Properties

Label 182.2.f.c
Level $182$
Weight $2$
Character orbit 182.f
Analytic conductor $1.453$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,2,Mod(53,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.8681953329.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 18x^{6} - 40x^{5} + 82x^{4} - 102x^{3} + 102x^{2} - 57x + 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + ( - \beta_{7} - \beta_1) q^{3} + ( - \beta_{3} - 1) q^{4} + (\beta_{7} - \beta_{6} + \cdots - \beta_{2}) q^{5} + \beta_1 q^{6} + (\beta_{6} + 1) q^{7} + q^{8} + ( - \beta_{6} - \beta_{5} + \cdots - \beta_{2}) q^{9}+ \cdots + ( - \beta_{6} + \beta_{5} - 3 \beta_1 - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} - 2 q^{5} + 7 q^{7} + 8 q^{8} - 6 q^{9} - 2 q^{10} - q^{11} - 8 q^{13} - 5 q^{14} + 18 q^{15} - 4 q^{16} - 3 q^{17} - 6 q^{18} - 3 q^{19} + 4 q^{20} + 9 q^{21} + 2 q^{22} - 8 q^{23}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 18x^{6} - 40x^{5} + 82x^{4} - 102x^{3} + 102x^{2} - 57x + 21 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu + 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 10\nu^{7} - 35\nu^{6} + 138\nu^{5} - 233\nu^{4} + 336\nu^{3} - 166\nu^{2} - 92\nu + 119 ) / 49 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{7} - 28\nu^{6} + 130\nu^{5} - 255\nu^{4} + 504\nu^{3} - 515\nu^{2} + 387\nu - 140 ) / 49 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -10\nu^{7} + 35\nu^{6} - 138\nu^{5} + 282\nu^{4} - 434\nu^{3} + 509\nu^{2} - 202\nu + 77 ) / 49 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} - 14\nu^{6} + 37\nu^{5} - 278\nu^{4} + 497\nu^{3} - 1038\nu^{2} + 841\nu - 511 ) / 49 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{7} + 35\nu^{6} - 110\nu^{5} + 408\nu^{4} - 630\nu^{3} + 1118\nu^{2} - 776\nu + 469 ) / 49 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 22\nu^{7} - 77\nu^{6} + 333\nu^{5} - 640\nu^{4} + 1190\nu^{3} - 1208\nu^{2} + 905\nu - 336 ) / 49 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{6} - 2\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{6} - 2\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + 3\beta _1 - 7 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{7} + 7\beta_{6} + 7\beta_{5} - 2\beta_{4} - 8\beta_{3} + 2\beta_{2} + 6\beta _1 - 16 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 6\beta_{7} + 16\beta_{6} + 16\beta_{5} - 2\beta_{4} - 17\beta_{3} + 8\beta_{2} - 9\beta _1 + 17 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -15\beta_{7} - 20\beta_{6} - 20\beta_{5} + 13\beta_{4} + 40\beta_{3} + 2\beta_{2} - 45\beta _1 + 104 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -60\beta_{7} - 98\beta_{6} - 104\beta_{5} + 10\beta_{4} + 163\beta_{3} - 49\beta_{2} - 3\beta _1 + 20 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 36\beta_{7} + 19\beta_{6} - 2\beta_{5} - 98\beta_{4} - 83\beta_{3} - 91\beta_{2} + 249\beta _1 - 565 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.500000 0.622917i
0.500000 + 1.05635i
0.500000 + 1.95148i
0.500000 2.38492i
0.500000 + 0.622917i
0.500000 1.05635i
0.500000 1.95148i
0.500000 + 2.38492i
−0.500000 0.866025i −1.18099 + 2.04553i −0.500000 + 0.866025i −1.97045 3.41292i 2.36197 2.58164 0.578917i 1.00000 −1.28946 2.23341i −1.97045 + 3.41292i
53.2 −0.500000 0.866025i −0.817059 + 1.41519i −0.500000 + 0.866025i −0.152231 0.263671i 1.63412 −2.55018 + 0.704672i 1.00000 0.164829 + 0.285491i −0.152231 + 0.263671i
53.3 −0.500000 0.866025i 0.529136 0.916490i −0.500000 + 0.866025i 1.96917 + 3.41070i −1.05827 1.20215 2.35687i 1.00000 0.940031 + 1.62818i 1.96917 3.41070i
53.4 −0.500000 0.866025i 1.46891 2.54423i −0.500000 + 0.866025i −0.846487 1.46616i −2.93782 2.26639 + 1.36509i 1.00000 −2.81540 4.87641i −0.846487 + 1.46616i
79.1 −0.500000 + 0.866025i −1.18099 2.04553i −0.500000 0.866025i −1.97045 + 3.41292i 2.36197 2.58164 + 0.578917i 1.00000 −1.28946 + 2.23341i −1.97045 3.41292i
79.2 −0.500000 + 0.866025i −0.817059 1.41519i −0.500000 0.866025i −0.152231 + 0.263671i 1.63412 −2.55018 0.704672i 1.00000 0.164829 0.285491i −0.152231 0.263671i
79.3 −0.500000 + 0.866025i 0.529136 + 0.916490i −0.500000 0.866025i 1.96917 3.41070i −1.05827 1.20215 + 2.35687i 1.00000 0.940031 1.62818i 1.96917 + 3.41070i
79.4 −0.500000 + 0.866025i 1.46891 + 2.54423i −0.500000 0.866025i −0.846487 + 1.46616i −2.93782 2.26639 1.36509i 1.00000 −2.81540 + 4.87641i −0.846487 1.46616i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 182.2.f.c 8
3.b odd 2 1 1638.2.j.r 8
4.b odd 2 1 1456.2.r.n 8
7.b odd 2 1 1274.2.f.y 8
7.c even 3 1 inner 182.2.f.c 8
7.c even 3 1 1274.2.a.w 4
7.d odd 6 1 1274.2.a.v 4
7.d odd 6 1 1274.2.f.y 8
21.h odd 6 1 1638.2.j.r 8
28.g odd 6 1 1456.2.r.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.f.c 8 1.a even 1 1 trivial
182.2.f.c 8 7.c even 3 1 inner
1274.2.a.v 4 7.d odd 6 1
1274.2.a.w 4 7.c even 3 1
1274.2.f.y 8 7.b odd 2 1
1274.2.f.y 8 7.d odd 6 1
1456.2.r.n 8 4.b odd 2 1
1456.2.r.n 8 28.g odd 6 1
1638.2.j.r 8 3.b odd 2 1
1638.2.j.r 8 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 9T_{3}^{6} + 6T_{3}^{5} + 69T_{3}^{4} + 27T_{3}^{3} + 117T_{3}^{2} - 36T_{3} + 144 \) acting on \(S_{2}^{\mathrm{new}}(182, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + 9 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$5$ \( T^{8} + 2 T^{7} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( T^{8} - 7 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} + T^{7} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T + 1)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + 3 T^{7} + \cdots + 33489 \) Copy content Toggle raw display
$19$ \( T^{8} + 3 T^{7} + \cdots + 36864 \) Copy content Toggle raw display
$23$ \( T^{8} + 8 T^{7} + \cdots + 12544 \) Copy content Toggle raw display
$29$ \( (T^{4} - 17 T^{3} + \cdots - 296)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 7 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( T^{8} + 9 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$41$ \( (T^{4} + 12 T^{3} + \cdots - 4704)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 10 T^{3} + \cdots + 526)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 5 T^{7} + \cdots + 26569 \) Copy content Toggle raw display
$53$ \( T^{8} - 3 T^{7} + \cdots + 576 \) Copy content Toggle raw display
$59$ \( T^{8} + 17 T^{7} + \cdots + 7268416 \) Copy content Toggle raw display
$61$ \( T^{8} - 5 T^{7} + \cdots + 1658944 \) Copy content Toggle raw display
$67$ \( T^{8} + T^{7} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( (T^{4} - 7 T^{3} + \cdots + 553)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 14 T^{7} + \cdots + 60964864 \) Copy content Toggle raw display
$79$ \( T^{8} + 14 T^{7} + \cdots + 60964864 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} + 6 T^{7} + \cdots + 12616704 \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + \cdots + 112)^{2} \) Copy content Toggle raw display
show more
show less