
\(580\) −5.00000 −0.207614
\(581\) 7.00000 12.1244i 0.290409 0.503003i
\(582\) −2.00000 3.46410i −0.0829027 0.143592i
\(583\) 9.00000 + 15.5885i 0.372742 + 0.645608i
\(584\) 3.00000 0.124141
\(585\) 1.00000 3.46410i 0.0413449 0.143223i
\(586\) 7.00000 0.289167
\(587\) −6.00000 10.3923i −0.247647 0.428936i 0.715226 0.698893i \(-0.246324\pi\)
−0.962872 + 0.269957i \(0.912990\pi\)
\(588\) 1.00000 + 1.73205i 0.0412393 + 0.0714286i
\(589\) 12.0000 20.7846i 0.494451 0.856415i
\(590\) 6.00000 0.247016
\(591\) 18.0000 31.1769i 0.740421 1.28245i
\(592\) −3.50000 + 6.06218i −0.143849 + 0.249154i
\(593\) −19.0000 −0.780236 −0.390118 0.920765i \(-0.627566\pi\)
−0.390118 + 0.920765i \(0.627566\pi\)
\(594\) 4.00000 6.92820i 0.164122 0.284268i
\(595\) 0.500000 + 0.866025i 0.0204980 + 0.0355036i
\(596\) 10.5000 + 18.1865i 0.430097 + 0.744949i
\(597\) 40.0000 1.63709
\(598\) −2.00000 + 6.92820i −0.0817861 + 0.283315i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 4.00000 + 6.92820i 0.163299 + 0.282843i
\(601\) 15.5000 + 26.8468i 0.632258 + 1.09510i 0.987089 + 0.160173i \(0.0512051\pi\)
−0.354831 + 0.934931i \(0.615462\pi\)
\(602\) 1.00000 1.73205i 0.0407570 0.0705931i
\(603\) 10.0000 0.407231
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) −30.0000 −1.21867
\(607\) 2.00000 3.46410i 0.0811775 0.140604i −0.822578 0.568652i \(-0.807465\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(608\) −2.00000 3.46410i −0.0811107 0.140488i
\(609\) 5.00000 + 8.66025i 0.202610 + 0.350931i
\(610\) −5.00000 −0.202444
\(611\) 0 0
\(612\) 1.00000 0.0404226
\(613\) −5.50000 9.52628i −0.222143 0.384763i 0.733316 0.679888i \(-0.237972\pi\)
−0.955458 + 0.295126i \(0.904638\pi\)
\(614\) −3.00000 5.19615i −0.121070 0.209700i
\(615\) −7.00000 + 12.1244i −0.282267 + 0.488901i
\(616\) 2.00000 0.0805823
\(617\) 2.50000 4.33013i 0.100646 0.174324i −0.811305 0.584623i \(-0.801242\pi\)
0.911951 + 0.410299i \(0.134576\pi\)
\(618\) 20.0000 34.6410i 0.804518 1.39347i
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) −3.00000 + 5.19615i −0.120483 + 0.208683i
\(621\) −4.00000 6.92820i −0.160514 0.278019i
\(622\) 15.0000 + 25.9808i 0.601445 + 1.04173i
\(623\) 6.00000 0.240385
\(624\) −2.00000 + 6.92820i −0.0800641 + 0.277350i
\(625\) 11.0000 0.440000
\(626\) 3.00000 + 5.19615i 0.119904 + 0.207680i
\(627\) −8.00000 13.8564i −0.319489 0.553372i
\(628\) 5.50000 9.52628i 0.219474 0.380140i
\(629\) 7.00000 0.279108
\(630\) −0.500000 + 0.866025i −0.0199205 + 0.0345033i
\(631\) 10.0000 17.3205i 0.398094 0.689519i −0.595397 0.803432i \(-0.703005\pi\)
0.993491 + 0.113913i \(0.0363385\pi\)
\(632\) 10.0000 0.397779
\(633\) −14.0000 + 24.2487i −0.556450 + 0.963800i
\(634\) −12.5000 21.6506i −0.496438 0.859857i
\(635\) −2.00000 3.46410i −0.0793676 0.137469i
\(636\) 18.0000 0.713746
\(637\) 2.50000 + 2.59808i 0.0990536 + 0.102940i
\(638\) 10.0000 0.395904
\(639\) −8.00000 13.8564i −0.316475 0.548151i
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) 0.500000 0.866025i 0.0197488 0.0342059i −0.855982 0.517005i \(-0.827047\pi\)
0.875731 + 0.482800i \(0.160380\pi\)
\(642\) 0 0
\(643\) −4.00000 + 6.92820i −0.157745 + 0.273222i −0.934055 0.357129i \(-0.883756\pi\)
0.776310 + 0.630351i \(0.217089\pi\)
\(644\) 1.00000 1.73205i 0.0394055 0.0682524i
\(645\) 4.00000 0.157500
\(646\) −2.00000 + 3.46410i −0.0786889 + 0.136293i
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) −5.50000 9.52628i −0.216060 0.374228i
\(649\) −12.0000 −0.471041
\(650\) 10.0000 + 10.3923i 0.392232 + 0.407620i
\(651\) 12.0000 0.470317
\(652\) 3.00000 + 5.19615i 0.117489 + 0.203497i
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) −2.00000 + 3.46410i −0.0782062 + 0.135457i
\(655\) 0 0
\(656\) 3.50000 6.06218i 0.136652 0.236688i
\(657\) 1.50000 2.59808i 0.0585206 0.101361i
\(658\) 0 0
\(659\) 24.0000 41.5692i 0.934907 1.61931i 0.160108 0.987099i \(-0.448816\pi\)
0.774799 0.632207i \(-0.217851\pi\)
\(660\) 2.00000 + 3.46410i 0.0778499 + 0.134840i
\(661\) 11.5000 + 19.9186i 0.447298 + 0.774743i 0.998209 0.0598209i \(-0.0190530\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(662\) 18.0000 0.699590
\(663\) 7.00000 1.73205i 0.271857 0.0672673i
\(664\) −14.0000 −0.543305
\(665\) −2.00000 3.46410i −0.0775567 0.134332i
\(666\) 3.50000 + 6.06218i 0.135622 + 0.234905i
\(667\) 5.00000 8.66025i 0.193601 0.335326i
\(668\) −6.00000 −0.232147
\(669\) −12.0000 + 20.7846i −0.463947 + 0.803579i
\(670\) 5.00000 8.66025i 0.193167 0.334575i
\(671\) 10.0000 0.386046
\(672\) 1.00000 1.73205i 0.0385758 0.0668153i
\(673\) −13.5000 23.3827i −0.520387 0.901336i −0.999719 0.0237028i \(-0.992454\pi\)
0.479332 0.877633i \(-0.340879\pi\)
\(674\) 13.5000 + 23.3827i 0.520001 + 0.900667i
\(675\) −16.0000 −0.615840
\(676\) −0.500000 + 12.9904i −0.0192308 + 0.499630i
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) −19.0000 32.9090i −0.729691 1.26386i
\(679\) 1.00000 + 1.73205i 0.0383765 + 0.0664700i
\(680\) 0.500000 0.866025i 0.0191741 0.0332106i
\(681\) −20.0000 −0.766402
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) 4.00000 6.92820i 0.153056 0.265100i −0.779294 0.626659i \(-0.784422\pi\)
0.932349 + 0.361559i \(0.117755\pi\)
\(684\) −4.00000 −0.152944
\(685\) 2.50000 4.33013i 0.0955201 0.165446i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) −2.00000 3.46410i −0.0763048 0.132164i
\(688\) −2.00000 −0.0762493
\(689\) 31.5000 7.79423i 1.20005 0.296936i
\(690\) 4.00000 0.152277
\(691\) −20.0000 34.6410i −0.760836 1.31781i −0.942420 0.334431i \(-0.891456\pi\)
0.181584 0.983375i \(-0.441877\pi\)
\(692\) 5.00000 + 8.66025i 0.190071 + 0.329213i
\(693\) 1.00000 1.73205i 0.0379869 0.0657952i
\(694\) 14.0000 0.531433
\(695\) 7.00000 12.1244i 0.265525 0.459903i
\(696\) 5.00000 8.66025i 0.189525 0.328266i
\(697\) −7.00000 −0.265144
\(698\) 1.00000 1.73205i 0.0378506 0.0655591i
\(699\) 14.0000 + 24.2487i 0.529529 + 0.917170i
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) −10.0000 10.3923i −0.377426 0.392232i
\(703\) −28.0000 −1.05604
\(704\) −1.00000 1.73205i −0.0376889 0.0652791i
\(705\) 0 0
\(706\) 12.5000 21.6506i 0.470444 0.814832i
\(707\) 15.0000 0.564133
\(708\) −6.00000 + 10.3923i −0.225494 + 0.390567i
\(709\) −19.5000 + 33.7750i −0.732338 + 1.26845i 0.223544 + 0.974694i \(0.428237\pi\)
−0.955882 + 0.293752i \(0.905096\pi\)
\(710\) −16.0000 −0.600469
\(711\) 5.00000 8.66025i 0.187515 0.324785i
\(712\) −3.00000 5.19615i −0.112430 0.194734i
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) −2.00000 −0.0748481
\(715\) 5.00000 + 5.19615i 0.186989 + 0.194325i
\(716\) 0 0
\(717\) 18.0000 + 31.1769i 0.672222 + 1.16432i
\(718\) −18.0000 31.1769i −0.671754 1.16351i
\(719\) 11.0000 19.0526i 0.410231 0.710541i −0.584684 0.811261i \(-0.698781\pi\)
0.994915 + 0.100721i \(0.0321148\pi\)
\(720\) 1.00000 0.0372678
\(721\) −10.0000 + 17.3205i −0.372419 + 0.645049i
\(722\) −1.50000 + 2.59808i −0.0558242 + 0.0966904i
\(723\) 38.0000 1.41324
\(724\) 11.5000 19.9186i 0.427394 0.740268i
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 7.00000 + 12.1244i 0.259794 + 0.449977i
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 1.00000 3.46410i 0.0370625 0.128388i
\(729\) 13.0000 0.481481
\(730\) −1.50000 2.59808i −0.0555175 0.0961591i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) 5.00000 8.66025i 0.184805 0.320092i
\(733\) −51.0000 −1.88373 −0.941864 0.335994i \(-0.890928\pi\)
−0.941864 + 0.335994i \(0.890928\pi\)
\(734\) 3.00000 5.19615i 0.110732 0.191793i
\(735\) 1.00000 1.73205i 0.0368856 0.0638877i
\(736\) −2.00000 −0.0737210
\(737\) −10.0000 + 17.3205i −0.368355 + 0.638009i
\(738\) −3.50000 6.06218i −0.128837 0.223152i
\(739\) −8.00000 13.8564i −0.294285 0.509716i 0.680534 0.732717i \(-0.261748\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 7.00000 0.257325
\(741\) −28.0000 + 6.92820i −1.02861 + 0.254514i
\(742\) −9.00000 −0.330400
\(743\) −8.00000 13.8564i −0.293492 0.508342i 0.681141 0.732152i \(-0.261484\pi\)
−0.974633 + 0.223810i \(0.928151\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) 10.5000 18.1865i 0.384690 0.666303i
\(746\) −19.0000 −0.695639
\(747\) −7.00000 + 12.1244i −0.256117 + 0.443607i
\(748\) −1.00000 + 1.73205i −0.0365636 + 0.0633300i
\(749\) 0 0
\(750\) 9.00000 15.5885i 0.328634 0.569210i
\(751\) −5.00000 8.66025i −0.182453 0.316017i 0.760263 0.649616i \(-0.225070\pi\)
−0.942715 + 0.333599i \(0.891737\pi\)
\(752\) 0 0
\(753\) −40.0000 −1.45768
\(754\) 5.00000 17.3205i 0.182089 0.630776i
\(755\) 8.00000 0.291150
\(756\) 2.00000 + 3.46410i 0.0727393 + 0.125988i
\(757\) −17.0000 29.4449i −0.617876 1.07019i −0.989873 0.141958i \(-0.954660\pi\)
0.371997 0.928234i \(-0.378673\pi\)
\(758\) 17.0000 29.4449i 0.617468 1.06949i
\(759\) −8.00000 −0.290382
\(760\) −2.00000 + 3.46410i −0.0725476 + 0.125656i
\(761\) 7.00000 12.1244i 0.253750 0.439508i −0.710805 0.703389i \(-0.751669\pi\)
0.964555 + 0.263881i \(0.0850027\pi\)
\(762\) 8.00000 0.289809
\(763\) 1.00000 1.73205i 0.0362024 0.0627044i
\(764\) 3.00000 + 5.19615i 0.108536 + 0.187990i
\(765\) −0.500000 0.866025i −0.0180775 0.0313112i
\(766\) 18.0000 0.650366
\(767\) −6.00000 + 20.7846i −0.216647 + 0.750489i
\(768\) −2.00000 −0.0721688
\(769\) 7.00000 + 12.1244i 0.252426 + 0.437215i 0.964193 0.265200i \(-0.0854381\pi\)
−0.711767 + 0.702416i \(0.752105\pi\)
\(770\) −1.00000 1.73205i −0.0360375 0.0624188i
\(771\) −15.0000 + 25.9808i −0.540212 + 0.935674i
\(772\) −25.0000 −0.899770
\(773\) 5.00000 8.66025i 0.179838 0.311488i −0.761987 0.647592i \(-0.775776\pi\)
0.941825 + 0.336104i \(0.109109\pi\)
\(774\) −1.00000 + 1.73205i −0.0359443 + 0.0622573i
\(775\) −24.0000 −0.862105
\(776\) 1.00000 1.73205i 0.0358979 0.0621770i
\(777\) −7.00000 12.1244i −0.251124 0.434959i
\(778\) 11.5000 + 19.9186i 0.412295 + 0.714116i
\(779\) 28.0000 1.00320
\(780\) 7.00000 1.73205i 0.250640 0.0620174i
\(781\) 32.0000 1.14505
\(782\) 1.00000 + 1.73205i 0.0357599 + 0.0619380i
\(783\) 10.0000 + 17.3205i 0.357371 + 0.618984i
\(784\) −0.500000 + 0.866025i −0.0178571 + 0.0309295i
\(785\) −11.0000 −0.392607
\(786\) 0 0
\(787\) 5.00000 8.66025i 0.178231 0.308705i −0.763044 0.646347i \(-0.776296\pi\)
0.941275 + 0.337642i \(0.109629\pi\)
\(788\) 18.0000 0.641223
\(789\) −14.0000 + 24.2487i −0.498413 + 0.863277i
\(790\) −5.00000 8.66025i −0.177892 0.308118i
\(791\) 9.50000 + 16.4545i 0.337781 + 0.585054i
\(792\) −2.00000 −0.0710669
\(793\) 5.00000 17.3205i 0.177555 0.615069i
\(794\) −14.0000 −0.496841
\(795\) −9.00000 15.5885i −0.319197 0.552866i
\(796\) 10.0000 + 17.3205i 0.354441 + 0.613909i
\(797\) 21.0000 36.3731i 0.743858 1.28840i −0.206868 0.978369i \(-0.566327\pi\)
0.950726 0.310031i \(-0.100340\pi\)
\(798\) 8.00000 0.283197
\(799\) 0 0
\(800\) −2.00000 + 3.46410i −0.0707107 + 0.122474i
\(801\) −6.00000 −0.212000
\(802\) 11.5000 19.9186i 0.406079 0.703350i
\(803\) 3.00000 + 5.19615i 0.105868 + 0.183368i
\(804\) 10.0000 + 17.3205i 0.352673 + 0.610847i
\(805\) −2.00000 −0.0704907
\(806\) −15.0000 15.5885i −0.528352 0.549080i
\(807\) −36.0000 −1.26726
\(808\) −7.50000 12.9904i −0.263849 0.457000i
\(809\) 22.5000 + 38.9711i 0.791058 + 1.37015i 0.925312 + 0.379206i \(0.123803\pi\)
−0.134255 + 0.990947i \(0.542864\pi\)
\(810\) −5.50000 + 9.52628i −0.193250 + 0.334719i
\(811\) 26.0000 0.912983 0.456492 0.889728i \(-0.349106\pi\)
0.456492 + 0.889728i \(0.349106\pi\)
\(812\) −2.50000 + 4.33013i −0.0877328 + 0.151958i
\(813\) −30.0000 + 51.9615i −1.05215 + 1.82237i
\(814\) −14.0000 −0.490700
\(815\) 3.00000 5.19615i 0.105085 0.182013i
\(816\) 1.00000 + 1.73205i 0.0350070 + 0.0606339i
\(817\) −4.00000 6.92820i −0.139942 0.242387i
\(818\) 31.0000 1.08389
\(819\) −2.50000 2.59808i −0.0873571 0.0907841i
\(820\) −7.00000 −0.244451
\(821\) −11.0000 19.0526i −0.383903 0.664939i 0.607714 0.794156i \(-0.292087\pi\)
−0.991616 + 0.129217i \(0.958754\pi\)
\(822\) 5.00000 + 8.66025i 0.174395 + 0.302061i
\(823\) 10.0000 17.3205i 0.348578 0.603755i −0.637419 0.770517i \(-0.719998\pi\)
0.985997 + 0.166762i \(0.0533313\pi\)
\(824\) 20.0000 0.696733
\(825\) −8.00000 + 13.8564i −0.278524 + 0.482418i
\(826\) 3.00000 5.19615i 0.104383 0.180797i
\(827\) 34.0000 1.18230 0.591148 0.806563i \(-0.298675\pi\)
0.591148 + 0.806563i \(0.298675\pi\)
\(828\) −1.00000 + 1.73205i −0.0347524 + 0.0601929i
\(829\) 13.5000 + 23.3827i 0.468874 + 0.812114i 0.999367 0.0355753i \(-0.0113264\pi\)
−0.530493 + 0.847690i \(0.677993\pi\)
\(830\) 7.00000 + 12.1244i 0.242974 + 0.420843i
\(831\) 34.0000 1.17945
\(832\) −3.50000 + 0.866025i −0.121341 + 0.0300240i
\(833\) 1.00000 0.0346479
\(834\) 14.0000 + 24.2487i 0.484780 + 0.839664i
\(835\) 3.00000 + 5.19615i 0.103819 + 0.179820i
\(836\) 4.00000 6.92820i 0.138343 0.239617i
\(837\) 24.0000 0.829561
\(838\) −5.00000 + 8.66025i −0.172722 + 0.299164i
\(839\) −6.00000 + 10.3923i −0.207143 + 0.358782i −0.950813 0.309764i \(-0.899750\pi\)
0.743670 + 0.668546i \(0.233083\pi\)
\(840\) −2.00000 −0.0690066
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 9.50000 + 16.4545i 0.327392 + 0.567059i
\(843\) −29.0000 50.2295i −0.998813 1.72999i
\(844\) −14.0000 −0.481900
\(845\) 11.5000 6.06218i 0.395612 0.208545i
\(846\) 0 0
\(847\) −3.50000 6.06218i −0.120261 0.208299i
\(848\) 4.50000 + 7.79423i 0.154531 + 0.267655i
\(849\) −22.0000 + 38.1051i −0.755038 + 1.30776i
\(850\) 4.00000 0.137199
\(851\) −7.00000 + 12.1244i −0.239957 + 0.415618i
\(852\) 16.0000 27.7128i 0.548151 0.949425i
\(853\) 25.0000 0.855984 0.427992 0.903783i \(-0.359221\pi\)
0.427992 + 0.903783i \(0.359221\pi\)
\(854\) −2.50000 + 4.33013i −0.0855482 + 0.148174i
\(855\) 2.00000 + 3.46410i 0.0683986 + 0.118470i
\(856\) 0 0
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) −14.0000 + 3.46410i −0.477952 + 0.118262i
\(859\) −50.0000 −1.70598 −0.852989 0.521929i \(-0.825213\pi\)
−0.852989 + 0.521929i \(0.825213\pi\)
\(860\) 1.00000 + 1.73205i 0.0340997 + 0.0590624i
\(861\) 7.00000 + 12.1244i 0.238559 + 0.413197i
\(862\) 10.0000 17.3205i 0.340601 0.589939i
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 2.00000 3.46410i 0.0680414 0.117851i
\(865\) 5.00000 8.66025i 0.170005 0.294457i
\(866\) −9.00000 −0.305832
\(867\) −16.0000 + 27.7128i −0.543388 + 0.941176i
\(868\) 3.00000 + 5.19615i 0.101827 + 0.176369i
\(869\) 10.0000 + 17.3205i 0.339227 + 0.587558i
\(870\) −10.0000 −0.339032
\(871\) 25.0000 + 25.9808i 0.847093 + 0.880325i
\(872\) −2.00000 −0.0677285
\(873\) −1.00000 1.73205i −0.0338449 0.0586210i
\(874\) −4.00000 6.92820i −0.135302 0.234350i
\(875\) −4.50000 + 7.79423i −0.152128 + 0.263493i
\(876\) 6.00000 0.202721
\(877\) −11.5000 + 19.9186i −0.388327 + 0.672603i −0.992225 0.124459i \(-0.960280\pi\)
0.603897 + 0.797062i \(0.293614\pi\)
\(878\) 5.00000 8.66025i 0.168742 0.292269i
\(879\) 14.0000 0.472208
\(880\) −1.00000 + 1.73205i −0.0337100 + 0.0583874i
\(881\) −12.5000 21.6506i −0.421136 0.729428i 0.574915 0.818213i \(-0.305035\pi\)
−0.996051 + 0.0887846i \(0.971702\pi\)
\(882\) 0.500000 + 0.866025i 0.0168359 + 0.0291606i
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) 2.50000 + 2.59808i 0.0840841 + 0.0873828i
\(885\) 12.0000 0.403376
\(886\) 12.0000 + 20.7846i 0.403148 + 0.698273i
\(887\) −4.00000 6.92820i −0.134307 0.232626i 0.791026 0.611783i \(-0.209547\pi\)
−0.925332 + 0.379157i \(0.876214\pi\)
\(888\) −7.00000 + 12.1244i −0.234905 + 0.406867i
\(889\) −4.00000 −0.134156
\(890\) −3.00000 + 5.19615i −0.100560 + 0.174175i
\(891\) 11.0000 19.0526i 0.368514 0.638285i
\(892\) −12.0000 −0.401790
\(893\) 0 0
\(894\) 21.0000 + 36.3731i 0.702345 + 1.21650i
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) −4.00000 + 13.8564i −0.133556 + 0.462652i
\(898\) −30.0000 −1.00111
\(899\) 15.0000 + 25.9808i 0.500278 + 0.866507i
\(900\) 2.00000 + 3.46410i 0.0666667 + 0.115470i
\(901\) 4.50000 7.79423i 0.149917 0.259663i
\(902\) 14.0000 0.466149
\(903\) 2.00000 3.46410i 0.0665558 0.115278i
\(904\) 9.50000 16.4545i 0.315965 0.547268i
\(905\) −23.0000 −0.764546
\(906\) −8.00000 + 13.8564i −0.265782 + 0.460348i
\(907\) 21.0000 + 36.3731i 0.697294 + 1.20775i 0.969401 + 0.245481i \(0.0789459\pi\)
−0.272108 + 0.962267i \(0.587721\pi\)
\(908\) −5.00000 8.66025i −0.165931 0.287401i
\(909\) −15.0000 −0.497519
\(910\) −3.50000 + 0.866025i −0.116024 + 0.0287085i
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −4.00000 6.92820i −0.132453 0.229416i
\(913\) −14.0000 24.2487i −0.463332 0.802515i
\(914\) −4.50000 + 7.79423i −0.148847 + 0.257810i
\(915\) −10.0000 −0.330590
\(916\) 1.00000 1.73205i 0.0330409 0.0572286i
\(917\) 0 0
\(918\) −4.00000 −0.132020
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) 1.00000 + 1.73205i 0.0329690 + 0.0571040i
\(921\) −6.00000 10.3923i −0.197707 0.342438i
\(922\) 11.0000 0.362266
\(923\) 16.0000 55.4256i 0.526646 1.82436i
\(924\) 4.00000 0.131590
\(925\) 14.0000 + 24.2487i 0.460317 + 0.797293i
\(926\) 9.00000 + 15.5885i 0.295758 + 0.512268i
\(927\) 10.0000 17.3205i 0.328443 0.568880i
\(928\) 5.00000 0.164133
\(929\) −10.5000 + 18.1865i −0.344494 + 0.596681i −0.985262 0.171054i \(-0.945283\pi\)
0.640768 + 0.767735i \(0.278616\pi\)
\(930\) −6.00000 + 10.3923i −0.196748 + 0.340777i
\(931\) −4.00000 −0.131095
\(932\) −7.00000 + 12.1244i −0.229293 + 0.397146i
\(933\) 30.0000 + 51.9615i 0.982156 + 1.70114i
\(934\) −1.00000 1.73205i −0.0327210 0.0566744i
\(935\) 2.00000 0.0654070
\(936\) −1.00000 + 3.46410i −0.0326860 + 0.113228i
\(937\) 9.00000 0.294017 0.147009 0.989135i \(-0.453036\pi\)
0.147009 + 0.989135i \(0.453036\pi\)
\(938\) −5.00000 8.66025i −0.163256 0.282767i
\(939\) 6.00000 + 10.3923i 0.195803 + 0.339140i
\(940\) 0 0
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 11.0000 19.0526i 0.358399 0.620766i
\(943\) 7.00000 12.1244i 0.227951 0.394823i
\(944\) −6.00000 −0.195283
\(945\) 2.00000 3.46410i 0.0650600 0.112687i
\(946\) −2.00000 3.46410i −0.0650256 0.112628i
\(947\) −23.0000 39.8372i −0.747400 1.29453i −0.949065 0.315080i \(-0.897969\pi\)
0.201666 0.979454i \(-0.435365\pi\)
\(948\) 20.0000 0.649570
\(949\) 10.5000 2.59808i 0.340844 0.0843371i
\(950\) −16.0000 −0.519109
\(951\) −25.0000 43.3013i −0.810681 1.40414i
\(952\) −0.500000 0.866025i −0.0162051 0.0280680i
\(953\) −19.0000 + 32.9090i −0.615470 + 1.06603i 0.374831 + 0.927093i \(0.377701\pi\)
−0.990302 + 0.138933i \(0.955633\pi\)
\(954\) 9.00000 0.291386
\(955\) 3.00000 5.19615i 0.0970777 0.168144i
\(956\) −9.00000 + 15.5885i −0.291081 + 0.504167i
\(957\) 20.0000 0.646508
\(958\) −3.00000 + 5.19615i −0.0969256 + 0.167880i
\(959\) −2.50000 4.33013i −0.0807292 0.139827i
\(960\) 1.00000 + 1.73205i 0.0322749 + 0.0559017i
\(961\) 5.00000 0.161290
\(962\) −7.00000 + 24.2487i −0.225689 + 0.781810i
\(963\) 0 0
\(964\) 9.50000 + 16.4545i 0.305974 + 0.529963i
\(965\) 12.5000 + 21.6506i 0.402389 + 0.696959i
\(966\) 2.00000 3.46410i 0.0643489 0.111456i
\(967\) −42.0000 −1.35063 −0.675314 0.737530i \(-0.735992\pi\)
−0.675314 + 0.737530i \(0.735992\pi\)
\(968\) −3.50000 + 6.06218i −0.112494 + 0.194846i
\(969\) −4.00000 + 6.92820i −0.128499 + 0.222566i
\(970\) −2.00000 −0.0642161
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) −5.00000 8.66025i −0.160375 0.277778i
\(973\) −7.00000 12.1244i −0.224410 0.388689i
\(974\) −32.0000 −1.02535
\(975\) 20.0000 + 20.7846i 0.640513 + 0.665640i
\(976\) 5.00000 0.160046
\(977\) 10.5000 + 18.1865i 0.335925 + 0.581839i 0.983662 0.180025i \(-0.0576179\pi\)
−0.647737 + 0.761864i \(0.724285\pi\)
\(978\) 6.00000 + 10.3923i 0.191859 + 0.332309i
\(979\) 6.00000 10.3923i 0.191761 0.332140i
\(980\) 1.00000 0.0319438
\(981\) −1.00000 + 1.73205i −0.0319275 + 0.0553001i
\(982\) 8.00000 13.8564i 0.255290 0.442176i
\(983\) 8.00000 0.255160 0.127580 0.991828i \(-0.459279\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(984\) 7.00000 12.1244i 0.223152 0.386510i
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) −2.50000 4.33013i −0.0796162 0.137899i
\(987\) 0 0
\(988\) −10.0000 10.3923i −0.318142 0.330623i
\(989\) −4.00000 −0.127193
\(990\) 1.00000 + 1.73205i 0.0317821 + 0.0550482i
\(991\) −15.0000 25.9808i −0.476491 0.825306i 0.523146 0.852243i \(-0.324758\pi\)
−0.999637 + 0.0269367i \(0.991425\pi\)
\(992\) 3.00000 5.19615i 0.0952501 0.164978i
\(993\) 36.0000 1.14243
\(994\) −8.00000 + 13.8564i −0.253745 + 0.439499i
\(995\) 10.0000 17.3205i 0.317021 0.549097i
\(996\) −28.0000 −0.887214
\(997\) −12.5000 + 21.6506i −0.395879 + 0.685682i −0.993213 0.116310i \(-0.962893\pi\)
0.597334 + 0.801993i \(0.296227\pi\)
\(998\) −7.00000 12.1244i −0.221581 0.383790i
\(999\) −14.0000 24.2487i −0.442940 0.767195i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.2.g.d.29.1 2
3.2 odd 2 1638.2.r.e.757.1 2
4.3 odd 2 1456.2.s.b.1121.1 2
7.2 even 3 1274.2.h.d.263.1 2
7.3 odd 6 1274.2.e.c.471.1 2
7.4 even 3 1274.2.e.j.471.1 2
7.5 odd 6 1274.2.h.m.263.1 2
7.6 odd 2 1274.2.g.b.393.1 2
13.2 odd 12 2366.2.d.c.337.2 2
13.3 even 3 2366.2.a.b.1.1 1
13.9 even 3 inner 182.2.g.d.113.1 yes 2
13.10 even 6 2366.2.a.i.1.1 1
13.11 odd 12 2366.2.d.c.337.1 2
39.35 odd 6 1638.2.r.e.1387.1 2
52.35 odd 6 1456.2.s.b.113.1 2
91.9 even 3 1274.2.e.j.165.1 2
91.48 odd 6 1274.2.g.b.295.1 2
91.61 odd 6 1274.2.e.c.165.1 2
91.74 even 3 1274.2.h.d.373.1 2
91.87 odd 6 1274.2.h.m.373.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.g.d.29.1 2 1.1 even 1 trivial
182.2.g.d.113.1 yes 2 13.9 even 3 inner
1274.2.e.c.165.1 2 91.61 odd 6
1274.2.e.c.471.1 2 7.3 odd 6
1274.2.e.j.165.1 2 91.9 even 3
1274.2.e.j.471.1 2 7.4 even 3
1274.2.g.b.295.1 2 91.48 odd 6
1274.2.g.b.393.1 2 7.6 odd 2
1274.2.h.d.263.1 2 7.2 even 3
1274.2.h.d.373.1 2 91.74 even 3
1274.2.h.m.263.1 2 7.5 odd 6
1274.2.h.m.373.1 2 91.87 odd 6
1456.2.s.b.113.1 2 52.35 odd 6
1456.2.s.b.1121.1 2 4.3 odd 2
1638.2.r.e.757.1 2 3.2 odd 2
1638.2.r.e.1387.1 2 39.35 odd 6
2366.2.a.b.1.1 1 13.3 even 3
2366.2.a.i.1.1 1 13.10 even 6
2366.2.d.c.337.1 2 13.11 odd 12
2366.2.d.c.337.2 2 13.2 odd 12