Properties

Label 1805.2.b.k.1084.24
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-18,-3,-12,0,0,-12,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.24
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.k.1084.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68669i q^{2} +2.14658i q^{3} -5.21828 q^{4} +(-1.71227 + 1.43810i) q^{5} -5.76720 q^{6} +2.78303i q^{7} -8.64651i q^{8} -1.60782 q^{9} +(-3.86371 - 4.60034i) q^{10} -2.37999 q^{11} -11.2015i q^{12} -0.0404924i q^{13} -7.47713 q^{14} +(-3.08699 - 3.67554i) q^{15} +12.7939 q^{16} -1.81575i q^{17} -4.31971i q^{18} +(8.93512 - 7.50439i) q^{20} -5.97401 q^{21} -6.39429i q^{22} +2.54434i q^{23} +18.5605 q^{24} +(0.863754 - 4.92483i) q^{25} +0.108790 q^{26} +2.98843i q^{27} -14.5226i q^{28} -2.94820 q^{29} +(9.87501 - 8.29379i) q^{30} -2.88614 q^{31} +17.0802i q^{32} -5.10885i q^{33} +4.87834 q^{34} +(-4.00227 - 4.76531i) q^{35} +8.39006 q^{36} -0.227089i q^{37} +0.0869204 q^{39} +(12.4345 + 14.8052i) q^{40} +8.03741 q^{41} -16.0503i q^{42} -5.13269i q^{43} +12.4195 q^{44} +(2.75303 - 2.31220i) q^{45} -6.83583 q^{46} +11.0764i q^{47} +27.4632i q^{48} -0.745270 q^{49} +(13.2315 + 2.32064i) q^{50} +3.89765 q^{51} +0.211301i q^{52} -5.71448i q^{53} -8.02897 q^{54} +(4.07519 - 3.42266i) q^{55} +24.0635 q^{56} -7.92088i q^{58} -11.6165 q^{59} +(16.1088 + 19.1800i) q^{60} +4.58383 q^{61} -7.75415i q^{62} -4.47462i q^{63} -20.3012 q^{64} +(0.0582320 + 0.0693341i) q^{65} +13.7259 q^{66} +4.85278i q^{67} +9.47508i q^{68} -5.46163 q^{69} +(12.8029 - 10.7528i) q^{70} -7.76927 q^{71} +13.9020i q^{72} +4.24767i q^{73} +0.610118 q^{74} +(10.5716 + 1.85412i) q^{75} -6.62359i q^{77} +0.233528i q^{78} -11.6104 q^{79} +(-21.9066 + 18.3989i) q^{80} -11.2384 q^{81} +21.5940i q^{82} -4.47055i q^{83} +31.1741 q^{84} +(2.61122 + 3.10906i) q^{85} +13.7899 q^{86} -6.32855i q^{87} +20.5786i q^{88} -15.3931 q^{89} +(6.21216 + 7.39652i) q^{90} +0.112692 q^{91} -13.2771i q^{92} -6.19534i q^{93} -29.7588 q^{94} -36.6640 q^{96} +5.59540i q^{97} -2.00231i q^{98} +3.82660 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} - 6 q^{10} + 12 q^{11} - 24 q^{14} - 9 q^{15} + 6 q^{16} + 21 q^{20} + 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} - 36 q^{29} - 18 q^{30} + 42 q^{31} - 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68669i 1.89977i 0.312594 + 0.949887i \(0.398802\pi\)
−0.312594 + 0.949887i \(0.601198\pi\)
\(3\) 2.14658i 1.23933i 0.784866 + 0.619665i \(0.212732\pi\)
−0.784866 + 0.619665i \(0.787268\pi\)
\(4\) −5.21828 −2.60914
\(5\) −1.71227 + 1.43810i −0.765752 + 0.643137i
\(6\) −5.76720 −2.35445
\(7\) 2.78303i 1.05189i 0.850519 + 0.525944i \(0.176288\pi\)
−0.850519 + 0.525944i \(0.823712\pi\)
\(8\) 8.64651i 3.05700i
\(9\) −1.60782 −0.535940
\(10\) −3.86371 4.60034i −1.22181 1.45475i
\(11\) −2.37999 −0.717594 −0.358797 0.933416i \(-0.616813\pi\)
−0.358797 + 0.933416i \(0.616813\pi\)
\(12\) 11.2015i 3.23359i
\(13\) 0.0404924i 0.0112306i −0.999984 0.00561529i \(-0.998213\pi\)
0.999984 0.00561529i \(-0.00178741\pi\)
\(14\) −7.47713 −1.99835
\(15\) −3.08699 3.67554i −0.797059 0.949019i
\(16\) 12.7939 3.19847
\(17\) 1.81575i 0.440384i −0.975457 0.220192i \(-0.929332\pi\)
0.975457 0.220192i \(-0.0706683\pi\)
\(18\) 4.31971i 1.01816i
\(19\) 0 0
\(20\) 8.93512 7.50439i 1.99795 1.67803i
\(21\) −5.97401 −1.30364
\(22\) 6.39429i 1.36327i
\(23\) 2.54434i 0.530531i 0.964175 + 0.265265i \(0.0854595\pi\)
−0.964175 + 0.265265i \(0.914540\pi\)
\(24\) 18.5605 3.78864
\(25\) 0.863754 4.92483i 0.172751 0.984966i
\(26\) 0.108790 0.0213356
\(27\) 2.98843i 0.575124i
\(28\) 14.5226i 2.74452i
\(29\) −2.94820 −0.547467 −0.273733 0.961806i \(-0.588259\pi\)
−0.273733 + 0.961806i \(0.588259\pi\)
\(30\) 9.87501 8.29379i 1.80292 1.51423i
\(31\) −2.88614 −0.518366 −0.259183 0.965828i \(-0.583453\pi\)
−0.259183 + 0.965828i \(0.583453\pi\)
\(32\) 17.0802i 3.01937i
\(33\) 5.10885i 0.889337i
\(34\) 4.87834 0.836629
\(35\) −4.00227 4.76531i −0.676507 0.805484i
\(36\) 8.39006 1.39834
\(37\) 0.227089i 0.0373333i −0.999826 0.0186666i \(-0.994058\pi\)
0.999826 0.0186666i \(-0.00594212\pi\)
\(38\) 0 0
\(39\) 0.0869204 0.0139184
\(40\) 12.4345 + 14.8052i 1.96607 + 2.34091i
\(41\) 8.03741 1.25523 0.627616 0.778523i \(-0.284031\pi\)
0.627616 + 0.778523i \(0.284031\pi\)
\(42\) 16.0503i 2.47661i
\(43\) 5.13269i 0.782727i −0.920236 0.391364i \(-0.872003\pi\)
0.920236 0.391364i \(-0.127997\pi\)
\(44\) 12.4195 1.87230
\(45\) 2.75303 2.31220i 0.410397 0.344683i
\(46\) −6.83583 −1.00789
\(47\) 11.0764i 1.61566i 0.589417 + 0.807829i \(0.299358\pi\)
−0.589417 + 0.807829i \(0.700642\pi\)
\(48\) 27.4632i 3.96397i
\(49\) −0.745270 −0.106467
\(50\) 13.2315 + 2.32064i 1.87121 + 0.328188i
\(51\) 3.89765 0.545781
\(52\) 0.211301i 0.0293022i
\(53\) 5.71448i 0.784945i −0.919764 0.392472i \(-0.871620\pi\)
0.919764 0.392472i \(-0.128380\pi\)
\(54\) −8.02897 −1.09260
\(55\) 4.07519 3.42266i 0.549499 0.461511i
\(56\) 24.0635 3.21562
\(57\) 0 0
\(58\) 7.92088i 1.04006i
\(59\) −11.6165 −1.51234 −0.756172 0.654373i \(-0.772933\pi\)
−0.756172 + 0.654373i \(0.772933\pi\)
\(60\) 16.1088 + 19.1800i 2.07964 + 2.47612i
\(61\) 4.58383 0.586899 0.293450 0.955975i \(-0.405197\pi\)
0.293450 + 0.955975i \(0.405197\pi\)
\(62\) 7.75415i 0.984778i
\(63\) 4.47462i 0.563749i
\(64\) −20.3012 −2.53765
\(65\) 0.0582320 + 0.0693341i 0.00722280 + 0.00859983i
\(66\) 13.7259 1.68954
\(67\) 4.85278i 0.592862i 0.955054 + 0.296431i \(0.0957965\pi\)
−0.955054 + 0.296431i \(0.904204\pi\)
\(68\) 9.47508i 1.14902i
\(69\) −5.46163 −0.657503
\(70\) 12.8029 10.7528i 1.53024 1.28521i
\(71\) −7.76927 −0.922043 −0.461022 0.887389i \(-0.652517\pi\)
−0.461022 + 0.887389i \(0.652517\pi\)
\(72\) 13.9020i 1.63837i
\(73\) 4.24767i 0.497152i 0.968612 + 0.248576i \(0.0799627\pi\)
−0.968612 + 0.248576i \(0.920037\pi\)
\(74\) 0.610118 0.0709248
\(75\) 10.5716 + 1.85412i 1.22070 + 0.214095i
\(76\) 0 0
\(77\) 6.62359i 0.754828i
\(78\) 0.233528i 0.0264418i
\(79\) −11.6104 −1.30628 −0.653138 0.757239i \(-0.726548\pi\)
−0.653138 + 0.757239i \(0.726548\pi\)
\(80\) −21.9066 + 18.3989i −2.44924 + 2.05706i
\(81\) −11.2384 −1.24871
\(82\) 21.5940i 2.38466i
\(83\) 4.47055i 0.490707i −0.969434 0.245354i \(-0.921096\pi\)
0.969434 0.245354i \(-0.0789040\pi\)
\(84\) 31.1741 3.40137
\(85\) 2.61122 + 3.10906i 0.283227 + 0.337224i
\(86\) 13.7899 1.48700
\(87\) 6.32855i 0.678492i
\(88\) 20.5786i 2.19369i
\(89\) −15.3931 −1.63167 −0.815835 0.578285i \(-0.803722\pi\)
−0.815835 + 0.578285i \(0.803722\pi\)
\(90\) 6.21216 + 7.39652i 0.654819 + 0.779661i
\(91\) 0.112692 0.0118133
\(92\) 13.2771i 1.38423i
\(93\) 6.19534i 0.642427i
\(94\) −29.7588 −3.06939
\(95\) 0 0
\(96\) −36.6640 −3.74200
\(97\) 5.59540i 0.568127i 0.958805 + 0.284064i \(0.0916827\pi\)
−0.958805 + 0.284064i \(0.908317\pi\)
\(98\) 2.00231i 0.202263i
\(99\) 3.82660 0.384588
\(100\) −4.50731 + 25.6991i −0.450731 + 2.56991i
\(101\) 11.9572 1.18979 0.594894 0.803804i \(-0.297194\pi\)
0.594894 + 0.803804i \(0.297194\pi\)
\(102\) 10.4718i 1.03686i
\(103\) 14.0940i 1.38873i 0.719624 + 0.694363i \(0.244314\pi\)
−0.719624 + 0.694363i \(0.755686\pi\)
\(104\) −0.350118 −0.0343319
\(105\) 10.2291 8.59121i 0.998261 0.838416i
\(106\) 15.3530 1.49122
\(107\) 11.7250i 1.13350i −0.823891 0.566748i \(-0.808201\pi\)
0.823891 0.566748i \(-0.191799\pi\)
\(108\) 15.5945i 1.50058i
\(109\) 6.71229 0.642921 0.321461 0.946923i \(-0.395826\pi\)
0.321461 + 0.946923i \(0.395826\pi\)
\(110\) 9.19561 + 10.9488i 0.876767 + 1.04392i
\(111\) 0.487466 0.0462683
\(112\) 35.6058i 3.36444i
\(113\) 2.46603i 0.231985i −0.993250 0.115992i \(-0.962995\pi\)
0.993250 0.115992i \(-0.0370048\pi\)
\(114\) 0 0
\(115\) −3.65900 4.35660i −0.341204 0.406255i
\(116\) 15.3845 1.42842
\(117\) 0.0651045i 0.00601892i
\(118\) 31.2100i 2.87311i
\(119\) 5.05329 0.463234
\(120\) −31.7806 + 26.6917i −2.90115 + 2.43661i
\(121\) −5.33564 −0.485058
\(122\) 12.3153i 1.11498i
\(123\) 17.2530i 1.55565i
\(124\) 15.0607 1.35249
\(125\) 5.60340 + 9.67481i 0.501183 + 0.865341i
\(126\) 12.0219 1.07099
\(127\) 0.739025i 0.0655778i 0.999462 + 0.0327889i \(0.0104389\pi\)
−0.999462 + 0.0327889i \(0.989561\pi\)
\(128\) 20.3827i 1.80160i
\(129\) 11.0177 0.970058
\(130\) −0.186279 + 0.156451i −0.0163377 + 0.0137217i
\(131\) −10.9122 −0.953406 −0.476703 0.879064i \(-0.658168\pi\)
−0.476703 + 0.879064i \(0.658168\pi\)
\(132\) 26.6594i 2.32040i
\(133\) 0 0
\(134\) −13.0379 −1.12630
\(135\) −4.29765 5.11701i −0.369883 0.440402i
\(136\) −15.6999 −1.34625
\(137\) 4.59040i 0.392184i 0.980585 + 0.196092i \(0.0628251\pi\)
−0.980585 + 0.196092i \(0.937175\pi\)
\(138\) 14.6737i 1.24911i
\(139\) 7.84530 0.665429 0.332715 0.943028i \(-0.392035\pi\)
0.332715 + 0.943028i \(0.392035\pi\)
\(140\) 20.8850 + 24.8667i 1.76510 + 2.10162i
\(141\) −23.7764 −2.00233
\(142\) 20.8736i 1.75167i
\(143\) 0.0963716i 0.00805900i
\(144\) −20.5703 −1.71419
\(145\) 5.04812 4.23980i 0.419224 0.352096i
\(146\) −11.4122 −0.944477
\(147\) 1.59978i 0.131948i
\(148\) 1.18502i 0.0974077i
\(149\) 21.7400 1.78101 0.890503 0.454977i \(-0.150352\pi\)
0.890503 + 0.454977i \(0.150352\pi\)
\(150\) −4.98144 + 28.4024i −0.406733 + 2.31905i
\(151\) 9.68916 0.788493 0.394247 0.919005i \(-0.371006\pi\)
0.394247 + 0.919005i \(0.371006\pi\)
\(152\) 0 0
\(153\) 2.91940i 0.236019i
\(154\) 17.7955 1.43400
\(155\) 4.94186 4.15055i 0.396940 0.333380i
\(156\) −0.453575 −0.0363151
\(157\) 7.37956i 0.588953i 0.955659 + 0.294476i \(0.0951452\pi\)
−0.955659 + 0.294476i \(0.904855\pi\)
\(158\) 31.1936i 2.48163i
\(159\) 12.2666 0.972806
\(160\) −24.5629 29.2459i −1.94187 2.31209i
\(161\) −7.08097 −0.558058
\(162\) 30.1940i 2.37226i
\(163\) 4.90311i 0.384041i −0.981391 0.192021i \(-0.938496\pi\)
0.981391 0.192021i \(-0.0615040\pi\)
\(164\) −41.9415 −3.27508
\(165\) 7.34702 + 8.74774i 0.571965 + 0.681011i
\(166\) 12.0110 0.932232
\(167\) 10.0918i 0.780923i −0.920619 0.390462i \(-0.872315\pi\)
0.920619 0.390462i \(-0.127685\pi\)
\(168\) 51.6544i 3.98522i
\(169\) 12.9984 0.999874
\(170\) −8.35305 + 7.01553i −0.640650 + 0.538067i
\(171\) 0 0
\(172\) 26.7838i 2.04225i
\(173\) 4.87931i 0.370967i 0.982647 + 0.185484i \(0.0593852\pi\)
−0.982647 + 0.185484i \(0.940615\pi\)
\(174\) 17.0028 1.28898
\(175\) 13.7060 + 2.40386i 1.03607 + 0.181714i
\(176\) −30.4494 −2.29521
\(177\) 24.9359i 1.87429i
\(178\) 41.3565i 3.09980i
\(179\) −23.8844 −1.78521 −0.892604 0.450842i \(-0.851124\pi\)
−0.892604 + 0.450842i \(0.851124\pi\)
\(180\) −14.3661 + 12.0657i −1.07078 + 0.899325i
\(181\) 2.56750 0.190841 0.0954204 0.995437i \(-0.469580\pi\)
0.0954204 + 0.995437i \(0.469580\pi\)
\(182\) 0.302767i 0.0224426i
\(183\) 9.83957i 0.727362i
\(184\) 21.9996 1.62183
\(185\) 0.326577 + 0.388839i 0.0240104 + 0.0285880i
\(186\) 16.6449 1.22047
\(187\) 4.32146i 0.316017i
\(188\) 57.7998i 4.21548i
\(189\) −8.31690 −0.604965
\(190\) 0 0
\(191\) 9.28746 0.672017 0.336008 0.941859i \(-0.390923\pi\)
0.336008 + 0.941859i \(0.390923\pi\)
\(192\) 43.5783i 3.14499i
\(193\) 24.8317i 1.78742i −0.448643 0.893711i \(-0.648093\pi\)
0.448643 0.893711i \(-0.351907\pi\)
\(194\) −15.0331 −1.07931
\(195\) −0.148831 + 0.125000i −0.0106580 + 0.00895143i
\(196\) 3.88903 0.277788
\(197\) 4.17316i 0.297325i −0.988888 0.148663i \(-0.952503\pi\)
0.988888 0.148663i \(-0.0474969\pi\)
\(198\) 10.2809i 0.730629i
\(199\) −22.3867 −1.58695 −0.793475 0.608603i \(-0.791730\pi\)
−0.793475 + 0.608603i \(0.791730\pi\)
\(200\) −42.5826 7.46846i −3.01104 0.528100i
\(201\) −10.4169 −0.734752
\(202\) 32.1253i 2.26033i
\(203\) 8.20493i 0.575873i
\(204\) −20.3391 −1.42402
\(205\) −13.7622 + 11.5586i −0.961196 + 0.807286i
\(206\) −37.8663 −2.63827
\(207\) 4.09083i 0.284333i
\(208\) 0.518056i 0.0359207i
\(209\) 0 0
\(210\) 23.0819 + 27.4825i 1.59280 + 1.89647i
\(211\) 1.68159 0.115765 0.0578827 0.998323i \(-0.481565\pi\)
0.0578827 + 0.998323i \(0.481565\pi\)
\(212\) 29.8198i 2.04803i
\(213\) 16.6774i 1.14272i
\(214\) 31.5013 2.15339
\(215\) 7.38130 + 8.78856i 0.503400 + 0.599375i
\(216\) 25.8395 1.75816
\(217\) 8.03222i 0.545263i
\(218\) 18.0338i 1.22140i
\(219\) −9.11798 −0.616136
\(220\) −21.2655 + 17.8604i −1.43372 + 1.20415i
\(221\) −0.0735240 −0.00494576
\(222\) 1.30967i 0.0878992i
\(223\) 9.61157i 0.643638i −0.946801 0.321819i \(-0.895706\pi\)
0.946801 0.321819i \(-0.104294\pi\)
\(224\) −47.5346 −3.17604
\(225\) −1.38876 + 7.91824i −0.0925841 + 0.527882i
\(226\) 6.62545 0.440719
\(227\) 23.4650i 1.55743i −0.627379 0.778714i \(-0.715872\pi\)
0.627379 0.778714i \(-0.284128\pi\)
\(228\) 0 0
\(229\) 1.19088 0.0786952 0.0393476 0.999226i \(-0.487472\pi\)
0.0393476 + 0.999226i \(0.487472\pi\)
\(230\) 11.7048 9.83059i 0.771792 0.648210i
\(231\) 14.2181 0.935482
\(232\) 25.4916i 1.67361i
\(233\) 23.1405i 1.51598i 0.652263 + 0.757992i \(0.273820\pi\)
−0.652263 + 0.757992i \(0.726180\pi\)
\(234\) −0.174915 −0.0114346
\(235\) −15.9289 18.9658i −1.03909 1.23719i
\(236\) 60.6183 3.94592
\(237\) 24.9228i 1.61891i
\(238\) 13.5766i 0.880040i
\(239\) −9.68715 −0.626610 −0.313305 0.949653i \(-0.601436\pi\)
−0.313305 + 0.949653i \(0.601436\pi\)
\(240\) −39.4947 47.0244i −2.54937 3.03541i
\(241\) 15.7854 1.01682 0.508412 0.861114i \(-0.330233\pi\)
0.508412 + 0.861114i \(0.330233\pi\)
\(242\) 14.3352i 0.921501i
\(243\) 15.1588i 0.972439i
\(244\) −23.9197 −1.53130
\(245\) 1.27611 1.07177i 0.0815274 0.0684729i
\(246\) −46.3533 −2.95538
\(247\) 0 0
\(248\) 24.9550i 1.58465i
\(249\) 9.59642 0.608148
\(250\) −25.9932 + 15.0546i −1.64395 + 0.952135i
\(251\) 5.47929 0.345850 0.172925 0.984935i \(-0.444678\pi\)
0.172925 + 0.984935i \(0.444678\pi\)
\(252\) 23.3498i 1.47090i
\(253\) 6.05550i 0.380706i
\(254\) −1.98553 −0.124583
\(255\) −6.67385 + 5.60520i −0.417932 + 0.351012i
\(256\) 14.1595 0.884969
\(257\) 3.54799i 0.221318i −0.993858 0.110659i \(-0.964704\pi\)
0.993858 0.110659i \(-0.0352961\pi\)
\(258\) 29.6012i 1.84289i
\(259\) 0.631997 0.0392704
\(260\) −0.303871 0.361805i −0.0188453 0.0224382i
\(261\) 4.74017 0.293409
\(262\) 29.3177i 1.81126i
\(263\) 26.3476i 1.62466i 0.583196 + 0.812332i \(0.301802\pi\)
−0.583196 + 0.812332i \(0.698198\pi\)
\(264\) −44.1737 −2.71870
\(265\) 8.21798 + 9.78475i 0.504827 + 0.601073i
\(266\) 0 0
\(267\) 33.0427i 2.02218i
\(268\) 25.3232i 1.54686i
\(269\) −23.1165 −1.40943 −0.704717 0.709488i \(-0.748926\pi\)
−0.704717 + 0.709488i \(0.748926\pi\)
\(270\) 13.7478 11.5464i 0.836664 0.702694i
\(271\) 18.4658 1.12172 0.560860 0.827911i \(-0.310471\pi\)
0.560860 + 0.827911i \(0.310471\pi\)
\(272\) 23.2305i 1.40856i
\(273\) 0.241902i 0.0146406i
\(274\) −12.3330 −0.745061
\(275\) −2.05573 + 11.7210i −0.123965 + 0.706806i
\(276\) 28.5003 1.71552
\(277\) 29.9708i 1.80077i −0.435095 0.900384i \(-0.643285\pi\)
0.435095 0.900384i \(-0.356715\pi\)
\(278\) 21.0778i 1.26417i
\(279\) 4.64039 0.277813
\(280\) −41.2033 + 34.6057i −2.46237 + 2.06808i
\(281\) −3.97918 −0.237378 −0.118689 0.992931i \(-0.537869\pi\)
−0.118689 + 0.992931i \(0.537869\pi\)
\(282\) 63.8797i 3.80398i
\(283\) 9.04931i 0.537925i 0.963151 + 0.268963i \(0.0866808\pi\)
−0.963151 + 0.268963i \(0.913319\pi\)
\(284\) 40.5423 2.40574
\(285\) 0 0
\(286\) −0.258920 −0.0153103
\(287\) 22.3684i 1.32036i
\(288\) 27.4618i 1.61820i
\(289\) 13.7031 0.806062
\(290\) 11.3910 + 13.5627i 0.668903 + 0.796430i
\(291\) −12.0110 −0.704097
\(292\) 22.1656i 1.29714i
\(293\) 2.33643i 0.136496i −0.997668 0.0682479i \(-0.978259\pi\)
0.997668 0.0682479i \(-0.0217409\pi\)
\(294\) 4.29812 0.250671
\(295\) 19.8907 16.7057i 1.15808 0.972644i
\(296\) −1.96353 −0.114128
\(297\) 7.11244i 0.412706i
\(298\) 58.4084i 3.38351i
\(299\) 0.103026 0.00595817
\(300\) −55.1653 9.67532i −3.18497 0.558605i
\(301\) 14.2844 0.823341
\(302\) 26.0317i 1.49796i
\(303\) 25.6672i 1.47454i
\(304\) 0 0
\(305\) −7.84876 + 6.59199i −0.449419 + 0.377456i
\(306\) −7.84350 −0.448383
\(307\) 7.60114i 0.433820i 0.976192 + 0.216910i \(0.0695978\pi\)
−0.976192 + 0.216910i \(0.930402\pi\)
\(308\) 34.5638i 1.96945i
\(309\) −30.2540 −1.72109
\(310\) 11.1512 + 13.2772i 0.633347 + 0.754095i
\(311\) −18.8241 −1.06742 −0.533709 0.845668i \(-0.679202\pi\)
−0.533709 + 0.845668i \(0.679202\pi\)
\(312\) 0.751558i 0.0425486i
\(313\) 22.2112i 1.25545i −0.778436 0.627724i \(-0.783987\pi\)
0.778436 0.627724i \(-0.216013\pi\)
\(314\) −19.8265 −1.11888
\(315\) 6.43493 + 7.66176i 0.362567 + 0.431691i
\(316\) 60.5865 3.40826
\(317\) 4.07272i 0.228747i 0.993438 + 0.114373i \(0.0364860\pi\)
−0.993438 + 0.114373i \(0.963514\pi\)
\(318\) 32.9565i 1.84811i
\(319\) 7.01669 0.392859
\(320\) 34.7613 29.1951i 1.94321 1.63206i
\(321\) 25.1686 1.40478
\(322\) 19.0243i 1.06018i
\(323\) 0 0
\(324\) 58.6450 3.25806
\(325\) −0.199418 0.0349755i −0.0110617 0.00194009i
\(326\) 13.1731 0.729591
\(327\) 14.4085i 0.796792i
\(328\) 69.4955i 3.83725i
\(329\) −30.8260 −1.69949
\(330\) −23.5024 + 19.7391i −1.29377 + 1.08660i
\(331\) 20.7878 1.14260 0.571301 0.820741i \(-0.306439\pi\)
0.571301 + 0.820741i \(0.306439\pi\)
\(332\) 23.3286i 1.28032i
\(333\) 0.365119i 0.0200084i
\(334\) 27.1134 1.48358
\(335\) −6.97878 8.30929i −0.381291 0.453985i
\(336\) −76.4309 −4.16965
\(337\) 26.1722i 1.42569i 0.701320 + 0.712846i \(0.252594\pi\)
−0.701320 + 0.712846i \(0.747406\pi\)
\(338\) 34.9225i 1.89953i
\(339\) 5.29354 0.287506
\(340\) −13.6261 16.2239i −0.738978 0.879866i
\(341\) 6.86899 0.371976
\(342\) 0 0
\(343\) 17.4071i 0.939896i
\(344\) −44.3798 −2.39280
\(345\) 9.35179 7.85435i 0.503484 0.422864i
\(346\) −13.1092 −0.704754
\(347\) 20.5989i 1.10580i −0.833246 0.552902i \(-0.813520\pi\)
0.833246 0.552902i \(-0.186480\pi\)
\(348\) 33.0242i 1.77028i
\(349\) 25.0306 1.33986 0.669929 0.742425i \(-0.266324\pi\)
0.669929 + 0.742425i \(0.266324\pi\)
\(350\) −6.45841 + 36.8236i −0.345216 + 1.96830i
\(351\) 0.121009 0.00645897
\(352\) 40.6506i 2.16669i
\(353\) 7.21257i 0.383886i −0.981406 0.191943i \(-0.938521\pi\)
0.981406 0.191943i \(-0.0614789\pi\)
\(354\) 66.9948 3.56073
\(355\) 13.3031 11.1730i 0.706056 0.593000i
\(356\) 80.3257 4.25726
\(357\) 10.8473i 0.574100i
\(358\) 64.1700i 3.39149i
\(359\) −15.8081 −0.834322 −0.417161 0.908833i \(-0.636975\pi\)
−0.417161 + 0.908833i \(0.636975\pi\)
\(360\) −19.9925 23.8041i −1.05370 1.25458i
\(361\) 0 0
\(362\) 6.89807i 0.362554i
\(363\) 11.4534i 0.601148i
\(364\) −0.588057 −0.0308226
\(365\) −6.10857 7.27317i −0.319737 0.380695i
\(366\) −26.4358 −1.38182
\(367\) 2.64262i 0.137944i 0.997619 + 0.0689719i \(0.0219719\pi\)
−0.997619 + 0.0689719i \(0.978028\pi\)
\(368\) 32.5520i 1.69689i
\(369\) −12.9227 −0.672729
\(370\) −1.04469 + 0.877409i −0.0543107 + 0.0456143i
\(371\) 15.9036 0.825673
\(372\) 32.3290i 1.67618i
\(373\) 6.16440i 0.319181i −0.987183 0.159590i \(-0.948983\pi\)
0.987183 0.159590i \(-0.0510173\pi\)
\(374\) −11.6104 −0.600360
\(375\) −20.7678 + 12.0282i −1.07244 + 0.621131i
\(376\) 95.7722 4.93907
\(377\) 0.119380i 0.00614837i
\(378\) 22.3449i 1.14930i
\(379\) −0.156142 −0.00802047 −0.00401024 0.999992i \(-0.501277\pi\)
−0.00401024 + 0.999992i \(0.501277\pi\)
\(380\) 0 0
\(381\) −1.58638 −0.0812726
\(382\) 24.9525i 1.27668i
\(383\) 16.1220i 0.823796i 0.911230 + 0.411898i \(0.135134\pi\)
−0.911230 + 0.411898i \(0.864866\pi\)
\(384\) 43.7532 2.23277
\(385\) 9.52537 + 11.3414i 0.485458 + 0.578011i
\(386\) 66.7149 3.39570
\(387\) 8.25243i 0.419495i
\(388\) 29.1984i 1.48232i
\(389\) −2.71507 −0.137660 −0.0688298 0.997628i \(-0.521927\pi\)
−0.0688298 + 0.997628i \(0.521927\pi\)
\(390\) −0.335836 0.399863i −0.0170057 0.0202479i
\(391\) 4.61987 0.233637
\(392\) 6.44399i 0.325470i
\(393\) 23.4240i 1.18158i
\(394\) 11.2120 0.564851
\(395\) 19.8802 16.6969i 1.00028 0.840114i
\(396\) −19.9683 −1.00344
\(397\) 15.8528i 0.795631i −0.917465 0.397815i \(-0.869768\pi\)
0.917465 0.397815i \(-0.130232\pi\)
\(398\) 60.1460i 3.01485i
\(399\) 0 0
\(400\) 11.0508 63.0077i 0.552539 3.15039i
\(401\) −3.32547 −0.166066 −0.0830331 0.996547i \(-0.526461\pi\)
−0.0830331 + 0.996547i \(0.526461\pi\)
\(402\) 27.9870i 1.39586i
\(403\) 0.116867i 0.00582155i
\(404\) −62.3962 −3.10433
\(405\) 19.2432 16.1619i 0.956200 0.803090i
\(406\) 22.0441 1.09403
\(407\) 0.540471i 0.0267901i
\(408\) 33.7011i 1.66845i
\(409\) −7.49029 −0.370371 −0.185185 0.982704i \(-0.559289\pi\)
−0.185185 + 0.982704i \(0.559289\pi\)
\(410\) −31.0543 36.9748i −1.53366 1.82606i
\(411\) −9.85367 −0.486046
\(412\) 73.5467i 3.62338i
\(413\) 32.3292i 1.59082i
\(414\) 10.9908 0.540168
\(415\) 6.42909 + 7.65481i 0.315592 + 0.375760i
\(416\) 0.691617 0.0339093
\(417\) 16.8406i 0.824687i
\(418\) 0 0
\(419\) −14.4108 −0.704012 −0.352006 0.935998i \(-0.614500\pi\)
−0.352006 + 0.935998i \(0.614500\pi\)
\(420\) −53.3785 + 44.8313i −2.60460 + 2.18755i
\(421\) −35.7661 −1.74314 −0.871568 0.490275i \(-0.836896\pi\)
−0.871568 + 0.490275i \(0.836896\pi\)
\(422\) 4.51790i 0.219928i
\(423\) 17.8089i 0.865896i
\(424\) −49.4103 −2.39958
\(425\) −8.94225 1.56836i −0.433763 0.0760766i
\(426\) 44.8069 2.17090
\(427\) 12.7569i 0.617352i
\(428\) 61.1842i 2.95745i
\(429\) −0.206870 −0.00998777
\(430\) −23.6121 + 19.8312i −1.13868 + 0.956347i
\(431\) 10.3894 0.500440 0.250220 0.968189i \(-0.419497\pi\)
0.250220 + 0.968189i \(0.419497\pi\)
\(432\) 38.2337i 1.83952i
\(433\) 35.0812i 1.68589i 0.537997 + 0.842947i \(0.319181\pi\)
−0.537997 + 0.842947i \(0.680819\pi\)
\(434\) 21.5801 1.03588
\(435\) 9.10107 + 10.8362i 0.436363 + 0.519556i
\(436\) −35.0266 −1.67747
\(437\) 0 0
\(438\) 24.4972i 1.17052i
\(439\) −19.1269 −0.912876 −0.456438 0.889755i \(-0.650875\pi\)
−0.456438 + 0.889755i \(0.650875\pi\)
\(440\) −29.5941 35.2362i −1.41084 1.67982i
\(441\) 1.19826 0.0570600
\(442\) 0.197536i 0.00939583i
\(443\) 22.9916i 1.09236i 0.837667 + 0.546181i \(0.183919\pi\)
−0.837667 + 0.546181i \(0.816081\pi\)
\(444\) −2.54374 −0.120720
\(445\) 26.3572 22.1368i 1.24945 1.04939i
\(446\) 25.8233 1.22277
\(447\) 46.6666i 2.20726i
\(448\) 56.4990i 2.66933i
\(449\) −15.7738 −0.744414 −0.372207 0.928150i \(-0.621399\pi\)
−0.372207 + 0.928150i \(0.621399\pi\)
\(450\) −21.2738 3.73117i −1.00286 0.175889i
\(451\) −19.1290 −0.900748
\(452\) 12.8684i 0.605281i
\(453\) 20.7986i 0.977203i
\(454\) 63.0431 2.95876
\(455\) −0.192959 + 0.162062i −0.00904606 + 0.00759757i
\(456\) 0 0
\(457\) 34.6414i 1.62046i −0.586114 0.810229i \(-0.699343\pi\)
0.586114 0.810229i \(-0.300657\pi\)
\(458\) 3.19951i 0.149503i
\(459\) 5.42624 0.253275
\(460\) 19.0937 + 22.7339i 0.890248 + 1.05998i
\(461\) 24.5628 1.14400 0.572001 0.820253i \(-0.306167\pi\)
0.572001 + 0.820253i \(0.306167\pi\)
\(462\) 38.1996i 1.77720i
\(463\) 7.70610i 0.358133i 0.983837 + 0.179067i \(0.0573077\pi\)
−0.983837 + 0.179067i \(0.942692\pi\)
\(464\) −37.7190 −1.75106
\(465\) 8.90950 + 10.6081i 0.413168 + 0.491939i
\(466\) −62.1713 −2.88003
\(467\) 6.51888i 0.301658i −0.988560 0.150829i \(-0.951806\pi\)
0.988560 0.150829i \(-0.0481942\pi\)
\(468\) 0.339734i 0.0157042i
\(469\) −13.5055 −0.623624
\(470\) 50.9552 42.7960i 2.35039 1.97403i
\(471\) −15.8408 −0.729907
\(472\) 100.442i 4.62324i
\(473\) 12.2157i 0.561681i
\(474\) 66.9597 3.07556
\(475\) 0 0
\(476\) −26.3695 −1.20864
\(477\) 9.18786i 0.420683i
\(478\) 26.0263i 1.19042i
\(479\) −12.3748 −0.565420 −0.282710 0.959205i \(-0.591233\pi\)
−0.282710 + 0.959205i \(0.591233\pi\)
\(480\) 62.7787 52.7264i 2.86544 2.40662i
\(481\) −0.00919540 −0.000419274
\(482\) 42.4103i 1.93174i
\(483\) 15.1999i 0.691619i
\(484\) 27.8429 1.26559
\(485\) −8.04673 9.58086i −0.365383 0.435044i
\(486\) 40.7270 1.84741
\(487\) 38.7209i 1.75461i −0.479931 0.877306i \(-0.659338\pi\)
0.479931 0.877306i \(-0.340662\pi\)
\(488\) 39.6341i 1.79415i
\(489\) 10.5249 0.475954
\(490\) 2.87951 + 3.42849i 0.130083 + 0.154884i
\(491\) −31.4089 −1.41747 −0.708733 0.705477i \(-0.750733\pi\)
−0.708733 + 0.705477i \(0.750733\pi\)
\(492\) 90.0308i 4.05890i
\(493\) 5.35319i 0.241095i
\(494\) 0 0
\(495\) −6.55218 + 5.50302i −0.294498 + 0.247342i
\(496\) −36.9250 −1.65798
\(497\) 21.6221i 0.969886i
\(498\) 25.7826i 1.15534i
\(499\) −19.4261 −0.869633 −0.434817 0.900519i \(-0.643187\pi\)
−0.434817 + 0.900519i \(0.643187\pi\)
\(500\) −29.2401 50.4859i −1.30766 2.25780i
\(501\) 21.6628 0.967822
\(502\) 14.7211i 0.657036i
\(503\) 4.25810i 0.189859i −0.995484 0.0949297i \(-0.969737\pi\)
0.995484 0.0949297i \(-0.0302626\pi\)
\(504\) −38.6898 −1.72338
\(505\) −20.4740 + 17.1957i −0.911083 + 0.765197i
\(506\) 16.2692 0.723255
\(507\) 27.9021i 1.23917i
\(508\) 3.85644i 0.171102i
\(509\) 7.33745 0.325227 0.162613 0.986690i \(-0.448008\pi\)
0.162613 + 0.986690i \(0.448008\pi\)
\(510\) −15.0594 17.9305i −0.666842 0.793977i
\(511\) −11.8214 −0.522948
\(512\) 2.72331i 0.120354i
\(513\) 0 0
\(514\) 9.53234 0.420453
\(515\) −20.2686 24.1328i −0.893141 1.06342i
\(516\) −57.4937 −2.53102
\(517\) 26.3617i 1.15939i
\(518\) 1.69798i 0.0746049i
\(519\) −10.4739 −0.459751
\(520\) 0.599498 0.503504i 0.0262897 0.0220801i
\(521\) −7.96809 −0.349088 −0.174544 0.984649i \(-0.555845\pi\)
−0.174544 + 0.984649i \(0.555845\pi\)
\(522\) 12.7354i 0.557411i
\(523\) 15.6754i 0.685436i −0.939438 0.342718i \(-0.888652\pi\)
0.939438 0.342718i \(-0.111348\pi\)
\(524\) 56.9431 2.48757
\(525\) −5.16008 + 29.4210i −0.225204 + 1.28404i
\(526\) −70.7878 −3.08649
\(527\) 5.24050i 0.228280i
\(528\) 65.3621i 2.84452i
\(529\) 16.5264 0.718537
\(530\) −26.2886 + 22.0791i −1.14190 + 0.959056i
\(531\) 18.6773 0.810526
\(532\) 0 0
\(533\) 0.325454i 0.0140970i
\(534\) 88.7752 3.84168
\(535\) 16.8617 + 20.0764i 0.728993 + 0.867977i
\(536\) 41.9597 1.81238
\(537\) 51.2700i 2.21246i
\(538\) 62.1066i 2.67761i
\(539\) 1.77374 0.0764002
\(540\) 22.4264 + 26.7020i 0.965077 + 1.14907i
\(541\) 29.1267 1.25225 0.626127 0.779721i \(-0.284639\pi\)
0.626127 + 0.779721i \(0.284639\pi\)
\(542\) 49.6119i 2.13101i
\(543\) 5.51135i 0.236515i
\(544\) 31.0133 1.32968
\(545\) −11.4933 + 9.65293i −0.492318 + 0.413486i
\(546\) −0.649915 −0.0278138
\(547\) 14.4668i 0.618557i −0.950972 0.309279i \(-0.899912\pi\)
0.950972 0.309279i \(-0.100088\pi\)
\(548\) 23.9540i 1.02326i
\(549\) −7.36997 −0.314543
\(550\) −31.4908 5.52309i −1.34277 0.235506i
\(551\) 0 0
\(552\) 47.2240i 2.00999i
\(553\) 32.3122i 1.37406i
\(554\) 80.5220 3.42105
\(555\) −0.834675 + 0.701024i −0.0354300 + 0.0297568i
\(556\) −40.9390 −1.73620
\(557\) 33.6775i 1.42696i 0.700675 + 0.713480i \(0.252882\pi\)
−0.700675 + 0.713480i \(0.747118\pi\)
\(558\) 12.4673i 0.527782i
\(559\) −0.207835 −0.00879048
\(560\) −51.2046 60.9669i −2.16379 2.57632i
\(561\) −9.27638 −0.391649
\(562\) 10.6908i 0.450964i
\(563\) 24.9154i 1.05006i 0.851084 + 0.525030i \(0.175946\pi\)
−0.851084 + 0.525030i \(0.824054\pi\)
\(564\) 124.072 5.22437
\(565\) 3.54639 + 4.22252i 0.149198 + 0.177643i
\(566\) −24.3126 −1.02194
\(567\) 31.2768i 1.31350i
\(568\) 67.1771i 2.81869i
\(569\) −19.7304 −0.827141 −0.413571 0.910472i \(-0.635719\pi\)
−0.413571 + 0.910472i \(0.635719\pi\)
\(570\) 0 0
\(571\) −13.8463 −0.579452 −0.289726 0.957110i \(-0.593564\pi\)
−0.289726 + 0.957110i \(0.593564\pi\)
\(572\) 0.502894i 0.0210271i
\(573\) 19.9363i 0.832851i
\(574\) −60.0968 −2.50839
\(575\) 12.5304 + 2.19768i 0.522554 + 0.0916496i
\(576\) 32.6407 1.36003
\(577\) 41.6653i 1.73455i 0.497830 + 0.867275i \(0.334130\pi\)
−0.497830 + 0.867275i \(0.665870\pi\)
\(578\) 36.8158i 1.53134i
\(579\) 53.3032 2.21521
\(580\) −26.3425 + 22.1244i −1.09381 + 0.918668i
\(581\) 12.4417 0.516169
\(582\) 32.2698i 1.33763i
\(583\) 13.6004i 0.563272i
\(584\) 36.7275 1.51980
\(585\) −0.0936266 0.111477i −0.00387099 0.00460899i
\(586\) 6.27726 0.259311
\(587\) 16.1707i 0.667436i 0.942673 + 0.333718i \(0.108303\pi\)
−0.942673 + 0.333718i \(0.891697\pi\)
\(588\) 8.34812i 0.344271i
\(589\) 0 0
\(590\) 44.8830 + 53.4400i 1.84780 + 2.20009i
\(591\) 8.95804 0.368485
\(592\) 2.90536i 0.119409i
\(593\) 22.4662i 0.922578i 0.887250 + 0.461289i \(0.152613\pi\)
−0.887250 + 0.461289i \(0.847387\pi\)
\(594\) 19.1089 0.784047
\(595\) −8.65260 + 7.26711i −0.354722 + 0.297923i
\(596\) −113.445 −4.64690
\(597\) 48.0549i 1.96676i
\(598\) 0.276799i 0.0113192i
\(599\) −2.16008 −0.0882584 −0.0441292 0.999026i \(-0.514051\pi\)
−0.0441292 + 0.999026i \(0.514051\pi\)
\(600\) 16.0317 91.4071i 0.654490 3.73168i
\(601\) −17.0595 −0.695870 −0.347935 0.937519i \(-0.613117\pi\)
−0.347935 + 0.937519i \(0.613117\pi\)
\(602\) 38.3778i 1.56416i
\(603\) 7.80240i 0.317738i
\(604\) −50.5608 −2.05729
\(605\) 9.13607 7.67317i 0.371434 0.311959i
\(606\) −68.9597 −2.80130
\(607\) 3.47625i 0.141097i −0.997508 0.0705483i \(-0.977525\pi\)
0.997508 0.0705483i \(-0.0224749\pi\)
\(608\) 0 0
\(609\) 17.6126 0.713697
\(610\) −17.7106 21.0872i −0.717082 0.853794i
\(611\) 0.448510 0.0181448
\(612\) 15.2342i 0.615807i
\(613\) 18.5830i 0.750561i 0.926911 + 0.375281i \(0.122454\pi\)
−0.926911 + 0.375281i \(0.877546\pi\)
\(614\) −20.4219 −0.824160
\(615\) −24.8114 29.5418i −1.00049 1.19124i
\(616\) −57.2710 −2.30751
\(617\) 19.8681i 0.799861i −0.916545 0.399931i \(-0.869034\pi\)
0.916545 0.399931i \(-0.130966\pi\)
\(618\) 81.2831i 3.26968i
\(619\) 8.42415 0.338595 0.169298 0.985565i \(-0.445850\pi\)
0.169298 + 0.985565i \(0.445850\pi\)
\(620\) −25.7880 + 21.6587i −1.03567 + 0.869835i
\(621\) −7.60357 −0.305121
\(622\) 50.5745i 2.02785i
\(623\) 42.8396i 1.71633i
\(624\) 1.11205 0.0445176
\(625\) −23.5079 8.50768i −0.940314 0.340307i
\(626\) 59.6744 2.38507
\(627\) 0 0
\(628\) 38.5086i 1.53666i
\(629\) −0.412337 −0.0164410
\(630\) −20.5847 + 17.2886i −0.820116 + 0.688796i
\(631\) 1.60577 0.0639245 0.0319623 0.999489i \(-0.489824\pi\)
0.0319623 + 0.999489i \(0.489824\pi\)
\(632\) 100.390i 3.99329i
\(633\) 3.60967i 0.143472i
\(634\) −10.9421 −0.434567
\(635\) −1.06279 1.26541i −0.0421755 0.0502163i
\(636\) −64.0106 −2.53819
\(637\) 0.0301778i 0.00119569i
\(638\) 18.8516i 0.746343i
\(639\) 12.4916 0.494160
\(640\) 29.3123 + 34.9008i 1.15867 + 1.37957i
\(641\) −45.8457 −1.81080 −0.905398 0.424563i \(-0.860428\pi\)
−0.905398 + 0.424563i \(0.860428\pi\)
\(642\) 67.6202i 2.66876i
\(643\) 18.3274i 0.722763i −0.932418 0.361381i \(-0.882305\pi\)
0.932418 0.361381i \(-0.117695\pi\)
\(644\) 36.9505 1.45605
\(645\) −18.8654 + 15.8446i −0.742823 + 0.623880i
\(646\) 0 0
\(647\) 25.1770i 0.989808i 0.868948 + 0.494904i \(0.164797\pi\)
−0.868948 + 0.494904i \(0.835203\pi\)
\(648\) 97.1727i 3.81731i
\(649\) 27.6472 1.08525
\(650\) 0.0939682 0.535774i 0.00368574 0.0210148i
\(651\) 17.2418 0.675761
\(652\) 25.5858i 1.00202i
\(653\) 0.698581i 0.0273376i −0.999907 0.0136688i \(-0.995649\pi\)
0.999907 0.0136688i \(-0.00435105\pi\)
\(654\) −38.7111 −1.51372
\(655\) 18.6847 15.6928i 0.730072 0.613170i
\(656\) 102.830 4.01483
\(657\) 6.82949i 0.266444i
\(658\) 82.8197i 3.22865i
\(659\) −20.3631 −0.793232 −0.396616 0.917985i \(-0.629816\pi\)
−0.396616 + 0.917985i \(0.629816\pi\)
\(660\) −38.3388 45.6482i −1.49234 1.77685i
\(661\) −34.7369 −1.35111 −0.675554 0.737311i \(-0.736095\pi\)
−0.675554 + 0.737311i \(0.736095\pi\)
\(662\) 55.8504i 2.17069i
\(663\) 0.157825i 0.00612943i
\(664\) −38.6547 −1.50009
\(665\) 0 0
\(666\) −0.980960 −0.0380114
\(667\) 7.50121i 0.290448i
\(668\) 52.6616i 2.03754i
\(669\) 20.6320 0.797681
\(670\) 22.3245 18.7498i 0.862469 0.724367i
\(671\) −10.9095 −0.421155
\(672\) 102.037i 3.93617i
\(673\) 25.5533i 0.985009i 0.870310 + 0.492505i \(0.163919\pi\)
−0.870310 + 0.492505i \(0.836081\pi\)
\(674\) −70.3166 −2.70849
\(675\) 14.7175 + 2.58127i 0.566477 + 0.0993531i
\(676\) −67.8291 −2.60881
\(677\) 38.0431i 1.46212i −0.682315 0.731058i \(-0.739027\pi\)
0.682315 0.731058i \(-0.260973\pi\)
\(678\) 14.2221i 0.546196i
\(679\) −15.5722 −0.597606
\(680\) 26.8825 22.5780i 1.03090 0.865825i
\(681\) 50.3696 1.93017
\(682\) 18.4548i 0.706671i
\(683\) 31.7070i 1.21324i 0.794994 + 0.606618i \(0.207474\pi\)
−0.794994 + 0.606618i \(0.792526\pi\)
\(684\) 0 0
\(685\) −6.60144 7.86001i −0.252228 0.300316i
\(686\) −46.7675 −1.78559
\(687\) 2.55631i 0.0975294i
\(688\) 65.6671i 2.50353i
\(689\) −0.231393 −0.00881538
\(690\) 21.1022 + 25.1253i 0.803346 + 0.956505i
\(691\) 4.11055 0.156373 0.0781864 0.996939i \(-0.475087\pi\)
0.0781864 + 0.996939i \(0.475087\pi\)
\(692\) 25.4616i 0.967906i
\(693\) 10.6495i 0.404543i
\(694\) 55.3427 2.10078
\(695\) −13.4333 + 11.2823i −0.509554 + 0.427962i
\(696\) −54.7199 −2.07415
\(697\) 14.5939i 0.552784i
\(698\) 67.2494i 2.54543i
\(699\) −49.6730 −1.87881
\(700\) −71.5215 12.5440i −2.70326 0.474119i
\(701\) −4.44612 −0.167928 −0.0839638 0.996469i \(-0.526758\pi\)
−0.0839638 + 0.996469i \(0.526758\pi\)
\(702\) 0.325113i 0.0122706i
\(703\) 0 0
\(704\) 48.3168 1.82101
\(705\) 40.7117 34.1928i 1.53329 1.28777i
\(706\) 19.3779 0.729297
\(707\) 33.2774i 1.25152i
\(708\) 130.122i 4.89030i
\(709\) −3.35571 −0.126027 −0.0630133 0.998013i \(-0.520071\pi\)
−0.0630133 + 0.998013i \(0.520071\pi\)
\(710\) 30.0183 + 35.7413i 1.12657 + 1.34135i
\(711\) 18.6675 0.700086
\(712\) 133.097i 4.98802i
\(713\) 7.34331i 0.275009i
\(714\) −29.1433 −1.09066
\(715\) −0.138592 0.165014i −0.00518304 0.00617119i
\(716\) 124.636 4.65786
\(717\) 20.7943i 0.776577i
\(718\) 42.4715i 1.58502i
\(719\) −41.0927 −1.53250 −0.766249 0.642544i \(-0.777879\pi\)
−0.766249 + 0.642544i \(0.777879\pi\)
\(720\) 35.2219 29.5821i 1.31264 1.10246i
\(721\) −39.2242 −1.46078
\(722\) 0 0
\(723\) 33.8846i 1.26018i
\(724\) −13.3979 −0.497931
\(725\) −2.54652 + 14.5194i −0.0945753 + 0.539236i
\(726\) 30.7717 1.14204
\(727\) 12.0665i 0.447522i 0.974644 + 0.223761i \(0.0718335\pi\)
−0.974644 + 0.223761i \(0.928166\pi\)
\(728\) 0.974391i 0.0361133i
\(729\) −1.17546 −0.0435356
\(730\) 19.5407 16.4118i 0.723235 0.607428i
\(731\) −9.31966 −0.344700
\(732\) 51.3456i 1.89779i
\(733\) 13.6350i 0.503619i −0.967777 0.251809i \(-0.918974\pi\)
0.967777 0.251809i \(-0.0810256\pi\)
\(734\) −7.09990 −0.262062
\(735\) 2.30064 + 2.73927i 0.0848606 + 0.101039i
\(736\) −43.4577 −1.60187
\(737\) 11.5496i 0.425434i
\(738\) 34.7193i 1.27803i
\(739\) −38.2167 −1.40582 −0.702911 0.711278i \(-0.748117\pi\)
−0.702911 + 0.711278i \(0.748117\pi\)
\(740\) −1.70417 2.02907i −0.0626465 0.0745901i
\(741\) 0 0
\(742\) 42.7280i 1.56859i
\(743\) 6.07323i 0.222805i 0.993775 + 0.111403i \(0.0355343\pi\)
−0.993775 + 0.111403i \(0.964466\pi\)
\(744\) −53.5681 −1.96390
\(745\) −37.2247 + 31.2642i −1.36381 + 1.14543i
\(746\) 16.5618 0.606371
\(747\) 7.18785i 0.262990i
\(748\) 22.5506i 0.824532i
\(749\) 32.6310 1.19231
\(750\) −32.3159 55.7965i −1.18001 2.03740i
\(751\) 0.204498 0.00746224 0.00373112 0.999993i \(-0.498812\pi\)
0.00373112 + 0.999993i \(0.498812\pi\)
\(752\) 141.710i 5.16764i
\(753\) 11.7618i 0.428622i
\(754\) −0.320736 −0.0116805
\(755\) −16.5905 + 13.9340i −0.603790 + 0.507109i
\(756\) 43.3999 1.57844
\(757\) 18.3853i 0.668225i −0.942533 0.334112i \(-0.891563\pi\)
0.942533 0.334112i \(-0.108437\pi\)
\(758\) 0.419504i 0.0152371i
\(759\) 12.9986 0.471820
\(760\) 0 0
\(761\) −31.4304 −1.13935 −0.569675 0.821870i \(-0.692931\pi\)
−0.569675 + 0.821870i \(0.692931\pi\)
\(762\) 4.26210i 0.154400i
\(763\) 18.6805i 0.676281i
\(764\) −48.4646 −1.75339
\(765\) −4.19837 4.99880i −0.151793 0.180732i
\(766\) −43.3147 −1.56503
\(767\) 0.470382i 0.0169845i
\(768\) 30.3946i 1.09677i
\(769\) 21.5939 0.778697 0.389348 0.921091i \(-0.372700\pi\)
0.389348 + 0.921091i \(0.372700\pi\)
\(770\) −30.4708 + 25.5917i −1.09809 + 0.922260i
\(771\) 7.61606 0.274286
\(772\) 129.579i 4.66363i
\(773\) 37.0897i 1.33402i −0.745047 0.667012i \(-0.767573\pi\)
0.745047 0.667012i \(-0.232427\pi\)
\(774\) −22.1717 −0.796945
\(775\) −2.49292 + 14.2137i −0.0895482 + 0.510573i
\(776\) 48.3807 1.73677
\(777\) 1.35663i 0.0486690i
\(778\) 7.29454i 0.261522i
\(779\) 0 0
\(780\) 0.776644 0.652285i 0.0278083 0.0233555i
\(781\) 18.4908 0.661653
\(782\) 12.4121i 0.443857i
\(783\) 8.81049i 0.314861i
\(784\) −9.53491 −0.340532
\(785\) −10.6125 12.6358i −0.378777 0.450991i
\(786\) 62.9329 2.24474
\(787\) 2.00316i 0.0714049i −0.999362 0.0357025i \(-0.988633\pi\)
0.999362 0.0357025i \(-0.0113669\pi\)
\(788\) 21.7767i 0.775764i
\(789\) −56.5573 −2.01349
\(790\) 44.8594 + 53.4119i 1.59603 + 1.90031i
\(791\) 6.86305 0.244022
\(792\) 33.0867i 1.17569i
\(793\) 0.185610i 0.00659122i
\(794\) 42.5916 1.51152
\(795\) −21.0038 + 17.6406i −0.744927 + 0.625647i
\(796\) 116.820 4.14058
\(797\) 12.8587i 0.455480i −0.973722 0.227740i \(-0.926866\pi\)
0.973722 0.227740i \(-0.0731336\pi\)
\(798\) 0 0
\(799\) 20.1119 0.711509
\(800\) 84.1169 + 14.7531i 2.97398 + 0.521600i
\(801\) 24.7494 0.874477
\(802\) 8.93451i 0.315488i
\(803\) 10.1094i 0.356754i
\(804\) 54.3584 1.91707
\(805\) 12.1245 10.1831i 0.427334 0.358908i
\(806\) −0.313984 −0.0110596
\(807\) 49.6214i 1.74676i
\(808\) 103.388i 3.63719i
\(809\) −21.1972 −0.745255 −0.372627 0.927981i \(-0.621543\pi\)
−0.372627 + 0.927981i \(0.621543\pi\)
\(810\) 43.4219 + 51.7003i 1.52569 + 1.81656i
\(811\) −8.94877 −0.314234 −0.157117 0.987580i \(-0.550220\pi\)
−0.157117 + 0.987580i \(0.550220\pi\)
\(812\) 42.8157i 1.50253i
\(813\) 39.6384i 1.39018i
\(814\) −1.45208 −0.0508952
\(815\) 7.05114 + 8.39546i 0.246991 + 0.294080i
\(816\) 49.8662 1.74567
\(817\) 0 0
\(818\) 20.1240i 0.703621i
\(819\) −0.181188 −0.00633122
\(820\) 71.8152 60.3159i 2.50790 2.10632i
\(821\) −3.45820 −0.120692 −0.0603459 0.998178i \(-0.519220\pi\)
−0.0603459 + 0.998178i \(0.519220\pi\)
\(822\) 26.4737i 0.923377i
\(823\) 18.1282i 0.631910i 0.948774 + 0.315955i \(0.102325\pi\)
−0.948774 + 0.315955i \(0.897675\pi\)
\(824\) 121.864 4.24534
\(825\) −25.1602 4.41279i −0.875966 0.153634i
\(826\) 86.8584 3.02219
\(827\) 29.3890i 1.02195i 0.859594 + 0.510977i \(0.170716\pi\)
−0.859594 + 0.510977i \(0.829284\pi\)
\(828\) 21.3471i 0.741864i
\(829\) 3.46778 0.120441 0.0602204 0.998185i \(-0.480820\pi\)
0.0602204 + 0.998185i \(0.480820\pi\)
\(830\) −20.5661 + 17.2729i −0.713858 + 0.599553i
\(831\) 64.3347 2.23175
\(832\) 0.822047i 0.0284993i
\(833\) 1.35322i 0.0468864i
\(834\) −45.2454 −1.56672
\(835\) 14.5129 + 17.2798i 0.502240 + 0.597993i
\(836\) 0 0
\(837\) 8.62503i 0.298125i
\(838\) 38.7172i 1.33746i
\(839\) −39.8304 −1.37510 −0.687548 0.726139i \(-0.741313\pi\)
−0.687548 + 0.726139i \(0.741313\pi\)
\(840\) −74.2840 88.4463i −2.56304 3.05169i
\(841\) −20.3081 −0.700280
\(842\) 96.0924i 3.31156i
\(843\) 8.54163i 0.294189i
\(844\) −8.77500 −0.302048
\(845\) −22.2567 + 18.6929i −0.765655 + 0.643055i
\(846\) 47.8468 1.64501
\(847\) 14.8493i 0.510227i
\(848\) 73.1105i 2.51063i
\(849\) −19.4251 −0.666667
\(850\) 4.21369 24.0250i 0.144528 0.824051i
\(851\) 0.577792 0.0198064
\(852\) 87.0273i 2.98151i
\(853\) 16.0111i 0.548210i 0.961700 + 0.274105i \(0.0883816\pi\)
−0.961700 + 0.274105i \(0.911618\pi\)
\(854\) −34.2739 −1.17283
\(855\) 0 0
\(856\) −101.380 −3.46510
\(857\) 16.2443i 0.554896i 0.960741 + 0.277448i \(0.0894886\pi\)
−0.960741 + 0.277448i \(0.910511\pi\)
\(858\) 0.555794i 0.0189745i
\(859\) 56.2376 1.91880 0.959401 0.282046i \(-0.0910132\pi\)
0.959401 + 0.282046i \(0.0910132\pi\)
\(860\) −38.5177 45.8612i −1.31344 1.56385i
\(861\) −48.0156 −1.63637
\(862\) 27.9131i 0.950724i
\(863\) 14.1589i 0.481974i −0.970528 0.240987i \(-0.922529\pi\)
0.970528 0.240987i \(-0.0774711\pi\)
\(864\) −51.0429 −1.73651
\(865\) −7.01693 8.35472i −0.238583 0.284069i
\(866\) −94.2521 −3.20282
\(867\) 29.4148i 0.998978i
\(868\) 41.9144i 1.42267i
\(869\) 27.6327 0.937377
\(870\) −29.1135 + 24.4517i −0.987040 + 0.828991i
\(871\) 0.196501 0.00665818
\(872\) 58.0379i 1.96541i
\(873\) 8.99640i 0.304482i
\(874\) 0 0
\(875\) −26.9253 + 15.5944i −0.910242 + 0.527188i
\(876\) 47.5802 1.60759
\(877\) 6.40787i 0.216379i 0.994130 + 0.108189i \(0.0345052\pi\)
−0.994130 + 0.108189i \(0.965495\pi\)
\(878\) 51.3879i 1.73426i
\(879\) 5.01534 0.169163
\(880\) 52.1376 43.7891i 1.75756 1.47613i
\(881\) −11.6117 −0.391208 −0.195604 0.980683i \(-0.562667\pi\)
−0.195604 + 0.980683i \(0.562667\pi\)
\(882\) 3.21935i 0.108401i
\(883\) 26.4253i 0.889283i 0.895709 + 0.444642i \(0.146669\pi\)
−0.895709 + 0.444642i \(0.853331\pi\)
\(884\) 0.383669 0.0129042
\(885\) 35.8602 + 42.6970i 1.20543 + 1.43524i
\(886\) −61.7712 −2.07524
\(887\) 39.0608i 1.31153i 0.754964 + 0.655766i \(0.227654\pi\)
−0.754964 + 0.655766i \(0.772346\pi\)
\(888\) 4.21488i 0.141442i
\(889\) −2.05673 −0.0689805
\(890\) 59.4747 + 70.8136i 1.99360 + 2.37368i
\(891\) 26.7472 0.896066
\(892\) 50.1559i 1.67934i
\(893\) 0 0
\(894\) −125.379 −4.19329
\(895\) 40.8967 34.3482i 1.36703 1.14813i
\(896\) 56.7258 1.89508
\(897\) 0.221155i 0.00738414i
\(898\) 42.3794i 1.41422i
\(899\) 8.50891 0.283788
\(900\) 7.24695 41.3196i 0.241565 1.37732i
\(901\) −10.3761 −0.345677
\(902\) 51.3935i 1.71122i
\(903\) 30.6627i 1.02039i
\(904\) −21.3226 −0.709178
\(905\) −4.39626 + 3.69232i −0.146137 + 0.122737i
\(906\) −55.8793 −1.85647
\(907\) 57.3392i 1.90392i −0.306228 0.951958i \(-0.599067\pi\)
0.306228 0.951958i \(-0.400933\pi\)
\(908\) 122.447i 4.06355i
\(909\) −19.2251 −0.637655
\(910\) −0.435409 0.518420i −0.0144337 0.0171855i
\(911\) 22.2118 0.735909 0.367954 0.929844i \(-0.380058\pi\)
0.367954 + 0.929844i \(0.380058\pi\)
\(912\) 0 0
\(913\) 10.6399i 0.352129i
\(914\) 93.0706 3.07850
\(915\) −14.1503 16.8480i −0.467793 0.556979i
\(916\) −6.21432 −0.205327
\(917\) 30.3691i 1.00288i
\(918\) 14.5786i 0.481165i
\(919\) −48.0529 −1.58512 −0.792560 0.609794i \(-0.791252\pi\)
−0.792560 + 0.609794i \(0.791252\pi\)
\(920\) −37.6694 + 31.6376i −1.24192 + 1.04306i
\(921\) −16.3165 −0.537647
\(922\) 65.9924i 2.17334i
\(923\) 0.314597i 0.0103551i
\(924\) −74.1940 −2.44080
\(925\) −1.11838 0.196149i −0.0367720 0.00644935i
\(926\) −20.7039 −0.680372
\(927\) 22.6607i 0.744274i
\(928\) 50.3557i 1.65301i
\(929\) −8.15190 −0.267455 −0.133728 0.991018i \(-0.542695\pi\)
−0.133728 + 0.991018i \(0.542695\pi\)
\(930\) −28.5007 + 23.9370i −0.934573 + 0.784926i
\(931\) 0 0
\(932\) 120.754i 3.95542i
\(933\) 40.4076i 1.32288i
\(934\) 17.5142 0.573082
\(935\) −6.21468 7.39952i −0.203242 0.241990i
\(936\) 0.562927 0.0183998
\(937\) 35.1525i 1.14838i 0.818721 + 0.574191i \(0.194683\pi\)
−0.818721 + 0.574191i \(0.805317\pi\)
\(938\) 36.2849i 1.18474i
\(939\) 47.6781 1.55592
\(940\) 83.1217 + 98.9689i 2.71113 + 3.22801i
\(941\) −14.9909 −0.488690 −0.244345 0.969688i \(-0.578573\pi\)
−0.244345 + 0.969688i \(0.578573\pi\)
\(942\) 42.5593i 1.38666i
\(943\) 20.4499i 0.665939i
\(944\) −148.621 −4.83719
\(945\) 14.2408 11.9605i 0.463253 0.389075i
\(946\) −32.8199 −1.06707
\(947\) 32.9872i 1.07194i −0.844237 0.535970i \(-0.819946\pi\)
0.844237 0.535970i \(-0.180054\pi\)
\(948\) 130.054i 4.22396i
\(949\) 0.171999 0.00558331
\(950\) 0 0
\(951\) −8.74244 −0.283493
\(952\) 43.6933i 1.41611i
\(953\) 28.9498i 0.937777i −0.883257 0.468888i \(-0.844655\pi\)
0.883257 0.468888i \(-0.155345\pi\)
\(954\) −24.6849 −0.799203
\(955\) −15.9027 + 13.3563i −0.514598 + 0.432198i
\(956\) 50.5503 1.63491
\(957\) 15.0619i 0.486882i
\(958\) 33.2473i 1.07417i
\(959\) −12.7752 −0.412534
\(960\) 62.6698 + 74.6179i 2.02266 + 2.40828i
\(961\) −22.6702 −0.731297
\(962\) 0.0247052i 0.000796526i
\(963\) 18.8517i 0.607486i
\(964\) −82.3725 −2.65304
\(965\) 35.7103 + 42.5186i 1.14956 + 1.36872i
\(966\) 40.8373 1.31392
\(967\) 33.3659i 1.07297i −0.843909 0.536487i \(-0.819751\pi\)
0.843909 0.536487i \(-0.180249\pi\)
\(968\) 46.1347i 1.48283i
\(969\) 0 0
\(970\) 25.7408 21.6190i 0.826486 0.694146i
\(971\) −6.80851 −0.218495 −0.109248 0.994015i \(-0.534844\pi\)
−0.109248 + 0.994015i \(0.534844\pi\)
\(972\) 79.1030i 2.53723i
\(973\) 21.8337i 0.699957i
\(974\) 104.031 3.33337
\(975\) 0.0750778 0.428068i 0.00240442 0.0137091i
\(976\) 58.6450 1.87718
\(977\) 0.0669330i 0.00214138i 0.999999 + 0.00107069i \(0.000340811\pi\)
−0.999999 + 0.00107069i \(0.999659\pi\)
\(978\) 28.2772i 0.904205i
\(979\) 36.6355 1.17088
\(980\) −6.65908 + 5.59280i −0.212716 + 0.178655i
\(981\) −10.7922 −0.344567
\(982\) 84.3859i 2.69286i
\(983\) 50.3061i 1.60451i 0.596979 + 0.802257i \(0.296368\pi\)
−0.596979 + 0.802257i \(0.703632\pi\)
\(984\) 149.178 4.75562
\(985\) 6.00141 + 7.14559i 0.191221 + 0.227677i
\(986\) −14.3823 −0.458027
\(987\) 66.1705i 2.10623i
\(988\) 0 0
\(989\) 13.0593 0.415261
\(990\) −14.7849 17.6036i −0.469894 0.559480i
\(991\) 4.24805 0.134944 0.0674718 0.997721i \(-0.478507\pi\)
0.0674718 + 0.997721i \(0.478507\pi\)
\(992\) 49.2957i 1.56514i
\(993\) 44.6228i 1.41606i
\(994\) 58.0919 1.84256
\(995\) 38.3321 32.1942i 1.21521 1.02063i
\(996\) −50.0768 −1.58674
\(997\) 46.0208i 1.45749i −0.684784 0.728746i \(-0.740103\pi\)
0.684784 0.728746i \(-0.259897\pi\)
\(998\) 52.1919i 1.65211i
\(999\) 0.678641 0.0214712
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.k.1084.24 24
5.2 odd 4 9025.2.a.cu.1.1 24
5.3 odd 4 9025.2.a.cu.1.24 24
5.4 even 2 inner 1805.2.b.k.1084.1 24
19.4 even 9 95.2.p.a.54.1 yes 48
19.5 even 9 95.2.p.a.44.8 yes 48
19.18 odd 2 1805.2.b.l.1084.1 24
57.5 odd 18 855.2.da.b.424.1 48
57.23 odd 18 855.2.da.b.244.8 48
95.4 even 18 95.2.p.a.54.8 yes 48
95.18 even 4 9025.2.a.ct.1.1 24
95.23 odd 36 475.2.l.f.301.8 48
95.24 even 18 95.2.p.a.44.1 48
95.37 even 4 9025.2.a.ct.1.24 24
95.42 odd 36 475.2.l.f.301.1 48
95.43 odd 36 475.2.l.f.101.8 48
95.62 odd 36 475.2.l.f.101.1 48
95.94 odd 2 1805.2.b.l.1084.24 24
285.119 odd 18 855.2.da.b.424.8 48
285.194 odd 18 855.2.da.b.244.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.1 48 95.24 even 18
95.2.p.a.44.8 yes 48 19.5 even 9
95.2.p.a.54.1 yes 48 19.4 even 9
95.2.p.a.54.8 yes 48 95.4 even 18
475.2.l.f.101.1 48 95.62 odd 36
475.2.l.f.101.8 48 95.43 odd 36
475.2.l.f.301.1 48 95.42 odd 36
475.2.l.f.301.8 48 95.23 odd 36
855.2.da.b.244.1 48 285.194 odd 18
855.2.da.b.244.8 48 57.23 odd 18
855.2.da.b.424.1 48 57.5 odd 18
855.2.da.b.424.8 48 285.119 odd 18
1805.2.b.k.1084.1 24 5.4 even 2 inner
1805.2.b.k.1084.24 24 1.1 even 1 trivial
1805.2.b.l.1084.1 24 19.18 odd 2
1805.2.b.l.1084.24 24 95.94 odd 2
9025.2.a.ct.1.1 24 95.18 even 4
9025.2.a.ct.1.24 24 95.37 even 4
9025.2.a.cu.1.1 24 5.2 odd 4
9025.2.a.cu.1.24 24 5.3 odd 4