Properties

Label 1800.3.l.c.1601.4
Level $1800$
Weight $3$
Character 1800.1601
Analytic conductor $49.046$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,3,Mod(1601,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.1601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 20x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1601.4
Root \(-2.37510i\) of defining polynomial
Character \(\chi\) \(=\) 1800.1601
Dual form 1800.3.l.c.1601.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.71780 q^{7} +1.41421i q^{11} +12.4356 q^{13} +10.9146i q^{17} -5.71780 q^{19} +17.5866i q^{23} -8.08619i q^{29} +45.1534 q^{31} +10.5644 q^{37} +62.4423i q^{41} -31.7178 q^{43} +4.02571i q^{47} +10.5644 q^{49} -62.4423i q^{53} +23.0265i q^{59} +22.1288 q^{61} +18.2822 q^{67} -32.5617i q^{71} -88.3068 q^{73} +10.9146i q^{77} +77.7424 q^{79} -80.0289i q^{83} +95.0040i q^{89} +95.9754 q^{91} +145.871 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 20 q^{13} + 12 q^{19} + 76 q^{31} + 112 q^{37} - 92 q^{43} + 112 q^{49} + 228 q^{61} + 108 q^{67} - 144 q^{73} + 32 q^{79} + 628 q^{91} + 444 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.71780 1.10254 0.551271 0.834326i \(-0.314143\pi\)
0.551271 + 0.834326i \(0.314143\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.128565i 0.997932 + 0.0642824i \(0.0204759\pi\)
−0.997932 + 0.0642824i \(0.979524\pi\)
\(12\) 0 0
\(13\) 12.4356 0.956584 0.478292 0.878201i \(-0.341256\pi\)
0.478292 + 0.878201i \(0.341256\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 10.9146i 0.642036i 0.947073 + 0.321018i \(0.104025\pi\)
−0.947073 + 0.321018i \(0.895975\pi\)
\(18\) 0 0
\(19\) −5.71780 −0.300937 −0.150468 0.988615i \(-0.548078\pi\)
−0.150468 + 0.988615i \(0.548078\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 17.5866i 0.764634i 0.924031 + 0.382317i \(0.124874\pi\)
−0.924031 + 0.382317i \(0.875126\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8.08619i − 0.278834i −0.990234 0.139417i \(-0.955477\pi\)
0.990234 0.139417i \(-0.0445229\pi\)
\(30\) 0 0
\(31\) 45.1534 1.45656 0.728281 0.685279i \(-0.240320\pi\)
0.728281 + 0.685279i \(0.240320\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.5644 0.285524 0.142762 0.989757i \(-0.454402\pi\)
0.142762 + 0.989757i \(0.454402\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 62.4423i 1.52298i 0.648175 + 0.761492i \(0.275533\pi\)
−0.648175 + 0.761492i \(0.724467\pi\)
\(42\) 0 0
\(43\) −31.7178 −0.737623 −0.368812 0.929504i \(-0.620235\pi\)
−0.368812 + 0.929504i \(0.620235\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.02571i 0.0856534i 0.999083 + 0.0428267i \(0.0136363\pi\)
−0.999083 + 0.0428267i \(0.986364\pi\)
\(48\) 0 0
\(49\) 10.5644 0.215600
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 62.4423i − 1.17816i −0.808076 0.589079i \(-0.799491\pi\)
0.808076 0.589079i \(-0.200509\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 23.0265i 0.390280i 0.980775 + 0.195140i \(0.0625161\pi\)
−0.980775 + 0.195140i \(0.937484\pi\)
\(60\) 0 0
\(61\) 22.1288 0.362767 0.181384 0.983412i \(-0.441942\pi\)
0.181384 + 0.983412i \(0.441942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 18.2822 0.272869 0.136434 0.990649i \(-0.456436\pi\)
0.136434 + 0.990649i \(0.456436\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 32.5617i − 0.458615i −0.973354 0.229308i \(-0.926354\pi\)
0.973354 0.229308i \(-0.0736462\pi\)
\(72\) 0 0
\(73\) −88.3068 −1.20968 −0.604841 0.796346i \(-0.706763\pi\)
−0.604841 + 0.796346i \(0.706763\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.9146i 0.141748i
\(78\) 0 0
\(79\) 77.7424 0.984081 0.492040 0.870572i \(-0.336251\pi\)
0.492040 + 0.870572i \(0.336251\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 80.0289i − 0.964204i −0.876115 0.482102i \(-0.839873\pi\)
0.876115 0.482102i \(-0.160127\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 95.0040i 1.06746i 0.845655 + 0.533730i \(0.179210\pi\)
−0.845655 + 0.533730i \(0.820790\pi\)
\(90\) 0 0
\(91\) 95.9754 1.05467
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 145.871 1.50383 0.751913 0.659262i \(-0.229131\pi\)
0.751913 + 0.659262i \(0.229131\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 107.263i 1.06201i 0.847368 + 0.531006i \(0.178186\pi\)
−0.847368 + 0.531006i \(0.821814\pi\)
\(102\) 0 0
\(103\) −144.871 −1.40652 −0.703258 0.710935i \(-0.748272\pi\)
−0.703258 + 0.710935i \(0.748272\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 202.267i 1.89035i 0.326566 + 0.945174i \(0.394108\pi\)
−0.326566 + 0.945174i \(0.605892\pi\)
\(108\) 0 0
\(109\) 148.742 1.36461 0.682305 0.731068i \(-0.260978\pi\)
0.682305 + 0.731068i \(0.260978\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 44.8210i − 0.396646i −0.980137 0.198323i \(-0.936451\pi\)
0.980137 0.198323i \(-0.0635495\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 84.2368i 0.707872i
\(120\) 0 0
\(121\) 119.000 0.983471
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.5644 0.0831843 0.0415921 0.999135i \(-0.486757\pi\)
0.0415921 + 0.999135i \(0.486757\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 157.446i 1.20188i 0.799294 + 0.600940i \(0.205207\pi\)
−0.799294 + 0.600940i \(0.794793\pi\)
\(132\) 0 0
\(133\) −44.1288 −0.331796
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 183.301i − 1.33797i −0.743278 0.668983i \(-0.766730\pi\)
0.743278 0.668983i \(-0.233270\pi\)
\(138\) 0 0
\(139\) −67.1780 −0.483295 −0.241647 0.970364i \(-0.577688\pi\)
−0.241647 + 0.970364i \(0.577688\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 17.5866i 0.122983i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 259.304i − 1.74030i −0.492788 0.870149i \(-0.664022\pi\)
0.492788 0.870149i \(-0.335978\pi\)
\(150\) 0 0
\(151\) 262.025 1.73526 0.867631 0.497209i \(-0.165642\pi\)
0.867631 + 0.497209i \(0.165642\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 188.129 1.19827 0.599136 0.800647i \(-0.295511\pi\)
0.599136 + 0.800647i \(0.295511\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 135.730i 0.843042i
\(162\) 0 0
\(163\) 3.76697 0.0231102 0.0115551 0.999933i \(-0.496322\pi\)
0.0115551 + 0.999933i \(0.496322\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 262.029i 1.56903i 0.620108 + 0.784517i \(0.287089\pi\)
−0.620108 + 0.784517i \(0.712911\pi\)
\(168\) 0 0
\(169\) −14.3560 −0.0849465
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 109.910i − 0.635315i −0.948205 0.317658i \(-0.897104\pi\)
0.948205 0.317658i \(-0.102896\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 272.796i 1.52400i 0.647578 + 0.762000i \(0.275782\pi\)
−0.647578 + 0.762000i \(0.724218\pi\)
\(180\) 0 0
\(181\) 320.534 1.77091 0.885453 0.464729i \(-0.153848\pi\)
0.885453 + 0.464729i \(0.153848\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.4356 −0.0825433
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 233.415i 1.22207i 0.791605 + 0.611033i \(0.209246\pi\)
−0.791605 + 0.611033i \(0.790754\pi\)
\(192\) 0 0
\(193\) −8.69321 −0.0450426 −0.0225213 0.999746i \(-0.507169\pi\)
−0.0225213 + 0.999746i \(0.507169\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 101.711i 0.516298i 0.966105 + 0.258149i \(0.0831126\pi\)
−0.966105 + 0.258149i \(0.916887\pi\)
\(198\) 0 0
\(199\) −128.638 −0.646423 −0.323211 0.946327i \(-0.604763\pi\)
−0.323211 + 0.946327i \(0.604763\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 62.4076i − 0.307426i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 8.08619i − 0.0386899i
\(210\) 0 0
\(211\) 215.975 1.02358 0.511790 0.859111i \(-0.328983\pi\)
0.511790 + 0.859111i \(0.328983\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 348.485 1.60592
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 135.730i 0.614162i
\(222\) 0 0
\(223\) −130.540 −0.585380 −0.292690 0.956207i \(-0.594550\pi\)
−0.292690 + 0.956207i \(0.594550\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 122.204i 0.538342i 0.963092 + 0.269171i \(0.0867497\pi\)
−0.963092 + 0.269171i \(0.913250\pi\)
\(228\) 0 0
\(229\) 359.970 1.57192 0.785960 0.618278i \(-0.212169\pi\)
0.785960 + 0.618278i \(0.212169\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 12.2593i − 0.0526150i −0.999654 0.0263075i \(-0.991625\pi\)
0.999654 0.0263075i \(-0.00837490\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 62.4423i 0.261265i 0.991431 + 0.130632i \(0.0417008\pi\)
−0.991431 + 0.130632i \(0.958299\pi\)
\(240\) 0 0
\(241\) −135.356 −0.561643 −0.280821 0.959760i \(-0.590607\pi\)
−0.280821 + 0.959760i \(0.590607\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −71.1042 −0.287871
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 359.714i − 1.43312i −0.697524 0.716561i \(-0.745715\pi\)
0.697524 0.716561i \(-0.254285\pi\)
\(252\) 0 0
\(253\) −24.8712 −0.0983051
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 264.710i − 1.03000i −0.857191 0.514999i \(-0.827792\pi\)
0.857191 0.514999i \(-0.172208\pi\)
\(258\) 0 0
\(259\) 81.5339 0.314803
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 152.084i 0.578267i 0.957289 + 0.289134i \(0.0933672\pi\)
−0.957289 + 0.289134i \(0.906633\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 66.6154i − 0.247641i −0.992305 0.123821i \(-0.960485\pi\)
0.992305 0.123821i \(-0.0395147\pi\)
\(270\) 0 0
\(271\) −81.5339 −0.300863 −0.150432 0.988620i \(-0.548066\pi\)
−0.150432 + 0.988620i \(0.548066\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 125.822 0.454231 0.227116 0.973868i \(-0.427070\pi\)
0.227116 + 0.973868i \(0.427070\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 438.511i 1.56054i 0.625446 + 0.780268i \(0.284917\pi\)
−0.625446 + 0.780268i \(0.715083\pi\)
\(282\) 0 0
\(283\) −268.687 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 481.917i 1.67915i
\(288\) 0 0
\(289\) 169.871 0.587790
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 452.071i − 1.54291i −0.636286 0.771453i \(-0.719530\pi\)
0.636286 0.771453i \(-0.280470\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 218.700i 0.731437i
\(300\) 0 0
\(301\) −244.792 −0.813261
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −194.896 −0.634840 −0.317420 0.948285i \(-0.602816\pi\)
−0.317420 + 0.948285i \(0.602816\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 298.686i − 0.960404i −0.877158 0.480202i \(-0.840563\pi\)
0.877158 0.480202i \(-0.159437\pi\)
\(312\) 0 0
\(313\) −203.405 −0.649857 −0.324928 0.945739i \(-0.605340\pi\)
−0.324928 + 0.945739i \(0.605340\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 449.356i − 1.41753i −0.705447 0.708763i \(-0.749254\pi\)
0.705447 0.708763i \(-0.250746\pi\)
\(318\) 0 0
\(319\) 11.4356 0.0358483
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 62.4076i − 0.193212i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 31.0696i 0.0944365i
\(330\) 0 0
\(331\) 533.632 1.61218 0.806091 0.591792i \(-0.201579\pi\)
0.806091 + 0.591792i \(0.201579\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −55.6627 −0.165171 −0.0825857 0.996584i \(-0.526318\pi\)
−0.0825857 + 0.996584i \(0.526318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 63.8565i 0.187263i
\(342\) 0 0
\(343\) −296.638 −0.864834
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 104.392i − 0.300841i −0.988622 0.150420i \(-0.951937\pi\)
0.988622 0.150420i \(-0.0480627\pi\)
\(348\) 0 0
\(349\) −304.197 −0.871624 −0.435812 0.900038i \(-0.643539\pi\)
−0.435812 + 0.900038i \(0.643539\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 20.2676i − 0.0574154i −0.999588 0.0287077i \(-0.990861\pi\)
0.999588 0.0287077i \(-0.00913919\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 187.327i − 0.521802i −0.965366 0.260901i \(-0.915980\pi\)
0.965366 0.260901i \(-0.0840196\pi\)
\(360\) 0 0
\(361\) −328.307 −0.909437
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −454.945 −1.23963 −0.619816 0.784747i \(-0.712793\pi\)
−0.619816 + 0.784747i \(0.712793\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 481.917i − 1.29897i
\(372\) 0 0
\(373\) 464.534 1.24540 0.622700 0.782461i \(-0.286036\pi\)
0.622700 + 0.782461i \(0.286036\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 100.557i − 0.266728i
\(378\) 0 0
\(379\) −210.233 −0.554705 −0.277352 0.960768i \(-0.589457\pi\)
−0.277352 + 0.960768i \(0.589457\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 259.348i 0.677148i 0.940940 + 0.338574i \(0.109944\pi\)
−0.940940 + 0.338574i \(0.890056\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 17.6214i − 0.0452991i −0.999743 0.0226496i \(-0.992790\pi\)
0.999743 0.0226496i \(-0.00721020\pi\)
\(390\) 0 0
\(391\) −191.951 −0.490923
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −62.4356 −0.157269 −0.0786343 0.996904i \(-0.525056\pi\)
−0.0786343 + 0.996904i \(0.525056\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.5617i 0.0812012i 0.999175 + 0.0406006i \(0.0129271\pi\)
−0.999175 + 0.0406006i \(0.987073\pi\)
\(402\) 0 0
\(403\) 561.509 1.39332
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 14.9403i 0.0367084i
\(408\) 0 0
\(409\) −81.5644 −0.199424 −0.0997120 0.995016i \(-0.531792\pi\)
−0.0997120 + 0.995016i \(0.531792\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 177.714i 0.430300i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 62.4423i 0.149027i 0.997220 + 0.0745135i \(0.0237404\pi\)
−0.997220 + 0.0745135i \(0.976260\pi\)
\(420\) 0 0
\(421\) −582.663 −1.38400 −0.691999 0.721899i \(-0.743270\pi\)
−0.691999 + 0.721899i \(0.743270\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 170.786 0.399966
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 208.896i 0.484678i 0.970192 + 0.242339i \(0.0779146\pi\)
−0.970192 + 0.242339i \(0.922085\pi\)
\(432\) 0 0
\(433\) 574.019 1.32568 0.662839 0.748762i \(-0.269351\pi\)
0.662839 + 0.748762i \(0.269351\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 100.557i − 0.230107i
\(438\) 0 0
\(439\) 29.7670 0.0678063 0.0339032 0.999425i \(-0.489206\pi\)
0.0339032 + 0.999425i \(0.489206\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 504.901i 1.13973i 0.821738 + 0.569865i \(0.193005\pi\)
−0.821738 + 0.569865i \(0.806995\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 829.372i − 1.84715i −0.383414 0.923576i \(-0.625252\pi\)
0.383414 0.923576i \(-0.374748\pi\)
\(450\) 0 0
\(451\) −88.3068 −0.195802
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 174.712 0.382302 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 172.387i 0.373941i 0.982366 + 0.186970i \(0.0598668\pi\)
−0.982366 + 0.186970i \(0.940133\pi\)
\(462\) 0 0
\(463\) 39.2763 0.0848301 0.0424150 0.999100i \(-0.486495\pi\)
0.0424150 + 0.999100i \(0.486495\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 168.361i 0.360516i 0.983619 + 0.180258i \(0.0576933\pi\)
−0.983619 + 0.180258i \(0.942307\pi\)
\(468\) 0 0
\(469\) 141.098 0.300849
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 44.8557i − 0.0948324i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 446.631i 0.932425i 0.884673 + 0.466212i \(0.154382\pi\)
−0.884673 + 0.466212i \(0.845618\pi\)
\(480\) 0 0
\(481\) 131.375 0.273128
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −275.619 −0.565954 −0.282977 0.959127i \(-0.591322\pi\)
−0.282977 + 0.959127i \(0.591322\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 883.771i − 1.79994i −0.435951 0.899970i \(-0.643588\pi\)
0.435951 0.899970i \(-0.356412\pi\)
\(492\) 0 0
\(493\) 88.2576 0.179022
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 251.304i − 0.505643i
\(498\) 0 0
\(499\) −958.884 −1.92161 −0.960806 0.277223i \(-0.910586\pi\)
−0.960806 + 0.277223i \(0.910586\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 791.448i 1.57346i 0.617300 + 0.786728i \(0.288226\pi\)
−0.617300 + 0.786728i \(0.711774\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 374.697i − 0.736144i −0.929797 0.368072i \(-0.880018\pi\)
0.929797 0.368072i \(-0.119982\pi\)
\(510\) 0 0
\(511\) −681.534 −1.33373
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.69321 −0.0110120
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 590.447i − 1.13330i −0.823960 0.566648i \(-0.808240\pi\)
0.823960 0.566648i \(-0.191760\pi\)
\(522\) 0 0
\(523\) 532.797 1.01873 0.509367 0.860550i \(-0.329880\pi\)
0.509367 + 0.860550i \(0.329880\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 492.832i 0.935165i
\(528\) 0 0
\(529\) 219.712 0.415334
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 776.508i 1.45686i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.9403i 0.0277186i
\(540\) 0 0
\(541\) −531.822 −0.983035 −0.491518 0.870868i \(-0.663558\pi\)
−0.491518 + 0.870868i \(0.663558\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −633.583 −1.15829 −0.579144 0.815226i \(-0.696613\pi\)
−0.579144 + 0.815226i \(0.696613\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 46.2352i 0.0839114i
\(552\) 0 0
\(553\) 600.000 1.08499
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 916.142i − 1.64478i −0.568925 0.822390i \(-0.692640\pi\)
0.568925 0.822390i \(-0.307360\pi\)
\(558\) 0 0
\(559\) −394.430 −0.705599
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 1076.49i − 1.91207i −0.293255 0.956034i \(-0.594738\pi\)
0.293255 0.956034i \(-0.405262\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 282.374i 0.496264i 0.968726 + 0.248132i \(0.0798166\pi\)
−0.968726 + 0.248132i \(0.920183\pi\)
\(570\) 0 0
\(571\) −739.043 −1.29430 −0.647148 0.762364i \(-0.724039\pi\)
−0.647148 + 0.762364i \(0.724039\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −570.068 −0.987986 −0.493993 0.869466i \(-0.664463\pi\)
−0.493993 + 0.869466i \(0.664463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 617.647i − 1.06308i
\(582\) 0 0
\(583\) 88.3068 0.151470
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 771.145i − 1.31371i −0.754019 0.656853i \(-0.771887\pi\)
0.754019 0.656853i \(-0.228113\pi\)
\(588\) 0 0
\(589\) −258.178 −0.438333
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 552.403i − 0.931539i −0.884906 0.465770i \(-0.845778\pi\)
0.884906 0.465770i \(-0.154222\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 943.532i − 1.57518i −0.616200 0.787589i \(-0.711329\pi\)
0.616200 0.787589i \(-0.288671\pi\)
\(600\) 0 0
\(601\) −256.337 −0.426518 −0.213259 0.976996i \(-0.568408\pi\)
−0.213259 + 0.976996i \(0.568408\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −960.810 −1.58288 −0.791442 0.611245i \(-0.790669\pi\)
−0.791442 + 0.611245i \(0.790669\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 50.0621i 0.0819347i
\(612\) 0 0
\(613\) −657.424 −1.07247 −0.536235 0.844069i \(-0.680154\pi\)
−0.536235 + 0.844069i \(0.680154\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 86.9609i 0.140942i 0.997514 + 0.0704708i \(0.0224501\pi\)
−0.997514 + 0.0704708i \(0.977550\pi\)
\(618\) 0 0
\(619\) 126.528 0.204407 0.102204 0.994764i \(-0.467411\pi\)
0.102204 + 0.994764i \(0.467411\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 733.222i 1.17692i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 115.306i 0.183317i
\(630\) 0 0
\(631\) −218.957 −0.347000 −0.173500 0.984834i \(-0.555508\pi\)
−0.173500 + 0.984834i \(0.555508\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 131.375 0.206240
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 819.793i − 1.27893i −0.768821 0.639464i \(-0.779156\pi\)
0.768821 0.639464i \(-0.220844\pi\)
\(642\) 0 0
\(643\) 17.3373 0.0269631 0.0134815 0.999909i \(-0.495709\pi\)
0.0134815 + 0.999909i \(0.495709\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 694.909i − 1.07405i −0.843567 0.537024i \(-0.819549\pi\)
0.843567 0.537024i \(-0.180451\pi\)
\(648\) 0 0
\(649\) −32.5644 −0.0501763
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 362.429i 0.555022i 0.960722 + 0.277511i \(0.0895095\pi\)
−0.960722 + 0.277511i \(0.910490\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1130.86i 1.71602i 0.513631 + 0.858011i \(0.328300\pi\)
−0.513631 + 0.858011i \(0.671700\pi\)
\(660\) 0 0
\(661\) −120.000 −0.181543 −0.0907716 0.995872i \(-0.528933\pi\)
−0.0907716 + 0.995872i \(0.528933\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 142.208 0.213206
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.2949i 0.0466391i
\(672\) 0 0
\(673\) −159.276 −0.236666 −0.118333 0.992974i \(-0.537755\pi\)
−0.118333 + 0.992974i \(0.537755\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 415.449i − 0.613662i −0.951764 0.306831i \(-0.900731\pi\)
0.951764 0.306831i \(-0.0992687\pi\)
\(678\) 0 0
\(679\) 1125.80 1.65803
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 1138.90i − 1.66750i −0.552142 0.833750i \(-0.686190\pi\)
0.552142 0.833750i \(-0.313810\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 776.508i − 1.12701i
\(690\) 0 0
\(691\) −712.037 −1.03044 −0.515222 0.857056i \(-0.672291\pi\)
−0.515222 + 0.857056i \(0.672291\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −681.534 −0.977811
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.5095i 0.0520821i 0.999661 + 0.0260410i \(0.00829006\pi\)
−0.999661 + 0.0260410i \(0.991710\pi\)
\(702\) 0 0
\(703\) −60.4051 −0.0859248
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 827.836i 1.17091i
\(708\) 0 0
\(709\) −748.681 −1.05597 −0.527984 0.849254i \(-0.677052\pi\)
−0.527984 + 0.849254i \(0.677052\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 794.094i 1.11374i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 889.176i − 1.23668i −0.785909 0.618342i \(-0.787805\pi\)
0.785909 0.618342i \(-0.212195\pi\)
\(720\) 0 0
\(721\) −1118.09 −1.55074
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 99.8161 0.137299 0.0686493 0.997641i \(-0.478131\pi\)
0.0686493 + 0.997641i \(0.478131\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 346.188i − 0.473581i
\(732\) 0 0
\(733\) 352.417 0.480787 0.240394 0.970676i \(-0.422724\pi\)
0.240394 + 0.970676i \(0.422724\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.8549i 0.0350813i
\(738\) 0 0
\(739\) −501.129 −0.678117 −0.339059 0.940765i \(-0.610109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 959.618i 1.29155i 0.763530 + 0.645773i \(0.223465\pi\)
−0.763530 + 0.645773i \(0.776535\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1561.06i 2.08419i
\(750\) 0 0
\(751\) −772.822 −1.02906 −0.514529 0.857473i \(-0.672033\pi\)
−0.514529 + 0.857473i \(0.672033\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −159.417 −0.210590 −0.105295 0.994441i \(-0.533579\pi\)
−0.105295 + 0.994441i \(0.533579\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 399.173i − 0.524537i −0.964995 0.262268i \(-0.915529\pi\)
0.964995 0.262268i \(-0.0844706\pi\)
\(762\) 0 0
\(763\) 1147.96 1.50454
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 286.348i 0.373336i
\(768\) 0 0
\(769\) 102.632 0.133462 0.0667310 0.997771i \(-0.478743\pi\)
0.0667310 + 0.997771i \(0.478743\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 142.506i − 0.184354i −0.995743 0.0921772i \(-0.970617\pi\)
0.995743 0.0921772i \(-0.0293826\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 357.033i − 0.458322i
\(780\) 0 0
\(781\) 46.0492 0.0589618
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 163.203 0.207373 0.103687 0.994610i \(-0.466936\pi\)
0.103687 + 0.994610i \(0.466936\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 345.919i − 0.437319i
\(792\) 0 0
\(793\) 275.185 0.347018
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 689.547i 0.865178i 0.901591 + 0.432589i \(0.142400\pi\)
−0.901591 + 0.432589i \(0.857600\pi\)
\(798\) 0 0
\(799\) −43.9391 −0.0549926
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 124.885i − 0.155523i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 802.172i − 0.991560i −0.868448 0.495780i \(-0.834882\pi\)
0.868448 0.495780i \(-0.165118\pi\)
\(810\) 0 0
\(811\) 1329.29 1.63907 0.819537 0.573026i \(-0.194231\pi\)
0.819537 + 0.573026i \(0.194231\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 181.356 0.221978
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 206.363i 0.251355i 0.992071 + 0.125678i \(0.0401105\pi\)
−0.992071 + 0.125678i \(0.959890\pi\)
\(822\) 0 0
\(823\) −1048.33 −1.27379 −0.636896 0.770949i \(-0.719782\pi\)
−0.636896 + 0.770949i \(0.719782\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1301.71i − 1.57402i −0.616943 0.787008i \(-0.711629\pi\)
0.616943 0.787008i \(-0.288371\pi\)
\(828\) 0 0
\(829\) −91.2271 −0.110045 −0.0550224 0.998485i \(-0.517523\pi\)
−0.0550224 + 0.998485i \(0.517523\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 115.306i 0.138423i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 59.7182i − 0.0711778i −0.999367 0.0355889i \(-0.988669\pi\)
0.999367 0.0355889i \(-0.0113307\pi\)
\(840\) 0 0
\(841\) 775.614 0.922252
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 918.418 1.08432
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 185.792i 0.218322i
\(852\) 0 0
\(853\) 436.681 0.511936 0.255968 0.966685i \(-0.417606\pi\)
0.255968 + 0.966685i \(0.417606\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 594.543i 0.693749i 0.937912 + 0.346874i \(0.112757\pi\)
−0.937912 + 0.346874i \(0.887243\pi\)
\(858\) 0 0
\(859\) −376.037 −0.437762 −0.218881 0.975752i \(-0.570241\pi\)
−0.218881 + 0.975752i \(0.570241\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 104.582i 0.121185i 0.998163 + 0.0605923i \(0.0192989\pi\)
−0.998163 + 0.0605923i \(0.980701\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 109.944i 0.126518i
\(870\) 0 0
\(871\) 227.350 0.261022
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 117.159 0.133591 0.0667955 0.997767i \(-0.478722\pi\)
0.0667955 + 0.997767i \(0.478722\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 840.096i 0.953571i 0.879020 + 0.476785i \(0.158198\pi\)
−0.879020 + 0.476785i \(0.841802\pi\)
\(882\) 0 0
\(883\) 1557.04 1.76336 0.881678 0.471852i \(-0.156414\pi\)
0.881678 + 0.471852i \(0.156414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 661.002i − 0.745211i −0.927990 0.372606i \(-0.878464\pi\)
0.927990 0.372606i \(-0.121536\pi\)
\(888\) 0 0
\(889\) 81.5339 0.0917142
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 23.0182i − 0.0257763i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 365.119i − 0.406139i
\(900\) 0 0
\(901\) 681.534 0.756419
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 889.030 0.980188 0.490094 0.871670i \(-0.336962\pi\)
0.490094 + 0.871670i \(0.336962\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1391.62i 1.52758i 0.645468 + 0.763788i \(0.276662\pi\)
−0.645468 + 0.763788i \(0.723338\pi\)
\(912\) 0 0
\(913\) 113.178 0.123963
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1215.14i 1.32512i
\(918\) 0 0
\(919\) 450.233 0.489916 0.244958 0.969534i \(-0.421226\pi\)
0.244958 + 0.969534i \(0.421226\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 404.924i − 0.438704i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1254.55i 1.35044i 0.737618 + 0.675218i \(0.235950\pi\)
−0.737618 + 0.675218i \(0.764050\pi\)
\(930\) 0 0
\(931\) −60.4051 −0.0648820
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1553.09 −1.65751 −0.828755 0.559612i \(-0.810950\pi\)
−0.828755 + 0.559612i \(0.810950\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.7166i 0.0230782i 0.999933 + 0.0115391i \(0.00367309\pi\)
−0.999933 + 0.0115391i \(0.996327\pi\)
\(942\) 0 0
\(943\) −1098.15 −1.16453
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1760.83i − 1.85938i −0.368340 0.929691i \(-0.620074\pi\)
0.368340 0.929691i \(-0.379926\pi\)
\(948\) 0 0
\(949\) −1098.15 −1.15716
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 495.322i − 0.519751i −0.965642 0.259875i \(-0.916319\pi\)
0.965642 0.259875i \(-0.0836815\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1414.68i − 1.47516i
\(960\) 0 0
\(961\) 1077.83 1.12157
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 486.773 0.503385 0.251692 0.967807i \(-0.419013\pi\)
0.251692 + 0.967807i \(0.419013\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 568.757i − 0.585744i −0.956152 0.292872i \(-0.905389\pi\)
0.956152 0.292872i \(-0.0946110\pi\)
\(972\) 0 0
\(973\) −518.466 −0.532853
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1486.55i 1.52154i 0.649020 + 0.760771i \(0.275179\pi\)
−0.649020 + 0.760771i \(0.724821\pi\)
\(978\) 0 0
\(979\) −134.356 −0.137238
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1612.78i 1.64067i 0.571885 + 0.820334i \(0.306212\pi\)
−0.571885 + 0.820334i \(0.693788\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 557.808i − 0.564012i
\(990\) 0 0
\(991\) −381.043 −0.384504 −0.192252 0.981346i \(-0.561579\pi\)
−0.192252 + 0.981346i \(0.561579\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1469.52 −1.47394 −0.736972 0.675923i \(-0.763745\pi\)
−0.736972 + 0.675923i \(0.763745\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.3.l.c.1601.4 yes 4
3.2 odd 2 inner 1800.3.l.c.1601.3 4
4.3 odd 2 3600.3.l.t.1601.1 4
5.2 odd 4 1800.3.c.c.449.6 8
5.3 odd 4 1800.3.c.c.449.4 8
5.4 even 2 1800.3.l.e.1601.2 yes 4
12.11 even 2 3600.3.l.t.1601.2 4
15.2 even 4 1800.3.c.c.449.5 8
15.8 even 4 1800.3.c.c.449.3 8
15.14 odd 2 1800.3.l.e.1601.1 yes 4
20.3 even 4 3600.3.c.j.449.5 8
20.7 even 4 3600.3.c.j.449.3 8
20.19 odd 2 3600.3.l.p.1601.3 4
60.23 odd 4 3600.3.c.j.449.6 8
60.47 odd 4 3600.3.c.j.449.4 8
60.59 even 2 3600.3.l.p.1601.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1800.3.c.c.449.3 8 15.8 even 4
1800.3.c.c.449.4 8 5.3 odd 4
1800.3.c.c.449.5 8 15.2 even 4
1800.3.c.c.449.6 8 5.2 odd 4
1800.3.l.c.1601.3 4 3.2 odd 2 inner
1800.3.l.c.1601.4 yes 4 1.1 even 1 trivial
1800.3.l.e.1601.1 yes 4 15.14 odd 2
1800.3.l.e.1601.2 yes 4 5.4 even 2
3600.3.c.j.449.3 8 20.7 even 4
3600.3.c.j.449.4 8 60.47 odd 4
3600.3.c.j.449.5 8 20.3 even 4
3600.3.c.j.449.6 8 60.23 odd 4
3600.3.l.p.1601.3 4 20.19 odd 2
3600.3.l.p.1601.4 4 60.59 even 2
3600.3.l.t.1601.1 4 4.3 odd 2
3600.3.l.t.1601.2 4 12.11 even 2