Properties

Label 1800.4.f.n
Level $1800$
Weight $4$
Character orbit 1800.f
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(649,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 9 \beta q^{7} + 16 q^{11} - 3 \beta q^{13} - 3 \beta q^{17} + 124 q^{19} - 21 \beta q^{23} + 142 q^{29} - 188 q^{31} - 101 \beta q^{37} - 54 q^{41} + 33 \beta q^{43} + 19 \beta q^{47} + 19 q^{49} - 369 \beta q^{53} + 564 q^{59} - 262 q^{61} + 277 \beta q^{67} - 140 q^{71} + 441 \beta q^{73} + 144 \beta q^{77} + 1160 q^{79} - 321 \beta q^{83} - 854 q^{89} + 108 q^{91} + 239 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 32 q^{11} + 248 q^{19} + 284 q^{29} - 376 q^{31} - 108 q^{41} + 38 q^{49} + 1128 q^{59} - 524 q^{61} - 280 q^{71} + 2320 q^{79} - 1708 q^{89} + 216 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
0 0 0 0 0 18.0000i 0 0 0
649.2 0 0 0 0 0 18.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.4.f.n 2
3.b odd 2 1 200.4.c.a 2
5.b even 2 1 inner 1800.4.f.n 2
5.c odd 4 1 360.4.a.i 1
5.c odd 4 1 1800.4.a.bd 1
12.b even 2 1 400.4.c.a 2
15.d odd 2 1 200.4.c.a 2
15.e even 4 1 40.4.a.c 1
15.e even 4 1 200.4.a.a 1
20.e even 4 1 720.4.a.ba 1
60.h even 2 1 400.4.c.a 2
60.l odd 4 1 80.4.a.a 1
60.l odd 4 1 400.4.a.u 1
105.k odd 4 1 1960.4.a.a 1
120.q odd 4 1 320.4.a.n 1
120.q odd 4 1 1600.4.a.a 1
120.w even 4 1 320.4.a.a 1
120.w even 4 1 1600.4.a.ca 1
240.z odd 4 1 1280.4.d.b 2
240.bb even 4 1 1280.4.d.o 2
240.bd odd 4 1 1280.4.d.b 2
240.bf even 4 1 1280.4.d.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.a.c 1 15.e even 4 1
80.4.a.a 1 60.l odd 4 1
200.4.a.a 1 15.e even 4 1
200.4.c.a 2 3.b odd 2 1
200.4.c.a 2 15.d odd 2 1
320.4.a.a 1 120.w even 4 1
320.4.a.n 1 120.q odd 4 1
360.4.a.i 1 5.c odd 4 1
400.4.a.u 1 60.l odd 4 1
400.4.c.a 2 12.b even 2 1
400.4.c.a 2 60.h even 2 1
720.4.a.ba 1 20.e even 4 1
1280.4.d.b 2 240.z odd 4 1
1280.4.d.b 2 240.bd odd 4 1
1280.4.d.o 2 240.bb even 4 1
1280.4.d.o 2 240.bf even 4 1
1600.4.a.a 1 120.q odd 4 1
1600.4.a.ca 1 120.w even 4 1
1800.4.a.bd 1 5.c odd 4 1
1800.4.f.n 2 1.a even 1 1 trivial
1800.4.f.n 2 5.b even 2 1 inner
1960.4.a.a 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{2} + 324 \) Copy content Toggle raw display
\( T_{11} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 324 \) Copy content Toggle raw display
$11$ \( (T - 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T - 124)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1764 \) Copy content Toggle raw display
$29$ \( (T - 142)^{2} \) Copy content Toggle raw display
$31$ \( (T + 188)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 40804 \) Copy content Toggle raw display
$41$ \( (T + 54)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4356 \) Copy content Toggle raw display
$47$ \( T^{2} + 1444 \) Copy content Toggle raw display
$53$ \( T^{2} + 544644 \) Copy content Toggle raw display
$59$ \( (T - 564)^{2} \) Copy content Toggle raw display
$61$ \( (T + 262)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 306916 \) Copy content Toggle raw display
$71$ \( (T + 140)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 777924 \) Copy content Toggle raw display
$79$ \( (T - 1160)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 412164 \) Copy content Toggle raw display
$89$ \( (T + 854)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 228484 \) Copy content Toggle raw display
show more
show less